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Abstract

Electrosurgery with argon plasma

coagulation is a widespread tech-

nique used in various medical

fields for applications which

range from hemostasis to devitali-

zation processes. Developing tools

which provide feedback con-

cerning tissue condition during

these surgeries is fundamental for

improving the safety and success

of this treatment. We present here

a method based on diffuse reflec-

tance spectroscopy to monitor gastric mucosal devitalization treatments. The

analysis of the diffusely reflected spectra of the tissue allows us to differentiate

between ablation states by using linear discriminant analysis (LDA) as a classi-

fication algorithm. An ex vivo pilot study on several swine stomachs showed

promising results, with 97.8% of correctly classified ablation states on a new

unseen stomach, encouraging further tests with human tissue.
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1 | INTRODUCTION

Argon plasma coagulation (APC) is a technique used in
electrosurgery to induce thermal effects on the superficial

layers of organic tissue in a contact-less manner. This
technology is widely used in open surgery and in endos-
copy across many medical specialist fields, such as
bronchology, otolaryngology, gastroenterology, with pri-
mary applications in tissue shrinkage to treat swollen tis-
sue; devitalization processes such as malignant tumor
destruction; and minimization of blood loss through
hemostasis [1]. Surgeons control the effects of APC

Abbreviations: APC, argon plasma coagulation; DRS, diffuse
reflectance spectroscopy; GMD, gastric mucosa devitalization; LDA,
linear discriminant analysis.
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visually, observing the change in color and texture of the
treated tissue until the desired effect is reached. This
method loses efficacy when the visual information is
impaired, for example, in the case of endoscopic surgery.
Furthermore, the plasma itself, intrinsic to APC, tempo-
rarily blinds the surgeon's view or saturates endoscopic
imaging systems, requiring periodic interruptions of the
procedure to assess the ablation state of the tissue. In this
context, we propose diffuse reflectance spectroscopy
(DRS) as a complementary aid for monitoring APC treat-
ments continuously and in real time. More specifically,
this work addresses gastric mucosal devitalization (GMD)
using APC techniques, which have been proven techni-
cally feasible for reducing body weight and visceral adi-
posity in a swine ex vivo model in its preliminary
investigative stages [2].

The proposed approach is based on illuminating the
tissue under treatment with a broadband, high intensity
light source; collecting the photons which are diffusely
reflected (DR) from the superficial layers of the tissue;
and finally determining the spectrum of this light signal
with a spectrometer.

In the following, we first show that APC induces a
continuous change in the diffuse reflectance spectrum of
porcine stomach tissue. With these results, three ablation
states are defined and a classification problem among
these states is formulated. We then undertake the classifi-
cation of these ablation states using machine learning
techniques.

2 | EXPERIMENTAL SETUP

2.1 | Tissue

The ablation experiments were realized on ex vivo swine
stomach tissue, specifically on the proper gastric region
of the pig, corresponding to the body and fundus regions
of the human stomach. A total of five stomachs were
obtained from a slaughterhouse and stored frozen until
thawed before the experimental procedures. The
age, gender, or race from the subjects could not be
determined.

2.2 | APC

The electrosurgery APC equipment used in the experi-
ments was the ERBE VIO APC system with a VIO 300 D
generator module and an APC 2 argon plasma
coagulator. It was configured with the following settings:
Pulsed mode, Effect 2 (16 Hz pulse signal), 0.8 L/min of
argon flow and fixed maximum power of 40 W.

2.3 | DRS measurements

The optical setup that was used to obtain the DRS mea-
surements is presented schematically in Figure 1. An
Energetiq EQ-99FXC high-intensity (60 μW/nm) contin-
uum fiber-coupled light source (190-2100 nm) was used
to illuminate the tissue. A mechanical variable optical
attenuator was used to adjust the optical power delivered
to the tissue. A DRS probe containing two multimode
fibers with 400 μm core diameter and numerical aperture
0.5 was assembled to illuminate and collect the back-
scattered light from the tissue. The tip of the probe was
placed at a fixed distance of 13 mm and at a fixed 30

�

angle from the tissue's surface. The Ocean Optics HR2000
+ high-resolution (0.2 nm) spectrometer with a wave-
length range from 600 to 1020 nm was used to capture
the spectral measurements. The signals were acquired
using an integration time of 250 ms and averaged every
four consecutive measurements.

3 | DRS VARIATION WITH
ABLATION CYCLES

Using the previously described experimental setup, the
variation of the DR spectra was analyzed with respect to
the ablation process in a single swine stomach. To do so,
16 ablation cycles were executed on the tissue, followed
by the corresponding DRS measurement. Each ablation
cycle consisted of ablating a rectangular section of 1.8 cm
by 1.5 cm while following a meander pattern that covered
this area in approximately 6 seconds. The corresponding
ablation effects on the tissue are shown in Figure 2, as
they progressively change with each ablation cycle.

After each ablation cycle, 10 partially overlapping
DRS measurements were taken across the previously
ablated rectangular area. The mean spectral measure-
ments corresponding to each ablation cycle are shown in
Figure 3. All these spectral signals were previously pre-
processed, as described in Section 4, but shown before

FIGURE 1 Schematic of the optical setup used to obtain the

DRS measurements
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normalization. With this experiment, it was empirically
demonstrated that the DR spectra vary gradually as the
APC process is executed on the tissue, and this variation
is determined by the number of ablation cycles inflicted
on the tissue.

We picked three meaningful states for the GMD/APC
procedure based on the number of ablation cycles:

normal, desiccated, and brown. Normal corresponds to a
state of no ablation, which indicates the surgeon an
unoperated tissue area, ready to be treated. Dessicated is
equivalent to three ablation cycles and may be inter-
preted as a state where the surgeon needs to exercise cau-
tion. Brown refers to seven ablation cycles, which
represent the stop state, indicating to the surgeon that no
further ablation is needed. These ablation states were
used as classes in a classification problem, which corre-
spond to the labels of each spectrum used in the posterior
data generation process.

4 | ABLATION STATE
CLASSIFICATION

4.1 | Data generation

A total of 1350 DR spectra were measured from five dif-
ferent ex vivo swine stomachs. Each stomach underwent
the ablation procedure described in the previous section,
using the same experimental setup, where 90 samples per

FIGURE 2 Ablation effects

on tissue ranging from ablation

cycle 1 (top-left corner) to

ablation cycle 16 (bottom-right

corner). Every photograph

depicts an area of 1.8 by 1.5 cm

FIGURE 3 Variation of the DRS spectra corresponding to the

number of ablation cycles shown in the legend
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ablation state were collected and labeled accordingly,
totaling 270 DR spectral samples per stomach. The 1080
samples from the first four stomachs were used for train-
ing and validation, while the 270 samples from the fifth
stomach were used for the final test. The data analysis
and ablation state classification process was developed
under a python [3] based environment, using as main
libraries: scikit-learn [4], numpy [5], scipy [6],
pandas [7] and matplotlib [8].

4.2 | Noise filtering

In addition to the temporal averaging realized in the data
acquisition phase, a moving average filter with a kernel
of 25 wavelength points was applied to the data to further
reduce the random noise implicit in the spectrum while
preserving its shape. The noise level decreases by the
square root of both the number of points used in the
moving average and the number of scans temporally
averaged, achieving an overall noise reduction by a factor
of 10.

4.3 | Calibration

All collected signals were calibrated to obtain the wave-
length dependent reflectance given by

R λð Þ= Ic λð Þ−Ib λð Þ
Ir λð Þ−Ib λð Þ × 100%, ð1Þ

where Ic stands for every collected diffuse reflected spec-
tral measurement and Ib and Ir correspond to the back-
ground and the reference light signals, respectively, both
of which were assumed constant for all measurements. A
diffuse reflector with silver coating was used to mea-
sure Ir.

4.4 | Data normalization

Normalization was undertaken to minimize the depen-
dency of the measurements on the reflectance amplitude
that varied considerably without normalization, as may
be observed in the upper graph in Figure 4. It was also
applied to minimize the influence of uncontrollable fac-
tors present in a medical APC procedure, such as the dis-
tance and angle from fiber to tissue; tip contamination or
illumination changes.

After applying L2 normalization, an average reduc-
tion of 87.8% in the coefficient of variation was obtained
among the different classes in the training data set, when

compared with the unnormalized reflectance measure-
ments. The Euclidian norm (L2) was also chosen as it
resulted in the largest reduction when compared with
other types of norm, such as the Manhattan norm (L1) or
a maximum norm.

4.5 | Wavelength subsampling

Finally, wavelength subsampling was applied to extract
meaningful features that represented the overall shape of
the spectra characterizing each ablation state. The wave-
length subsampling was realized every 25 wavelengths, to
match the number of pixels that were averaged in the
moving average filter; thus, 80 wavelengths were selected
from the total 2000 wavelengths that were measured. In
this way, feature colinearity was reduced by eliminating
redundant information about neighboring pixels, as well
as its sparsity, as it was transformed to a much lower
dimensional space.

4.6 | Classification model

Linear discriminant analysis (LDA) was chosen as the
classification algorithm used to discriminate among the
three defined ablation states. The training data were used
to find the weight parameters of a linear discriminant

FIGURE 4 DRS samples with and without normalization.

The SD around the mean is observed for each ablation state in both

graphs (μ ± σ)
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function that maximizes separability among these three
classes. This is realized by maximizing the Fisher Crite-
rion for the generalized multiclass case [9]

J Wð Þ= W>SBW
�� ��
W>SWW
�� �� , ð2Þ

with respect to W, which is the weight parameter matrix.
SB represents the between-class scattering matrix calcu-
lated as [10]

SB =
XK

k=1

Nk mk−mð Þ mk−mð Þ>, ð3Þ

where Nk are the number of samples in each class; mk is
the mean of each class; and m is the overall mean. SW is
the within-class scattering matrix given by [10]

SW =
XK

k=1

Sk =
XK

i=1

Xn

x∈Ck

x−mið Þ x−mið Þ>: ð4Þ

The solution to this problem was found using the sin-
gular value decomposition solver implemented in the
LDA module of the Scikit-learn [4] library. As a
result, a discriminant function of the form

y xð Þ=w>
0 +w>

1 x λ1ð Þ+w>
2 x λ2ð Þ+…+w>

80x λ80ð Þ, ð5Þ

was obtained. This function corresponds to the prediction
model, which may be applied on new DR spectral sam-
ples to obtain a prediction of its ablation state.

One of the biggest advantages of the using LDA as
a classification algorithm is that the weight parameters
can be computed analytically, since the solution
towards finding them have a closed form. This means
that the models are fast and simple to use both in
training and recall time, which is a very desirable
characteristic in medical applications as it may enable
real-time ablation state assessment, or an eventual
model retraining in a subject-specific calibration
procedure.

5 | VALIDATION EVALUATIONS

The following two types of validation evaluations were
realized on the 1080 spectral samples of the training data
set to evaluate the performance of the model.

5.1 | Leave-One-Out Cross Validation

In this evaluation, the model was trained and validated
1080 times, corresponding to the number of measure-
ments in the training set. In each iteration, a single differ-
ent sample was left out for validation, while the rest of
the 1079 data set samples were used for training. The
accuracy, recall, and precision metrics were measured as
shown in Table 1. The results for all metrics were above
99.4%, suggesting a strong model performance in this
type of scenario.

5.2 | Intersubject Cross Validation

In this evaluation, the model was trained and validated
four times, corresponding to the number of stomachs in
the training set. In each iteration, the samples of one
stomach were left out of the validation, while the samples
from the rest of the stomachs were used for training. The
same evaluation metrics were measured as shown in
Table 2. The average metrics for all cases were above or
equal to 95.0%, suggesting promising generalization per-
formance for new subjects.

We observed discrepancies in the performance among
the different iterations of the cross validation. It was

TABLE 1 Leave-one-out

crossvalidation evaluation
Accuracy (%)

Recall (%) Precision (%)

N D B N D B

99.7 100.0 99.4 99.7 100.0 99.7 99.4

TABLE 2 Intersubject crossvalidation evaluation

Recall (%) Precision (%)

Hold-out Accu. (%) N D B N D B

1 95.2 100 98.9 86.7 98.9 88.1 100

2 97.4 100 92.2 100 100 100 92.8

3 97.0 100 91.1 100 100 100 91.8

4 97.8 100 100 93.3 100 93.8 100

Avg. 96.9 100 95.6 95.0 99.7 95.5 96.2
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observed that the accuracy of Holdout 1 significantly dif-
fers from the other iterations. Furthermore, errors are
observed in both the desiccated and brown states, but no
consistent trend is observed for all cases. Because of these
deviations in homogeneity of these preliminary results,
samples from a higher number of stomachs are suggested
to further confirm generalization of the model on new
subjects.

6 | TEST RESULTS

The pretrained model was then tested on a new, unseen
stomach to evaluate its generalization performance when
used on a new subject. The results are summarized in
Table 3, suggesting good performance generalization
when the model is used on a new subject. These are also
in accordance with the intersubject cross-validation eval-
uation, resembling most likely the performance of the
best case scenario, although in this case, the model is
trained with samples from four stomachs.

The confusion matrix observed in Figure 5 illustrates
the test results in detail, where a total of six mis-
classification errors out of the total 270 samples are
observed. Five of the errors correspond to the brown abla-
tion state, one to the dessicated state and none to the nor-
mal state. These results confirm the behavior observed
on the evaluation tests, where the performance on the
normal state is nearly perfect, and a few errors are
observed in both the desiccated and brown states.

7 | CONCLUSIONS AND OUTLOOK

The presented methodology to monitor GMD by analyz-
ing the diffuse reflected spectra from the tissue under
treatment shows promising results when tested in por-
cine tissue. The implemented model based on LDA and
used to classify among three ablation states exhibited
good and stable generalization performance on new sub-
jects, with 97.8% accuracy in the test results, and an
average accuracy of 96.9% in the intersubject cross
validation.

The presented methodology and results could serve as
a base for the design of further animal trials, leading ulti-
mately to human trials. To further confirm the generali-
zation of this methodology, it is essential to obtain
samples from a higher number of stomachs. This would
allow a more complete representation of the true under-
lying data distribution of the stomach population, consid-
ering meaningful types of variation in the test
population, such as age, race, gender, size and among
others. It would also allow exploring possible trade-offs
between more complex classification algorithms that,
with more data, may deliver better performance at the
expense of higher computational time in both training
and prediction and less interpretability.

Given that this pilot experiment was performed in
ex vivo, thawed tissue, further in vivo tests would be
required to assess the performance of this methodology
under a clinical operation environment. Major factors to
consider are the effect of blood perfusion, the presence of
fluids on the superficial layers of the tissue and the possi-
ble contamination of the fiber due to aerosols emitted
during APC.
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