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Abstract

Bone morphogenetic proteins (BMPs) are highly conserved signaling molecules that are part of the transforming growth
factor (TGF)-beta superfamily, and function in the patterning and morphogenesis of many organs including development of
the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP
antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine
sensitization-associated gene-1) suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and
BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of
tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic
elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions
of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and
subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with
BMP-7 demonstrated in USAG-1+/2 as well as USAG-12/2 rescue and supernumerary tooth development. Based upon these
results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest
that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and
dentistry.
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Introduction

A significant number of discoveries have also been advanced for

the establishment of tooth position and patterning, critical

developmental pathways that regulate cell and tissue formations,

extracellular matrix formations, biomineralization, and the asso-

ciated genes and gene families (see recent reviews by [1–3]).

A curious clinical aberration during craniofacial morphogenesis

is the patterning and subsequent organogenesis of supernumerary

tooth organs. The term ‘‘supernumerary teeth’’ describes the

production of more than the normal number of teeth in the

human primary or permanent dentition. The prevalence of

supernumerary teeth on a population basis ranges from 0.1 to

3.6% [4], [5]. In contrast, normal mouse development presents a

monophyodont dentition composed of one incisor and three

molars in each quadrant. Unlike humans, mice have only molar

and incisor tooth organs separated by a ‘‘toothless region’’ termed

the diastema. In addition, mice have a single primary dentition

and their teeth are not replaced.

The animal models have significantly contributed towards

understanding the molecular and developmental biology of human

craniofacial biology (see treatise by [6]). A number of mouse

mutants provide insights into the supernumerary tooth formation

[7–20]. Several mechanisms by which supernumerary tooth might

arise in mice have been proposed [21–26]. One plausible

explanation for supernumerary tooth formation is the rescue of

tooth rudiments such as within the diastema region [26–29] or

maxillary deciduous incisor [15,30]. During early stages of mouse

tooth development transient vestigial tooth buds develop in the

diastema area; developing to the bud stage yet later regressing and
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disappear by apoptosis, or merge with the mesial crown of the

adjacent first molar tooth organ [26,28,29]. The rudimentary

maxillary incisor regressed by apoptotic elimination of mesenchy-

mal cells [15]. Recently, we demonstrate that USAG-1(also known

as Sostdc1, ectodin, and Wise) -deficient mouse model has

supernumerary incisors in the maxillary and mandible, a fused

tooth in the maxillary and mandibular molar regions, and a

supernumerary tooth was also located in front of the first

mandibular molar [15]. Increased BMP signaling results in

supernumerary teeth in the USAG-1-deficient mouse model [21].

USAG-1 is a bone morphogenetic protein antagonist that is

expressed at high levels in the kidney and inhibits BMP-7

bioactivity [31,32]. Bone morphogenetic protein-7 is a 35-kDa

homodimeric protein, and plays an important role in the

specification and patterning of the early embryo and functions

to regulate apoptosis in many developmental processes [33,34].

BMP-4 as well as BMP-2 and BMP-7 are expressed in the limb

bud [35], and in cranial neural crest cells [36,37] with associated

induction of apoptosis. Curiously, BMP-4 and BMP-7 prevent

apoptosis of the metanephric mesenchyme during kidney devel-

opment [38,39]. Further, as the result from renal injury, BMP-7

inhibits apoptosis of proximal tubule epithelial cells [40]. It has

been reported that USAG-1 binds to BMP-7 and inhibits the

apoptosis-protective actions of BMP-7 in the kidney [41]. BMP-7

null mice present a craniofacial syndrome including severe eye

defects, including anophthalmia and microphthalmia, skeletal and

renal anomalies, and die shortly after birth [38,42–44]. Mean-

while, absence or agenesis of the maxillary teeth in conditional

BMP-7 null mice has recently been reported [44].

The purpose of these present investigations is to test the

hypothesis that USAG-1 suppresses deciduous incisors by inhibi-

tion of BMP-7 function. If valid, our results would also

demonstrate that a novel BMP-7 antagonist functioning as a

negative regulator in BMP functions can assist towards advancing

regenerative medicine and dentistry.

Materials and Methods

Ethic Statement
All procedures were approved by the Animal Care Committee

at Kyoto University.

Mouse strains
USAG-1/LacZ mice [45] and BMP-7/LacZ mice [46] were

used in this study. USAG-1/LacZ mice were on a C57Bl6/J

background and BMP-7/LacZ mice were on an Imprinting

Control Region (ICR) background. USAG-12/-2/BMP-72/-2

mice were generated by crossing two lines of mice. To eliminate

the influence of mouse background, only F2 progeny was analysed.

Embryos were obtained by timed mating, day E0 started from

midnight prior to finding a vaginal plug.

Whole-mount LacZ staining
Embryos thus obtained were briefly washed in Hank’s solution

and immediately fixed in cold fixative solution [2% formaldehyde,

0.2% glutaraldehyde, 0.01% sodium deoxycholate and 0.02% NP-

4 in phosphate buffer saline (PBS)] for 2 min. They were

subsequently washed several times with PBS/2 mM MgCl2, and

stained for several hours to overnight in x-gal staining solution

(0.1 M phosphate buffer pH 7.3, 2 mM MgCl2, 0.01% sodium

deoxycholate, 0.02% NP-40, 5 mM K3Fe(CN)6, 5 mM

K4Fe(CN)6 and 1 mg/ml x-gal) at room temperature in the dark.

Embryos were then washed in PBS, post-fixed in 1%

paraformaldehyde (PFA) and dissected for macroscopic analysis.

Figure 1. BMP-7 co-localization with USAG-1 in the mesenchymal and epithelial cells of maxillary rudimentary incisor. (A–F) Whole-
mount X-Gal expression in tooth germs of E13 –15 maxillary. (A’–F’) Parasagittal sections (anterior to the left) of the tooth germs from panels A–F
show X-Gal expression in the rudimentary incisor epithelium. USAG-1 (A–C, A’–C’) and BMP-7 (D–F, D’–F’) were expressed in the tooth organ of
rudimentary maxillary incisor (red arrow) in addition to the tooth organ of characteristic incisor (black arrow). At E13, USAG-1 and BMP-7 transcripts
were prominent in the labial epithelium in addition to the dental epithelium (A, D, A’ and D’). At E14, USAG-1 and BMP-7 started to be expressed in
the mesenchymal cells of the maxillary rudimentary incisor to the surface of the epithelium (B, E, B’ and E’). At E15, the expression of both USAG-1 and
BMP-7 increased in the mesenchymal cells of the maxillary rudimentary incisor (C, F, C’ and F’). BMP-7 co-localized with USAG-1 in the area of the
tooth germ of maxillary rudimentary incisor in addition to the tooth organ of regular maxillary incisor. White dotted line indicates the interface
between epithelium and mesenchyme.
doi:10.1371/journal.pone.0096938.g001
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LacZ staining on sections
Embryos obtained from timed mating were fixed in 4% PFA,

equilibrated in 25% sucrose and embedded in water soluble

glycols and resins (Miles Laboratories, Elkhart, IN). Sections of

8 mm were cut and stained for LacZ following the same protocol as

for whole-mount staining except that they were fixed for 5 min

and stained at 37uC. Sections were post-fixed in 1% PFA, counter-

stained with nuclear fast red, mounted with glycerine, covered and

sealed with nail polish.

Analysis of tooth phenotype
Embryos and neonates were fixed in 4% PFA and embedded in

paraffin. Sections of 7 mm were cut and stained with haematox-

ylin and eosin. The area of the maxillary rudimentary incisor tooth

of all mice was measured using Image J software (US NIH,

Bethesda, MD, USA).

Detection of apoptosis
Apoptosis was detected by the terminal deoxynucleotidyl

transferase-mediated dUTP nick end-labelling method using an

ApopTag Plus In Situ Apoptosis Detection Kit-Fluorescein

(Oncor, Rockville, MD) according to the manufacturer’s specifi-

cations. Specimens were briefly washed, dehydrated through a

graded series of ethanol in PBS and subjected to labelling with an

ApopTag Plus In Situ Apoptosis Detection Kit. Cell nuclei were

counter stained with instant-blue nuclear probe fluorescing

(455 nm) compound (SouthernBiotech, Birmingham, AL).

Immunohistochemistry
Paraffin-embedded sections of embryos were immunostained

with primary rabbit polyclonal antibodies against phosphorylated

Smad 1/5/8 (1:100; Cell Signaling Technology, Beverly, MA);

goat polyclonal antibodies against phosphorylated Smad 2/3

(1:100; Santa Cruz Biotechnology Inc., Santa Cruz, CA); and

secondary biotinylated anti-rabbit, goat and mouse antibodies

(Nichirei Bioscience, Tokyo, Japan), as previously described

[41,47,48]. Sections were then counter-stained with haematoxylin,

dehydrated in a graded series of ethanol and xylene, and covered

with coverslips.

Whole mount in situ hybridization
Specific probes for mouse Dlx2 and Msx1 were obtained by the

reverse transcription-polymerase chain reaction method and

confirmed by direct sequencing. Digoxigenin (DIG)-labelled sense

and antisense riboprobes were prepared by the in vitro transcrip-

tion of phagemids using an RNA Transcription Kit (Stratagene,

La Jolla, CA) according to the manufacturer’s specifications.

Whole mount in situ hybridization was performed according to the

Figure 2. USAG-1 antagonises BMP-7 in maxillary supernumerary incisors formation. Sagittal sections of E15 (A–D) embryos and frontal
sections of mice on the day of birth (E–H). (A’–H’) Higher magnification of the boxed regions in (A–H). USAG-1+/+/BMP-7+/+, (A, A’, E, E’); USAG-12/2/
BMP-7+/+, (B, B’, F, F’); USAG-1+/+/BMP-72/2, (C, C’, G, G’) and USAG-12/2/BMP-72/2 (D, D’, H, H’). The area of rudimentary incisor was measured in
transverse sections of USAG-1+/+/BMP-7+/+ (white bars), USAG-12/2/BMP-7+/+ (right grey bars), USAG-1+/+/BMP-72/2 (dark grey bars) and USAG-12/2/
BMP-72/2 (black bars) mice (n = 5) in E15 (I) and P0 (J). At E15, the area of the maxillary deciduous incisor was identified in wild type as well as all
mutant mice in the labial border of the epithelial invagination. The size of rudimentary incisor is similar except USAG-1+/+/BMP-72/2 at E15 (A, A’, B,
B’, C, C’, D, D’ and I).Rudimentary tooth primordia in USAG-12/2/BMP-72/2 and USAG-1+/+/BMP-7+/+ regressed and its size became smaller at birth,
whereas the teeth in USAG-12/2/BMP-7+/+ continued to develop and enamel organ was formed (E, E’, F, F’, H, H’ and J).
doi:10.1371/journal.pone.0096938.g002
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following protocol. Briefly, specimens were fixed in 4% PFA in

PBS and permeabilized with Radioimmunoprecipitation assay

buffer, following which they were hybridized overnight with

1 mg/ml DIG-labelled riboprobes at 70 uC. The specimens were

then washed, blocked, and further incubated with alkaline

phosphatase-conjugated anti-DIG (Boehringer Mannheim, India-

napolis, IN) at a 1:2000 dilution at 4uC overnight. The bound

alkaline phosphatase was visualized after incubation with nitro

blue tetrazolium (NBT)/5-bromo-4-chloro-3-indolyl phosphate

(BCIP) substrate.

Organ culture and subrenal capsule assay
E15 USAG-1-deficient, heterozygous, and wild-type mice

incisors were dissected in Hank’s solution under a stereomicro-

scope. Tooth explants were cultured for one day on Nucleopore

filters at 37uC in 5% CO2 in a Trowell-type organ culture

containing BGJb with 10% fetal bovine serum. The explants were

then transplanted beneath the kidney capsule. Gelatin hydrogel

microspheres (MedGel, Osaka, Japan) with ,30 mm diameter

were prepared as described previously [49,50]. The microspheres

were incubated with PBS (control) or PBS containing BMP-7

(R&D Systems, Minneapolis, MN; 200 ng/ml) for 1 h at room

temperature. Subcutaneous implantation was performed using a

pair of fine tweezers under the stereomicroscope. Animals were

sacrificed at 19 days after transplantation. Explants were fixed in

10% PFA and processed for immunohistochemistry.

Statistical analysis
Data were analysed by two-way analysis of variance and

Student’s t-test, and significance was determined at a confidence

level of p,0.01. All experiments were performed in triplicate.

Figure 3. USAG-1 abrogation rescues apoptotic elimination of odontogenic mesenchymal cells. Sagittal sections of E15 embryo
maxillary rudimentary incisor in transferase-mediated dUTP nick end-labelling method (TUNEL) staining; Cell nuclei were counterstained with Dapi
(A–D), and TUNEL-positive cells in mesenchymal cells of maxillary rudimentary incisor (A’–D’). USAG-1+/+/BMP-7+/+, (A, A’); USAG-12/2/BMP-7+/+, (B,
B’); USAG-1+/+/BMP-72/2, (C, C’) and USAG-12/2/BMP-72/2 (D, D’). White line indicates the interface between epithelium and mesenchyme. The
number of TUNEL-positive cells per section was counted in transverse section of USAG-1+/+/BMP-7+/+ (white bars), USAG-12/2/BMP-7+/+ (right grey
bars), USAG-1+/+/BMP-72/2 (dark grey bars), and USAG-12/2/BMP-72/2 (black bars) mice (n = 3; E). USAG-1 abrogation rescued the apoptotic
elimination of odontogenic mesenchymal cells in the tooth primordia of rudimentary maxillary incisor at E15, whereas these size are comparable (A,
A’, B and B’). The apoptotic odontogenic mesenchymal cells in USAG-12/2/BMP-72/2 are similar to USAG-1+/+/BMP-7+/+ in contrast to those in USAG-
12/2/BMP-7+/+ (A, A’, B, B’, D and D’).
doi:10.1371/journal.pone.0096938.g003
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Results

BMP-7 co-localization with USAG-1 in mesenchymal and
epithelial cells of the maxillary rudimentary incisor tooth
germ

USAG-1 transcript expression was detected in the area of the

maxillary rudiment incisor tooth germ in addition to the regular

maxillary incisor tooth organ by in situ hybridization [15]. We

examined the expression of USAG-1 and BMP-7 in the maxillary

rudiment incisor tooth germ at E13–15 using USAG-1 +/LacZ and

BMP-7+/LacZ mice. At E13 (late bud stage), USAG-1 and BMP-7

transcripts were prominent in the labial epithelium in addition to

the enamel organ epithelium (Fig. 1A, D, A’ and D). At E14 (early

cap stage), USAG-1 and BMP-7 transcripts were first detected in

the mesenchymal cells of the maxillary rudimentary incisor

(Fig. 1B, E, B’ and E’). At E15 (cap stage), USAG-1 and BMP-7

expression increased in the mesenchymal cells of the maxillary

incisor tooth organ (Fig. 1C, F, C’ and F’). BMP-7 co-localized

with USAG-1 in the area of the maxillary rudiment incisor tooth

organ in addition to the conventional maxillary incisor tooth

organ.

USAG-1 functions as a BMP-7 antagonist in maxillary
supernumerary incisor formation

BMP-7 deficient mice die shortly after birth due to severe renal

hypoplasia [38,42]. To test the hypothesis that USAG-1 functions as

a novel BMP-7 antagonist in maxillary supernumerary incisors

formation, we analysed adult USAG-12/2/BMP-7+/2 mice. The

incidence or pattern of supernumerary incisors formation in USAG-

12/2/BMP-7+/+ and USAG-12/2/BMP-7+/2 mice are almost

identical, which was about 50% (Table S1). We previously

demonstrated that the supernumerary maxillary incisor formed as

a result of the successive development of the rudimentary incisor

tooth primordia [15]. Therefore, we analysed the maxillary

rudiment incisor tooth germ of USAG-12/2/BMP-72/2mice in

select embryonic stages. We performed a series of histological

investigations of USAG-1+/+/BMP-7+/+, USAG-12/2/BMP-7+/+,

USAG-1+/+/BMP-72/2 and USAG-12/2/BMP-72/2 mice at

E15 and newborn (P0). At E15, the area of the maxillary

deciduous incisor was identified in wild type as well as all

mutant mice in the labial border of the epithelial invagination

(as described by [15,51]). The size of rudimentary incisor is

similar except USAG-1+/+/BMP-72/2 at E15 (Fig. 2A, A’, B,

B’, C, C’, D, D’ and I). Rudimentary tooth primordia in

USAG-12/2/BMP-72/2 regressed and their size regressed

and became smaller at birth. This was also observed for

USAG-1+/+/BMP-7+/+ whereas the tooth organs in USAG-12/2/

BMP-7+/+ continued to develop and the enamel organ was formed

(Fig. 2, E, E’, F, F’, H, H’ and J). USAG-1 abrogation rescued the

apoptotic elimination of odontogenic mesenchymal cells in the

rudimentary maxillary incisor tooth primordia at E15, whereas the

size remained comparable (Fig. 3 A, A’, B and B’) [15]. The

apoptotic mesenchymal cells in USAG-12/2/BMP-72/2are sim-

ilar to USAG-1+/+/BMP-7+/+ in contrast to that of USAG-12/2/

BMP-7+/+ (Fig 3.A, A’, B, B’, D and D’). These results demonstrate

that USAG-1 functions as a BMP-7 antagonist in maxillary

supernumerary incisors formation.

Increased BMP signaling in supernumerary teeth of the
USAG-1 deficient mice is prohibited by BMP-7 abrogation

To evaluate whether increased BMP signaling in supernumer-

ary teeth of the USAG-1 deficient mice could be prohibited by

BMP-7 abrogation, we examined the Msx1 and Dlx2 expression;

both of these transcription factors are downstream target genes of

BMP-mediated signal transcription during tooth development

at E13 [52,53], with complementary phosphorylation of Smad 1/

5/8 attributable to increased BMP signaling at E13 [21,54] in

USAG-1+/+/BMP-7+/+, USAG-12/2/BMP-7+/+, USAG-1+/+/

BMP-72/2 and USAG-12/2/BMP-72/2 mice. At E13, Msx1

and Dlx2 expression in the rudimentary maxillary incisors of

USAG-12/2/BMP-72/2 mice was comparable with that of

USAG-1+/+/BMP-7+/+, whereas that of USAG-12/2/BMP-7+/+

appeared more intense as compared with that in controls (Fig. 4A-

H). Further, compared with USAG-12/2/BMP-7+/+ embryos,

USAG-12/2/BMP-72/2 embryos inhibited increased phosphor-

ylated Smad 1/5/8 based upon positive odontogenic mesenchy-

mal cells within the rudimentary maxillary incisor tooth primordia

at E15 (Fig. 5A-D). To determine the specificity of phosphoryla-

tion of Smad 1/5/8, we employed immunostaining using anti-

phospho-Smad 2/3, and found no difference among mutant mice

(Fig. 5E-H). We conclude that increased BMP signaling in

supernumerary teeth of the USAG-1 deficient mice is prohibited

by BMP-7 abrogation.

BMP-7 induces maxillary supernumerary incisors
formation partially but not fully in vitro

To test whether BMP-7 actually induces supernumerary tooth

formation, we performed explant culture and subsequent subrenal

kidney capsule transplantation of E15 USAG-1 mutant maxillary

incisor tooth primordia supplemented with BMP-7. We previously

showed that the USAG-1+/2 mice showed phenotypically normal

tooth number and position in maxillary incisor as well as wild type

[15]. The incisor explants supplemented with BMP-7 in USAG-

Figure 4. Intensive expression of Msx1 and Dlx2 in the
rudimentary incisors of USAG-1 and BMP-7 mutants. Occlusal
view of the tooth organ of rudimentary maxillary incisor primordium at
E13 on whole mount in situ hybridization (A–H). Msx1 (A–D) and Dlx2
(E–H) transcription factors were expressed in the tooth organ of
rudimentary maxillary incisor (black arrow) in addition to the tooth
organ of characteristic incisor (white arrow). At E13, Msx1 and Dlx2
expression in the rudimentary maxillary incisors of USAG-12/2/BMP-72/

2 mice was comparable with that of USAG-1+/+/BMP-7+/+, whereas that
of USAG-12/2/BMP-7+/+ appeared more intense as compared with that
of controls (A–H).
doi:10.1371/journal.pone.0096938.g004
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1+/2 as well as USAG-12/2 have supernumerary tooth in similar

numbers after 20 days culture, while these cultured explants in

USAG-1+/+ presented normal tooth number (Fig.6A–J). These

results demonstrated BMP-7 has a partial potential to induce

supernumerary tooth formation, however it was not readily

observed to induce extra tooth organs only with BMP-7.

Discussion

Rudimentary organs are biological structures that appear to

have no function as first described by Darwin in The Descent of

Man [55]. Darwin listed so-called ‘‘wisdom teeth, the appendix,

and the coccyx as rudimentary organs. Curiously, Reptiles with

teeth as well as most mammals have complete dentitions with

Rodentia (mice, rats, hamsters) and Lagomorphs (rabbits) which

both present the unique diastema extending from incisor to molar

tooth organs in the maxilla as well as mandible. Rather than the

diastema truly representing a ‘‘toothless’’ region, a number of

studies confirmed that the region in fact does contain rudimental

primitive tooth organs at the bud stage of development [56–58].

Tooth organs, comparable to many other epidermal organs, are

initiated as a placode and then progress through exquisite

epithelial-mesenchymal interactions, reflecting a temporal and

spatial sequence of unique signal transduction-mediated develop-

mental processes [2,6,59–64].

In our present study, BMP-7 was co-localized with USAG-1 in

the area of the maxillary rudiment incisor tooth germ in addition

to the regular maxillary incisor tooth organ. USAG-1 abrogation

rescued the apoptotic elimination of mesenchymal cells in the

rudimentary maxillary incisor tooth primordia at E15, whereas the

tooth sizes were comparable [15]. The apoptotic mesenchymal

cells in USAG-12/2/BMP-72/2are similar to USAG-1+/+/BMP-

7+/+ in contrast to that of USAG-12/2/BMP-7+/+. These results

Figure 5. Enhanced BMP signal transduction in maxillary incisors of USAG-1 and BMP-7 mutants. Immunolocalisation of phosphorylated
Smad (1/5/8 (A–D) and Smad 2/3 (E–H) at E15. USAG-1+/+/BMP-7+/+, (A, E); USAG-12/2/BMP-7+/+, (B, F); USAG-1+/+/BMP-72/2, (C, G) and USAG-12/2/
BMP-72/2 (D, H). The number of pSmad 1/5/8– and pSmad 2/3- positive nuclei per section was counted in transverse sections of USAG-1+/+/BMP-7+/+

(white bars), USAG-12/2/BMP-7+/+ (right grey bars), USAG-1+/+/BMP-72/2 (dark grey bars), and USAG-12/2/BMP-72/2 (black bars) mice (n = 5; I).
Compared with USAG-12/2/BMP-7+/+ embryos, USAG-12/2/BMP-72/2 embryos iibited increased phosphorylated Smad 1/5/8- positive cells in
odontogenic mesenchymal cells within the rudimentary maxillary incisor primordia at E15 (A–D). Employed immunostaining using anti-phospho-
Smad 2/3 showed no difference among mutant mice (E–H). Enhanced BMP signalling in supernumerary teeth of the USAG-1-deficient mice could be
inhibited by BMP-7 abrogation.
doi:10.1371/journal.pone.0096938.g005
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support our interpretation that USAG-1 functions as a novel

BMP-7 antagonist in the maxilla. We confirmed that increased

BMP signaling in supernumerary teeth of the USAG-1 deficient

mice could be prohibited by BMP-7 abrogation. In the contrast, to

test whether BMP-7 has the potential to induce supernumerary

tooth formation, we performed explant culture and subsequent

subrenal kidney capsule culture. The incisor explants supplement-

ed with BMP-7 in USAG-1+/2 as well as USAG-12/2 have

supernumerary tooth in similar numbers after 20 days culture,

while these cultured explants in USAG-1+/+ retained normal tooth

number. These results demonstrated that BMP-7 can induce

supernumerary tooth formation, however it is impossible to induce

extra tooth by only BMP-7. Finally, we conclude that gene

interactions between BMP-7 and USAG-1 regulate the supernu-

merary maxillary incisor formation.

The supernumerary incisors documented in mutant mice have

been located on the lingual side of the normal incisor

[15,17,23,65], or side-by-side [8,66–69]. The Spry2+/2/Spry42/2

mice indicated two separate incisors in two different enamel

organs located side by side, in which supernumerary incisor

development was shown in vivo to result from the second splitting

of the incisor primodium [69]. The duplicated incisors belong to

the same generation. Within these supernumerary incisor forma-

tion side-by-side, the b-catgPrx/lacZ mice also present two incisors

that each belong to the same generation, but in these mice only the

lower incisor have been reported to be affected [68]. The

mechanisms of supernumerary formation appear to be different

between maxilla and mandibular morphogenesis.

A detailed analysis of USAG-1 deficient mice showed that the

supernumerary incisor developed on the lingual side of the normal

one, and this tooth was considered to belong to a different tooth

generation [15,23]. The supernumerary incisor of Lrp4 deficient

mice have the same origin as the supernumerary incisor of USAG-

1 mutants [17]. We previously demonstrated that the supernu-

merary maxillary incisor was the result of the survival and

successive development of the rudimentary incisor tooth primor-

dia, and that USAG-1 controls the number of teeth in the

maxillary incisor region by regulating apoptotic elimination of

odontogenic mesenchymal cells [15].

Further, it was reported that the supernumerary mandibular

incisor corresponded to the revival of the replacement incisor by

regulating apoptosis of odontogenic epithelial cells [23]. These

results suggest that the potential mechanism by which supernu-

merary incisor on the lingual side of the normal incisor is different

between maxilla and mandible. In USAG-1 single deficient mouse,

supernumerary teeth were observed in 100% of the maxillary

incisor regions, whereas partial penetrance was observed in the

mandible. We demonstrated that USAG-1 acted as BMP-7

antagonist in supernumerary maxillary incisor formation, and

absence of the maxillary teeth of conditional BMP-7 null mice

[44]. The expression of USAG-1 and BMP-7 is opposite around

the rudimentary incisor tooth primordia between maxilla and

Figure 6. BMP-7 has potential to partially induce the formation of maxillary supernumerary incisors formation in vitro. Enhanced
BMP-7 rescue the formation of maxillary incisor supernumerary tooth in E15 USAG-1 mutant mice in organ culture and subrenal capsule assay. The
incisor explants supplemented with BMP-7 in USAG-1+/2 (E and H) and USAG-12/2 (F and I) have supernumerary tooth in similar incidence after 20
days of culture, whereas these cultured explants in USAG-1+/+ (D and G) maintained the normal tooth number. (A–C) Explant appearance. (D–F)
Coronal and (G–I) sagittal sections of explant. (J–L) Sagittal sections of control explant. (M) Table showing the relationship between number of teeth
of explants and USAG-1 phenotypes.
doi:10.1371/journal.pone.0096938.g006
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mandible (Fig. S1). In addition, in mature adult mice, supernu-

merary teeth can be induced on both labial and lingual sides of the

incisors, regions which contain adult stem cells supporting the

continuous growth of mouse incisors [22,70]. In young mice,

supernumerary tooth organs were induced in multiple regions

adjacent to both incisor and molar regions. Presumably, supernu-

merary tooth organs can form directly from the oral epithelium, in

the dental lamina connecting the developing molar or incisor tooth

organs to the oral epithelium, in the crown region, and even in the

elongating and furcation area of the developing root [22].

In the rudimentary maxillary incisor of BMP-7 deficient mouse,

specific phenotypic alterations are found. In approximately half of

the embryos studied, the rudimentary maxillary incisors were

discovered to be missing. Defects in odontogenesis have been

reported in several mouse mutants for genes associated with BMP

as well as other signaling pathways [3,71]. Deletion of Alk3

(BMPR1a) in the epithelium leads to tooth development arrest at

the bud stage [72], indicating the importance of mesenchyme-

derived BMP signals for the further development of the dental

epithelium. The epithelial overexpression of Noggin, which is an

antagonist of the BMP signaling, results in various phenotypic

alterations including lack of mandibular molars, reduced number

of maxillary molars, disrupted root size and pattern, as well as

poorly mineralized enamel [73]. In Msx1-deficient mice tooth

development is arrested at the cup stage [74], a phenotype that

can be rescued by administration of BMP-4 [75]. In vitro, BMP-4

and BMP-7 can both induce the expression of Msx1 and Msx2 as

shown by the implantation of BMP-releasing beads into the mouse

molar mesenchyme [52,76]. The present report provides the direct

functional evidence of a nonredundant role for BMPs in tooth

initiation and development. The fact that the observed phenotypes

are not fully penetrant could be explained by a partial redundancy

where other BMPs or other signaling molecules compensate for

BMP-7. As BMPs show different affinities for the various type I

BMP receptors, a molecular discrimination between signals

initiated by different BMPs under physiological conditions is

expected. An indication of the importance of BMP-7 for aspects as

variable as tooth induction, patterning, and development comes

from observations showing different degree of phenotype pene-

trance in incisors vs. molars as well as in maxillary teeth vs.

mandibular teeth. The molecular networks that determine rodent

tooth specification (i.e. molars and incisors, maxillary and

mandibular teeth) involve genes such as the Islet1, Pitx1, Barx1,

and Dlx [77–79], thus integrating BMP-7 into their pathway.

The presence of epithelial anlagen of the third dentition was

also noticed in human [80–82]. The epithelium which is

considered as the anlagen of the third dentition develops lingual

to all permanent tooth germs [83]. Furthermore, when it appears,

the predecessor (permanent tooth germ) is in the bell-shaped stage

[83]. The time of appearance of the third dentition seems after

birth. This means that we have chance to access the formation of

the third dentition in the mouth. Recently, a number of mouse

mutant are now starting to provide some insights into the

mechanisms of supernumerary tooth formation. Multiple super-

numerary teeth may have genetic components in their etiology

and represent partial of the third dentition in humans. Such

candidate molecules or genes might be those that are involved in

embryonic tooth induction, in successional tooth formation or in

the control of the number of the teeth [2].

The supernumerary tooth formation using genetically-defined

mouse models clearly demonstrate the feasibility to induce de novo

tooth formation by in situ repression or activation of a single

candidate gene. Our investigations and related support or validate

the hypothesis that de novo repression or activation of candidate

genes such as BMP-7 or USAG-1 could be used to stimulate a

third dentition to induce or achieve new tooth regeneration in

mammals. In vivo gene delivery could be the suitable gene therapy

approach in the tooth regeneration by stimulation of a third

dentition.

Conclusions

The mechanism for suppressing deciduous incisors in mice is

expression of USAG-1, which inhibits BMP-7 signaling, leading to

apoptosis and degeneration of rudimentary tooth germs. The

dental phenotypes of USAG-1 and BMP-7 mutants reported by

our studies provide a rationale for future tooth regeneration.

Supporting Information

Figure S1 The expression of USAG-1 and BMP-7 in the lower

jaws. USAG-1 and BMP-7 expression in mandibular incisor

primordia. (A–D) Whole-mount X-Gal expression in tooth germs

of E14 and E15 mandibular. (A’–D’) Parasagittal sections (anterior

to the left) of the tooth germs. USAG-1 (A–B, A’–B’) and BMP-7

(C–D, C’–D’) were expressed in the tooth organ of rudimentary

mandibular incisor (red arrow) in addition to the tooth organ of

characteristic incisor (black arrow). At E14, USAG-1 started to be

expressed in the epithelial cells of the mandibular rudimentary and

regular incisor primordia (A and A’). At E15, the expression of

USAG-1 continued in the epithelium (B and B’). In the meantime,

the expression of BMP-7 localized mesenchymal cells of

mandibular rudimentary and regular incisor primordia at both

E14 and E15 (C, D, C’ and D’).

(TIF)

Table S1 Summary of tooth phenotype.
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