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Abstract: Since the 19th century, the addax (Addax nasomaculatus) has lost approximately 99% of
its former range. Along with its close relatives, the blue antelope (Hippotragus leucophaeus) and the
scimitar-horned oryx (Oryx dammah), the addax may be the third large African mammal species to go
extinct in the wild in recent times. Despite this, the evolutionary history of this critically endangered
species remains virtually unknown. To gain insight into the population history of the addax, we
used hybridization capture to generate ten complete mitochondrial genomes from historical samples
and assembled a nuclear genome. We found that both mitochondrial and nuclear diversity are
low compared to other African bovids. Analysis of mitochondrial genomes revealed a most recent
common ancestor ~32 kya (95% CI 11–58 kya) and weak phylogeographic structure, indicating that
the addax likely existed as a highly mobile, panmictic population across its Sahelo–Saharan range
in the past. PSMC analysis revealed a continuous decline in effective population size since ~2 Ma,
with short intermediate increases at ~500 and ~44 kya. Our results suggest that the addax went
through a major bottleneck in the Late Pleistocene, remaining at low population size prior to the
human disturbances of the last few centuries.

Keywords: Addax nasomaculatus; antelope; archival DNA; bovid; conservation; critically endangered;
genome assembly; museum collections; PSMC
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1. Introduction

Characterizing the population genetics of species on the verge of extinction is of vital
importance, both for guiding conservation efforts as well as gathering baseline data that
can be used to guide post-extinction restoration from captive populations. One species
that exemplifies this dire situation is the addax, Addax nasomaculatus (de Blainville, 1816),
which is critically endangered and may soon be extinct in the wild [1]. It is highly nomadic,
surviving in the hyperarid Sahara by tracking sporadic rainfall that leads to fast vegetation
growth [2]. The addax is highly adapted to its desert environment and formerly occurred
in great numbers across the entire Sahelo–Saharan region west of the Nile [2–5]. However,
range reductions have resulted in a loss of up to 99% of its historical range [6] (Figure 1).
Today, the only documented wild population is in the Réserve Naturelle Nationale du Termit
et du Tin Toumma (TTNNR) in eastern Niger, but its status is not well known: The most
recent surveys in 2016 and 2017 found only three and six individuals, respectively [1,6–8].
A legal re-classification of the status of the TTNNR to make way for oil concessions in 2019
means that the addax’s last wild home is no longer protected [9]. There are sporadic accounts
of addax in other parts of Niger, western Chad, and Mauritania [1,4,5,10] (Figure 1), and
a few individuals from these populations might have strayed to northern Niger, southern
Algeria, and Libya [1,5]. Finally, there are also unconfirmed reports of addax at the Mali–
Mauritania border [1,5]. Overall, the global wild population is estimated to be less than 100
with only 30–90 mature individuals [1]. The addax is listed in Appendix I of the Convention
on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the
Convention on the Conservation of Migratory Species of Wild Animals (CMS) [1]. In contrast
to their meagre numbers in the wild, ~760 individuals are kept in zoos in Europe, North
America, Japan, and Australia, ~5000 are found on private ranches in the United States and
the Middle East [1,11], and reintroduction programs have brought individuals into national
parks or fenced-in areas in Tunisia and Morocco [1,12].
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samples with sample sizes in parenthesis (photo credit: E. Hempel; base map: https://www.naturalearthdata.com, accessed 
on 18 October 2017, generated in QGIS v2.18 https://www.qgis.org). EH: Western Sahara, LY: Libya, MR: Mauritania, NE: 
Niger, SD: Sudan, TD: Chad, TN: Tunisia. 
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diverged from its sister clade Oryx spp. ~3 million years ago based on age estimates using 
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conservation of the species. 
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Since the early 20th century, writers have remarked on the many threats facing the ad-
dax [2,13]. The greatest among these is unsustainable hunting, particularly since the advent
of motor vehicles and modern firearms [3,5,14]. Furthermore, hunting by military person-
nel accompanying oil and mining exploration appears to have caused massive declines
in addax numbers in the TTNNR and adjacent areas [7,14–16]. In addition, the extension
of pastoralism into the desert has resulted in habitat degradation and competition with
domestic livestock [3–5,14]. Regional insecurity, droughts and desertification, irresponsible
tourism, as well as habitat loss due to oil exploration and exploitation, contribute to the
addax’s poor situation [3,5,12,14,17–21].

Despite its highly threatened status in the wild, we know almost nothing about the
evolutionary history of the addax. There are only two reports of Pleistocene remains as-
signed to this species, a maxilla from Algeria described by Balout [22], which is more likely
an alcelaphin, and a single deciduous tooth from Morocco described by Thomas [23], which
is quite undiagnostic. The addax therefore has no fossil record prior to the Holocene [24–26].
The addax is a monotypic member of the bovid tribe Hippotragini and diverged from its
sister clade Oryx spp. ~3 million years ago based on age estimates using mitochondrial
genomes [27]. In addition, desert ecosystems have received less attention in conservation
biology compared to other ecosystems and therefore there is a strong need to create baseline
biodiversity data [6,28–30]. Little is known about the genetic diversity and structure of
either past or current populations of the addax and no reference nuclear genome is publicly
available. Important questions remain outstanding: Was the demise of the addax a recent
(20th century) phenomenon, or were its numbers already low during the Pleistocene? Were
addax phylogeographically structured across their former range? Is the genetic diversity
of captive addax populations representative of their historical diversity? The answers to
these questions are not only interesting from an evolutionary and historical point of view,
but also have major implications for the present and future conservation of the species.

In this study, we provide baseline information about the genetic diversity and phylo-
geography of historical addax populations by examining complete mitochondrial genomes
from across its historical range. We also present, to our knowledge, the first nuclear genome
assembly for the species and reconstruct its effective population size during the Pleistocene.
In addition, we present an estimate for the nuclear diversity and inbreeding status of an
individual from the European zoo population.

2. Materials and Methods
2.1. Samples

One contemporary sample of an adult female addax that died of natural causes at
Tierpark Berlin was obtained from the Institute of Zoo and Wildlife Research, Germany
(Table 1). Bone or skin samples from ten historical specimens from four countries and five
different locations collected between 1821–1926 were obtained from the mammal collection
of the Museum für Naturkunde, Berlin (Table 1, Figure 1).
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Table 1. Historical and contemporary samples of addax (Addax nasomaculatus) from the mammal collection of the Museum
für Naturkunde, Berlin (ZMB) and the Institute of Zoo and Wildlife Research (IZW), Berlin, Germany. Accession numbers
for the mitochondrial genomes generated in this study are listed.

Sample Country Location Collector (s) Collection Date Sample Type
Accession Number

Mitochondrial
Genome

ZMB MAM 2165 Sudan Sennar Hemprich and
Ehrenberg 1821 bone & skin MZ474955

ZMB MAM 2166 Sudan Sennar Hemprich and
Ehrenberg 1821 skin MZ474956

ZMB MAM 2167 Sudan Sennar Hemprich and
Ehrenberg 1821 skin MZ474957

ZMB MAM 35370 Western Sahara Dakhla Spatz 1926 bone MZ474958

ZMB MAM 7424 Tunisia Tunis, Gabès Spatz 1884–1903(?) bone MZ474959

ZMB MAM 8836 Tunisia Tunis Spatz 1884–1903(?) bone MZ474960

ZMB MAM 8837 Libya Tripoli Browski 1895–? bone MZ474961

ZMB MAM 8838 Libya Tripoli Browski 1895–? bone MZ474962

ZMB MAM 8839 Libya Tripoli Browski 1895–? bone MZ474963

ZMB MAM 8840 Libya Tripoli Browski 1895–? bone MZ474964

IZW 607/10 Germany Tierpark Berlin - - liver MZ474965

2.2. Laboratory Procedures
2.2.1. Nuclear Genome

DNA Preparation. Genomic DNA was extracted from a contemporary liver sample
of a female addax following the standard protocol of the Qiagen DNeasy Blood & Tissue
Kit. The DNA was then sheared using a Covaris S220 sonicator (peak incident power:
105, duty factor: 5%, cycles per burst: 200, treatment time: 80 s) aiming for a fragment
size of 500 bp. These fragments were then built into double-stranded libraries following
Meyer and Kircher [31] with modifications from Fortes and Paijmans [32]. To determine
the optimal number of amplification cycles for the subsequent dual-indexing PCR, a qPCR
(Thermo Scientific PikoReal Real-Time PCR System) was performed. A library size-selection
was performed aiming for 500–1000 bp fragments using the Pippin Prep (Sage Science)
standard protocol for 2% Agarose Gel Cassettes for targets between 100–600 bp (Marker B).
Sequencing was performed in three independent runs on an Illumina NextSeq500 at the
University of Potsdam, Germany, producing 75 and 150 bp paired-end reads.

2.2.2. Mitochondrial Genomes

DNA Preparation. DNA was extracted from bone samples using the protocol estab-
lished by Dabney et al. [33] and from skin samples using a combination of the Rohland
et al. [34] protocol with a modified digestion buffer following Taron et al. [35] (5 M GuSCN,
25 mM NaCl, 50 mM Tris, 20 mM EDTA, 1% Tween-20, 1% 2-Mercaptoethanol) and Dabney
et al. [33]. For each sample, single-stranded libraries following Gansauge and Meyer [36]
were prepared from 20 µL of the DNA extract, including a uracil removal step with Uracil-
DNA glycosylase (Afu UDG) and Endonuclease VIII, which cuts abasic sites. The optimal
number of amplification cycles for dual-indexing PCR was determined using qPCR. For
sample ZMB MAM 35370, two libraries from two different samples were built. To control
for contamination, extraction and library blanks were processed alongside all samples. All
pre-PCR lab work was carried out in dedicated archival DNA facilities at the University of
Potsdam, Germany.

Mitochondrial Genome Enrichment. An Agilent SureSelect Array was designed us-
ing the available mitochondrial genome of A. nasomaculatus from GenBank (JN632591 [37])
and dividing it into 60-mer probes with 3-bp tiling using a custom python script. For
sequence capture, the samples were divided into two batches, which were captured sepa-
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rately with the same array. The libraries were combined for each batch so that the samples
were pooled in equimolar amounts (except one sample in batch two), which led to a total
input amount of 1649.34 ng of DNA for batch one and 892.63 ng of DNA for batch two
(Tables S9 and S10). Two rounds of array capture were performed for each batch [32,38].
The libraries were reamplified after each capture round using the Agilent Herculase II
Fusion DNA Polymerase with 24 and 13 cycles for batch one and 23 and 17 cycles for batch
two. Cycle numbers were estimated using qPCR to avoid overamplification. Subsequently,
the libraries were sequenced in two runs on an Illumina NextSeq500 at the University of
Potsdam, producing 75 bp single-end and 75 bp paired-end reads.

2.3. Bioinformatic Procedures and Analyses
2.3.1. Nuclear Genome

Read Preparation. Paired-end reads from all three sequencing runs were simultane-
ously merged and adapter sequences were removed with Seqprep v1.1 (https://github.
com/jstjohn/SeqPrep) using the parameters -q 13 -L 30. Quality trimming was carried out
with Sickle v1.33 (https://github.com/najoshi/sickle) using a quality value of 32. Finally,
quality-trimmed sequences were corrected using BFC kmer correction v1 [39] and selecting
a kmer size of 51.

Genome Size Sequencing Coverage Estimation. Multiplicity distribution of 23-mers
was carried out with Jellyfish2 v2.2 [40] and KrATER v0.35 (https://github.com/mahajrod/
KrATER) in order to estimate coverage.

Genome Assembly. All reads were mapped with BWA using the mem algorithm
v0.7.13 [41] to chromosomes of the domestic goat (Capra hircus, GCA_000317765.2 [42])
and the Y chromosome of the wild goat (C. aegagrus, CM003213.1 [43]). A custom set of in
silico mate pairs was generated from the consensus genome using cross-mates v1.0 [44].
Genome assembly was then carried out using SOAPdenovo v2.04 [45] with the trimmed
error-corrected reads and the in silico mate pairs produced via mapping to the domestic
goat assembly using cross-mates. The most continuous assembly was obtained with the
following parameters during sparse_pregraph: -K 61 -z 4000000000 -g 15 -d 5 -e 5 -R -r 0;
and using the minimal merging strength during contig building. Gaps in scaffolds were
filled using GapCloser v1.12 with default parameters [45]. Finally, all scaffolds <1000 bp
were removed from the assembly. Quast v5.0.2 [46] and BUSCO v5.1.3 [47,48]) with default
settings in offline mode, with the Cetartiodactyla (N = 13,335 genes), the Laurasiatheria
(N = 12,234 genes), and the Mammalia (N = 9226 genes) BUSCO lineage datasets (odb10),
were used to determine the quality and completeness of the addax assembly, respectively.

Contamination Check of Assembly. The draft assembly was split into 5-kb segments
with an overlap of 100 bp using GenomeTools shredder v1.5.7 [49] and subsequently
BLASTed against the NT database using BLAST [50].

Pairwise Sequential Markovian Coalescent Model. For the pairwise sequential
Markovian coalescent (PSMC) model, only the raw reads from the two sequencing runs
with 150 bp paired-end data were used, while the test run with 75 bp paired-end data was
omitted. Illumina adapter sequences were trimmed (overlap 1 bp) from the raw reads
using Cutadapt v2.8 [51] and reads shorter than 30 bp were removed. Overlapping reads
were merged using FLASH v1.2.11 [52] with a maximum overlap of 150 bp. The resulting
merged and unmerged reads were mapped to the genome of the scimitar-horned oryx
(Oryx dammah) [53] with the BWA mem algorithm v0.7.17 [41]. It was decided to use the
genome of the scimitar-horned oryx as opposed to our newly constructed addax assembly
because recent research indicates that references built using cross-species scaffolding could
influence demographic analyses using the PSMC model [54]. SAMtools view v1.10 [55] was
used to filter reads with a mapping quality of <30 and duplicates were removed with Picard
MarkDuplicates v2.22.0 (Picard Toolkit 2020—http://broadinstitute.github.io/picard).

Sex chromosomes are likely to differ in their demographic history compared to auto-
somes [56]. Therefore, scaffolds likely to represent X and Y chromosomes were identified by
aligning the scimitar-horned oryx genome to the X chromosome of the domestic goat (C. hir-

https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://github.com/mahajrod/KrATER
https://github.com/mahajrod/KrATER
http://broadinstitute.github.io/picard
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cus, CM001739.2 [42]) and the Y chromosome of the wild goat (C. aegagrus, CM003213.1 [43])
as well as the complete mitochondrial genome of the scimitar-horned oryx (JN632677 [37])
using SatsumaSynteny v2.0 [57]. 53 scaffolds were identified and removed from down-
stream analyses (Table S6).

The mutation rate per site per year for the addax and the scimitar-horned oryx were
inferred by using the mapped data of both species to the scimitar-horned oryx genome.
Subsequently, the genetic distance between the two species was determined using ANGSD
v0.923 [58]. Following the estimated split of Addax and Oryx at 2.21 Mya in the dated
mitochondrial species phylogeny (see below), the mutation rate per site per year was
inferred to be 1.604 × 10−9 between the two species (Table S14). For plotting the population
dynamics on an absolute time scale, a generation time of 6.8 years for the addax [59] and
6.2 years for the scimitar-horned oryx [60] were used.

A diploid consensus sequence of the autosomal scaffolds of the scimitar-horned oryx
(-R, using a bed file) was created using a combination of bcftools v1.10 mpileup (-Ou, -C0),
call (-c) and vcfutils [61,62] (minimum read depth -d 17, maximum read depth -D 103).
Then, fq2psmcfa was used to generate the PSMC input file using a quality cutoff of 20 (-q).
Finally, the PSMC model v0.6.5 [56] was applied with parameters previously shown to be
relevant with human data (-N25 -t15 -r5 -p “4 + 25 × 2 + 4+6”) to infer changes in effective
population size (Ne) through time. With splitfa (from the psmc package), long sequences
of the input file were broken down and sampled randomly with replacement to perform
bootstrapping analyses using 100 replicates. The results were plotted using a generation
time of 6.8 years [59] and a per-generation mutation rate of 1.09 × 10−8, based on the yearly
per site mutation rate estimated in this study, to scale the x axis. Mutation rates per year for
the 95% HPD minimum and maximum interval of the split from the same analysis were
also calculated and used to plot the alternative results (Table S14 and Figures S1–S3).

For comparison, a PSMC analysis for the scimitar-horned oryx (O. dammah) was
also conducted, which inhabits a similar environment as the addax. Its raw data was
treated in the same way as that of the addax (with the difference of a maximum overlap
FLASH parameter of 145 bp) and also mapped to the scimitar-horned oryx genome [53].
For the PSMC, only the vcfutils (minimum read depth -d 23, maximum read depth -
D 136) parameters were adjusted. For plotting, a generation time of 6.2 years [60] and
a per-generation mutation rate of 9.95 × 10−9 were used. PSMC trajectories of both
species were plotted together on a logarithmic and a linear time scale using R v3.6.3
(https://www.R-project.org) [63], R Studio v1.4.1106 (https://www.rstudio.com) [64]),
and Inkscape v0.91 (https://inkscape.org).

Nuclear Diversity Comparison. The autosomal heterozygosity of the addax was com-
pared to that of other ungulate species. Six wild ungulate species with IUCN Red List
categories ranging from Near Threatened to Extinct in the Wild and with different distribu-
tions and body sizes were chosen: scimitar-horned oryx (O. dammah), gemsbok (O. gazella),
sable antelope (Hippotragus niger), African buffalo (Syncerus caffer), springbok (Antidorcas
marsupialis), and Defassa waterbuck (Kobus ellipsiprymnus) (Table S3 [53,65–67]). All raw reads
were treated as described above for the PSMC analysis with the exception of the African
buffalo, the springbok, and the Defassa waterbuck, which were already pre-trimmed and
therefore did not require adapter trimming with Cutadapt. The maximum overlap param-
eter during merging of paired-end reads with FLASH was varied according to the longest
read length. Each species was mapped to the assembly generated from the respective raw
reads. The resulting bam files after duplicate removal were subsampled with SAMtools
view v1.10 [55] to an average coverage of 23x to avoid possible biases resulting from uneven
coverage. Sex chromosomes and mitochondrial genomes were determined for each nuclear
reference with SatsumaSynteny v2.0 [57] using the X chromosome of the domestic goat (C. hir-
cus, CM001739.2 [42]) and the Y chromosome of the wild goat (C. aegagrus, CM003213.1 [43]),
which both have the same phylogenetic distance to the comparison species, and the mitochon-
drial genome of the respective species (Table S6 [37]). All identified scaffolds as well as all
scaffolds shorter than 1 Mb were excluded from the analysis to avoid misalignments of short

https://www.R-project.org
https://www.rstudio.com
https://inkscape.org
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scaffolds. To estimate the autosomal heterozygosity for each species, allele frequencies were
calculated using genotype likelihoods in ANGSD v0.923 [58] following Westbury et al. [68],
setting the -setMaxDepth parameter to twice the average coverage (45) but using -C 50 in-
stead of 0 (with parameters per species -minInd 1, -setMinDepthInd 5, -doCounts 1, -GL 1,
-doSaf 1, -fold 1, -minQ 30, -uniqueOnly 1, -remove_bads 1, -only_proper_pairs 1, -baq 1 [69]).
Subsequently, realSFS in ANGSD v0.923 was used to calculate the site frequency spectrum.
Standard deviations (SDs) were estimated for window sizes of 20-, 50-, and 100-Mb sites
across the whole genome using the -nSites option in ANGSD v0.923 (Table S4). In addition,
the heterozygosity for non-overlapping 500-kb sliding windows for the autosomal scaffolds
was calculated to estimate its distribution for each species using the -r option in realSFS (-tole
1 × 10−8) [70]. Only windows with less than 60% missing data were considered and val-
ues <0.001 were binned as 0. The results were plotted using R v3.6.3 (https://www.R-
project.org) [63], R Studio v1.4.1106 (https://www.rstudio.com) [64], and Inkscape v0.91
(https://inkscape.org).

Inbreeding Assessment. ROHan [71] was run using the bam files generated from
mapping reads from our addax individual to our newly constructed addax genome as-
sembly (see above) with default parameters (window size 1 Mb, expected theta in ROHs
<1 × 10−5) to determine genome-wide heterozygosity and runs of homozygosity (ROH),
which provide a measure for recent inbreeding [72]. Only autosomal scaffolds larger
than 1 Mb (–auto) were included in the analysis. The input bam file was filtered with
SAMtools view v1.10 [55] for unmapped reads and reads failing the vendor quality check
(-F516). Duplicates were removed using Picard MarkDuplicates v2.22.0 (Picard Toolkit
2020—http://broadinstitute.github.io/picard). The analysis was also run for the scimitar-
horned oryx, mapping reads to its available genome assembly [53] and filtering the bam
file in the same way as was done for the addax.

2.3.2. Mitochondrial Genomes

Read Mapping. Data from different sequencing runs were combined for each speci-
men before processing (ZMB MAM 35370, IZW 607/10) (Supplementary File S1:
Text S2). Illumina adapter sequences were trimmed (overlap 1 bp) and reads shorter
than 30 bp were removed using Cutadapt v2.8 [51]. For the paired-end data, overlapping
reads were merged using FLASH v1.2.11 [52] with a maximum overlap of 75 bp for his-
torical and 150 bp for contemporary data. Unmerged reads were discarded. The trimmed
and merged reads were mapped to the available addax mitochondrial genome (JN632591,
from an animal at the Parc Zoologique de Paris, France [37]) using BWA v0.7.17 with the
aln algorithm [41] and default settings. Reads with a mapping quality of <30 were filtered
out with SAMtools view v1.10 [55] and duplicates removed with MarkDupsByStartEnd
v0.2.1 (https://github.com/dariober/Java-cafe/tree/master/MarkDupsByStartEnd). All
historical specimens showed a tandem repeat of ACAT in the control region in comparison
to the reference (JN632591) and the contemporary specimen (IZW 607/10). Therefore, a
manual editing step of the bam files of all historical specimens was conducted to correct
for the lack of this tandem repeat in the reference genome which resulted in the correct
ACATACAT section in the final consensus sequence. A consensus sequence was generated
using an 85% majority rule threshold for base calling, a minimum coverage of 3× and the
“trim to reference” option using Geneious R10 v10.2.3 [73] (https://www.geneious.com).
To enhance coverage at the edges of the sequences, the reads were mapped and filtered
again in the same way as stated above to a reference in which the last 400 bp were shifted
from the end to the beginning of the reference, making use of the circular character of
the mitochondrial genome. For all samples except IZW 607/10, the bam files were again
edited manually, and consensus sequences called. For all consensus sequences, the part
corresponding to the shifted 400 bp was moved back to the end of the sequence. Both
consensus sequences were then combined using a 50% majority rule threshold for base
calling (option “50%—Strict: Bases matching at least 50% of the sequences”). This resulted

https://www.R-project.org
https://www.R-project.org
https://www.rstudio.com
https://inkscape.org
http://broadinstitute.github.io/picard
https://github.com/dariober/Java-cafe/tree/master/MarkDupsByStartEnd
https://www.geneious.com
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in enhanced coverage at the edges for all individuals except ZMB MAM 2166, ZMB MAM
35370, and IZW 607/10.

Phylogenetic Analysis. Complete mitochondrial genome sequences for 13 wild ungu-
late species were compiled from Genbank and the control region removed for alignability:
scimitar-horned oryx (O. dammah), Arabian oryx (O. leucoryx), East African oryx (O. beisa),
Gemsbok (O. gazella), blue antelope (H. leucophaeus), sable antelope (H. niger), roan antelope
(H. equinus), topi (Damaliscus lunatus), blesbok (D. pygargus phillipsi), hartebeest (Alcela-
phus buselaphus), black wildebeest (Connochaetes gnou), blue wildebeest (C. taurinus), and
greater kudu (Tragelaphus strepsiceros) (Table S13 [37,74–76]) (alignment length: 15,657 bp,
Supplementary File S3). To date the basal divergence of the addax mitochondrial haplo-
type lineage, the two most diverged addax sequences (Figure 6) were included into this
alignment. Hereafter this alignment is called the species alignment to distinguish it from
the alignment with only addax sequences, which is called the population alignment. For
the population alignment, the control region was retained. Both alignments were saved in
NEXUS format for analysis in BEAST v2.5.0 [77,78] with ambiguities indicated in IUPAC
code. Alignments of the population and species datasets were carried out in Geneious R10
v10.2.3 using the MAFFT algorithm v7.450 [79,80] with default settings.

Phylogenetic Network. From the population alignment, all ambiguities/missing data
and gaps were removed, resulting in an alignment length of 16,685 bp (Supplementary
File S5). A phylogenetic network was reconstructed with POPART v1.7 [81] using the TCS
algorithm [82,83] and edited in Inkscape v0.91 (https://inkscape.org). In addition, the
number of segregating sites and nucleotide diversity were determined.

Mitochondrial Diversity Comparison. The mitochondrial diversity of addax was
compared with that of seven wild ungulate species using a pairwise diversity comparison.
Seven mitochondrial genomes (including control region) per species were randomly chosen
from all contemporary or historical non-hybrid sequences from GenBank to represent
each species (Table S15 [37,53,67,84–90]). For scimitar-horned oryx, one sequence and for
European bison, two sequences were excluded that were already deemed problematic by
other studies [89,91]. For each species, sequences were aligned using the MAFFT algorithm
v7.450 [79,80] with default settings in Geneious R10 v10.2.3 [73] (https://www.geneious.
com). Next, overall average pairwise distances (k) were calculated in MEGA X [92] with
gaps and missing data treated as complete deletions. For this comparison, mitochondrial
genomes of H. niger were assembled from the available raw whole genome data [67]
(Supplementary File S1: Text S4, MZ488448-MZ488453). Results were plotted using R v3.6.3
(https://www.R-project.org) [63], R Studio v1.1.423 (https://www.rstudio.com) [93], and
Inkscape v0.91 (https://inkscape.org).

Bayesian Mitochondrial Species Phylogeny. Analysis parameters and priors were
specified in BEAUTi v2.5.0. The analysis was carried out in BEAST v2.5.0 [77,78,94]. This
analysis included all extant hippotragine and alcelaphine species, as well as the greater
kudu (T. strepsiceros) in a species alignment (see above, alignment length: 15,657 bp, Sup-
plementary File S3). JModeltest v2.1.10 [95,96] was run with five substitution schemes,
allowing models of equal/unequal base frequencies, with and without a proportion of
invariable sites, with and without rate variation among sites, allowing six gamma cate-
gories, and using "BIONJ" as the base tree for likelihood calculations. Using the corrected
Akaike Information Criterion (AICc), the GTR+I model was found as the best-fitting sub-
stitution model. However, the GTR+G (second best-fitting model) was chosen because
the use of gamma categories already permits sites with very low substitution rates [97].
Furthermore, no partitioning of the mitochondrial genomes was conducted because the
specified six gamma categories permit fast evolving and slow evolving regions to fall into
higher and lower categories, respectively [98]. Site frequencies were inferred empirically
from the dataset and ambiguities were accounted for (option "use ambiguities" in BEAUTi).
A relaxed lognormal clock was applied to allow for substitution rate variation between
different lineages. A Yule model was chosen as the tree model prior. A uniform prior
between 0 and 1 was set on the clock rate. Five node calibrations were used to calibrate

https://inkscape.org
https://www.geneious.com
https://www.geneious.com
https://www.R-project.org
https://www.rstudio.com
https://inkscape.org
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the tree following mostly Bibi [27] with one improvement for the crown Connochaetes
spp. node (Table 2, blue circles in Figure 4) (see Supplementary File S1: Text S3: Fossil
Calibrations [27,37,75,99–106]). All calibration priors were set to be monophyletic based
on previous phylogenetic analyses [27,37]. To determine the split age between Oryx and
Addax and to date the basal divergence of the mitochondrial haplotype lineage of the addax
individuals sampled, an uninformative prior was set on each of these two nodes (marked
with stars in Figure 4). The parameter popSize of the starting tree had to be manually
adjusted in the xml file from 1.0 to 1000.0, to be able to start the analysis. The MCMC
was run for 60 million generations. Trees were sampled every 6000 generations and were
summarized using maximum clade credibility as the target tree type and median node
heights in TreeAnnotator v2.5.0 [77,78] after a burn-in of 10%, which was chosen following
visual inspection of the results in Tracer v1.7.1 [107]. The tree was visualized using FigTree
v1.4.3 (https://github.com/rambaut/figtree) and Inkscape v0.91 (https://inkscape.org).

Table 2. Fossil calibration priors used with BEAUti/BEAST v2.5.0. Age and 95% ranges were determined as 1.25× the
minimum age (lognormal prior) or ± 25% of an approximate age (normal prior). The crown bovid node is calibrated using
a normal prior as E. noyei is presumed to be closely related to crown bovids but its exact relationships to the crown clade
remain unclear.

Calibration
Point Prior Type Age [Mya] 95% Range

[Mya] Fossil Taxon Site/Geological Unit References

Crown
Bovidae Normal 18 16.0–20.0 Eotragus noyei Kamlial and Vihowa

Formations, Pakistan [108]

Stem
Hippotragini

Log
normal 6.4 6.4–8

Saheloryx
tchadensis,
Saheloryx

solidus,
Tchadotragus

sudrei

Anthracotheriid unit at
Toros-Menalla, Chad [109,110]

Crown
Alcelaphini

Log
normal 4.5 4.5–5.625 Damalacra

neanica

Pelletal Phosphorite
Member at Langebaanweg,

South Africa
[103,111,112]

Crown
Hippotragini

Log
normal 3.6 3.6–4.5 Hippotragus sp.,

Oryx sp.
Lower Laetoli Beds at

Laetoli, Tanzania [113–115]

Crown
Connochaetes

spp.

Log
normal 1.0 1.0–1.25 Connochaetes

gnou
Cornelia-Uitzoek,

South Africa [102,105,106]

Bayesian Addax Mitochondrial Phylogeny. This analysis was restricted to only in-
clude the addax individuals sampled in this study and one sequence from GenBank. Twelve
complete addax mitochondrial genomes, including the control region (alignment length:
16,758 bp, Supplementary File S4) were included. jModeltest v2.1.10 [95,96] using AICc
found that HKY+I+G was the best-fitting substitution model. For the reasons mentioned
above, only HKY+G was chosen, no partitioning of the mitochondrial genome was exe-
cuted, six gamma categories were allowed for, site frequencies were empirically estimated
from the dataset, and ambiguities in the dataset were considered (option “use ambiguities”
in BEAUTi). Since only addax sequences were included, a strict clock was chosen. An
exponential coalescent population model prior was used to account for possible population
growth or decline. Following the age estimate for the addax individuals analyzed in the
species phylogeny, the root age was calibrated with a lognormal prior using the inferred age
(mean 32 ka, 95% credibility interval (CI) 11–58 ka) for the most recent common ancestor
(MRCA) of the two addax individuals used in the mitochondrial species phylogeny. The
MCMC was run for 50 million generations and trees sampled every 5000 generations. The
maximum clade credibility tree with median posterior node heights was generated using
TreeAnnotator v2.5.0, with a burn-in of 10% after visual inspection of the log file in Tracer

https://github.com/rambaut/figtree
https://inkscape.org
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v1.7.1. The tree was visualized using FigTree v1.4.3 (https://github.com/rambaut/figtree)
and Inkscape v0.91 (https://inkscape.org).

3. Results
3.1. Assembly of Nuclear Genome and Mitochondrial Genome Data

Using shotgun sequencing and hybridization capture approaches, we obtained a 44×
coverage nuclear genome of a contemporary addax zoo individual, ten mitochondrial
genomes from museum specimens, and one mitochondrial genome from the same zoo
individual, ranging from 62.58× to 7907.87× coverage. Table 3 gives basic assembly
statistics for the addax nuclear assembly. BUSCO analysis ranked the addax assembly with
a high degree of completeness for the Cetartiodactyla (91.6%), the Laurasiatheria (92.4%),
and the Mammalia gene sets (91.2%) (Table 4).

More specific details on read numbers can be found in Tables S1, S2, S11, and S12 and
on the assembly in Supplementary File S1: Text S1.

Table 3. Scaffold statistics of the addax in silico mate pair assembly with QUAST v5.0.2.

Total Assembly Length 2,795,176,578 bp

Number of Scaffolds 86,926

Scaffold N50 20,757,513

Scaffold L50 37

Longest Scaffold 87,765,150 bp

GC Content 41.72%

Table 4. BUSCO v5.1.3 scores for the addax in silico mate pair assembly using three different BUSCO lineage datasets.

Cetartiodactyla BUSCO
Scores

Laurasiatheria BUSCO
Scores

Mammalia BUSCO
Scores

C 91.6% 92.4% 91.2%

Complete BUSCOs 12,209 11,312 8418

Complete and Single-Copy BUSCOs 12,038 11,151 8204

Complete and Duplicated BUSCOs 171 161 114

Fragmented BUSCOs 341 278 287

Missing BUSCOs 785 644 521

Total BUSCO Groups Searched 13,335 12,234 9226

3.1.1. Genetic Diversity and Demographic History

Comparison of the addax to seven other wild ungulate species (Figure 2a) showed that
the addax had a relatively low mitochondrial diversity, similar to that of American bison
or moose, but much lower than its close relatives the scimitar-horned oryx and the sable
antelope (Table S16). Moreover, comparison of the average autosomal heterozygosity of the
addax and six wild ungulate species revealed a relatively low level of nuclear diversity for the
addax (Figure 2b). Heterozygosity estimates from 500-kb sliding windows across the genome
showed a similar picture (Figure 2c): the addax, together with the three other hippotragine
species, displayed a more limited heterozygosity distribution than the Defassa waterbuck,
springbok, and African buffalo. Both the addax (11.8%) and the gemsbok (14.1%) had a higher
percentage of total windows with very low levels of heterozygosity (<0.001) than the other
species. Standard deviations are displayed in Table S5.

https://github.com/rambaut/figtree
https://inkscape.org
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Figure 2. Comparisons of mitochondrial and nuclear diversity. (a) Comparison of the overall average pairwise distance of
the addax (Addax nasomaculatus) with seven wild ungulate species using seven complete mitochondrial genome sequences
per species. k gives the average number of substitutions between two individuals of the same species. Note that the value
for the European bison is zero. (b) Comparison of the average autosomal heterozygosity of the addax with six wild ungulate
species. (c) Heterozygosity for 500-kb sliding windows across the autosomal scaffolds of seven wild ungulates species. The
addax is marked in black in all panels.

3.1.2. Inbreeding Assessment

Based on the default definition that a ROH is a region of at least 1 Mb with an average
heterozygosity <1 × 10−5, no runs of homozygosity (0%) were found within the addax
genome assembly (Table S7) using ROHan. However, for the scimitar-horned oryx, 9.05%
of the genome was in ROH with the average length of a ROH being 4,666,670 bp (Table S8).

3.1.3. Pairwise Sequential Markovian Coalescent Model

The autosomal pairwise distance between the scimitar-horned oryx and the ad-
dax was estimated to be 0.007091. Based on the 2.21 Mya divergence age estimate be-
tween Oryx and Addax, a mutation rate of 1.604 × 10−9 per year and a mutation rate of
1.09 × 10−8 per generation, assuming a generation time of 6.8 years [59], was calculated.
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This is almost identical to the mutation rate of 1.1 × 10−8 used in Humble et al. [53] for the
scimitar-horned oryx.

The PSMC trajectory of the addax is characterized by an overall continuous decline of
effective population size (Ne) over time with the exception of a short but steep increase
beginning ~150 kya and peaking ~44 kya before steeply declining through the Last Glacial
Maximum to the present (Figure 3). When compared with the trajectory of the scimitar-
horned oryx, the Ne of the two species developed inversely during two time periods. It
declined for both species up to ~620 and ~490 kya, respectively. After this, Ne of the addax
increased very briefly and then decreased, whereas the Ne for the scimitar-horned oryx
increased considerably until it started to decline again ~150 kya, when the Ne of the addax
increased again.
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Figure 3. Pairwise sequential Markovian coalescent model for the addax and the scimitar-horned oryx. Changes in
effective population size Ne (with 100 bootstrap repetitions) in the addax and the scimitar-horned oryx based on an
autosomal pairwise sequential Markovian coalescent model (addax: generation time 6.8 years, mutation rate per gener-
ation (µ) 1.09 × 10−8 [59], this study; scimitar-horned oryx: generation time 6.2 years, mutation rate per generation (µ)
9.95 × 10−9 [60], this study). Last Glacial Maximum and Marine Isotope Stages (MIS) representing interglacial periods of
the last 500,000 years are marked in light orange. Note the Late Pleistocene reduction in population size, approximately
coinciding with the age of the most recent common ancestor of the mitochondrial genome samples (Figures 4 and 5).
Scimitar-horned oryx data from Humble et al. [53]. See Figure S1 for a presentation of the results on a linear time scale.
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(11–58 kya, 95% credibility interval).
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3.2. Divergence Age and Phylogeographic Structure
3.2.1. Species Phylogeny

The calibrated Bayesian species phylogeny dated the divergence of Addax and Oryx
to 2.21 Mya (1.51–2.98 Mya, 95% CI) and the age of the MRCA of the two most divergent
addax haplotypes to 32 kya (11–58 kya, 95% CI) (Figure 5). Effective sample size (ESS)
values for the tree likelihood, priors, and input parameters were >700 for the species
analysis.
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3.2.2. Population Phylogeny

The addax population phylogeny (Figure 5) showed a monophyletic Sudan clade,
but highly intermingled relationships among haplotypes from the Tunisian, Libyan, and
Western Saharan individuals. All ESS values were >1000 for the population analysis.

The TCS phylogenetic network of the twelve complete addax mitochondrial genomes
showed 59 segregating sites and a nucleotide diversity of 0.0007 (Figure 6). While some
geographic structure is present, this is evidently weak, as shown by the lack of grouping of
samples from Tunisia and Libya. The close maternal relatedness of the two zoo individuals
(IZW607/10 and JN632591), and the identical sequences of two individuals from Sudan
(ZMB MAM 2165 and 2167) and two from Tunisia and Libya (ZMB MAM 8836 and 8838)
were also evident.
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4. Discussion

Genetic investigations of species on the verge of extinction can be of vital importance.
Here we showed that genetic and genomic methods coupled with analyses of museum sam-
ples using archival DNA methodologies can reveal baseline information such as population
demography and past and present diversity. In the case of the addax, we show that this
species likely had a historically higher mitochondrial diversity than today and relatively weak
population structure (Figures 5 and 6). We estimated an age of divergence from Oryx spp.
at ~2.21 Mya, which is younger than previous estimates (e.g., Bibi [27]), and we inferred an
almost continuous decline in effective population size since ~2 Mya (Figure 3). Despite a small
population size in recent times, we detected no signs of inbreeding for the zoo individual.

4.1. The Addax Exibits Low Nuclear and Intermediate Mitochondrial Diversity

Hippotragini seem to have a lower nuclear diversity than other African bovids, with
the addax having the lowest nuclear diversity among them in our comparison. While
some of these African bovids have smaller geographic ranges than the addax, they almost
certainly have had consistently higher population sizes on account of their more productive
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habitats. Having relatively low nuclear diversity might be a characteristic of Hippotragini
independent of whether they inhabit a desert environment or not. However, all four
hippotragin genomes analyzed in our study originated from zoo animals. Since quality
of pedigrees and management of the captive populations might differ, the genome-wide
diversity of these animals might not be representative of wild (or formerly wild in the case
of the scimitar-horned oryx) populations.

Our mitochondrial DNA results indicate that the 19th and 20th century population
of wild addax showed intermediate levels of mitochondrial diversity compared to several
other wild ungulates and low levels compared to African bovids in general. Although our
sample size only included ten wild individuals, it does represent the peripheries of the former
geographic range of this species, which once covered the entire Sahelo–Saharan region, an
area of ~9.5 million km2 (about the size of Brazil or China, Figure 1). Species with lower
mitochondrial diversity than the addax include the European and American bison, which are
both known to have experienced recent bottlenecks [116,117] (~140 years ago [118]) but also the
moose, which did not go through a significant reduction in population size. However, species
with a much higher mitochondrial diversity include on the one hand the scimitar-horned
oryx and Przewalski’s horse, which have both recently been severely reduced in population
size [119,120], but on the other hand, the African buffalo and the sable antelope, which like the
moose, have not suffered such a reduction. This might point to a limited connection between
mitochondrial diversity and population size, as postulated by Bazin et al. [121]. However,
the addax appears to have also gone through a recent period of relatively low population
size, as our dated species phylogeny placed the age of the MRCA at ~32 ka (11–58 kya, 95%
CI). The credibility interval on this age estimate is relatively large, but we can be certain that
major losses in addax mitochondrial diversity occurred well before the oldest specimens in
our sample (1821), and well before modern human pressures on the Sahelo–Saharan region,
including hunting with firearms and poaching. The MRCA age estimate also corresponds
to a major decline in effective population size in the PSMC trajectory shortly after ~44 ka,
which suggests that a major decrease in the addax effective population size took place in the
Late Pleistocene, probably between ~50 kya and the Last Glacial Maximum. Therefore, the
addax joins the growing list of large mammals for which genetic evidence indicates major
population size decreases during the last 100 kya [65,122]. In summary, the addax appears to
have had a small population size in both historical and prehistoric times, prior to the human
disturbances of the last few centuries. A major decrease in numbers occurred during the Late
Pleistocene as part of a global wave of large mammal extinctions and extirpations, for which
global (rather than local) explanations might be sought.

4.2. Weak Phylogeographic Structure and Climatic Influence on Population History

Previous work has shown the existence of measurable phylogeographic structure
among sub-Saharan African large mammals [123]. Lerp et al.’s [124] analysis of Saharan
and Arabian dorcas gazelles (Gazella dorcas) found low genetic diversity and no clear
phylogeographic structure across its range. A study on dama gazelles (Nanger dama) also
found only weak phylogeographic structure [125]. Similar to those two desert species, we
found that phylogeographic structure in the addax is low.

The addax mitochondrial genomes are distinguished by only a few differences (Figure 6).
The highest diversity can be seen between North and West African individuals, and it is notable
that North African individuals are paraphyletic (Figure 5). The European zoo clade is reported
to descend from a founding population of 15 individuals [59]. The mother and grandmother
of our zoo individual were born in Tierpark Berlin. The father and grandfather are from the
San Diego Zoo. Animals from Berlin can be traced back to two founders from Chad and two
other individuals of unknown origin [126]. The Chad origin of the maternal relatives of the
Berlin individual matches with the results marking the origin of its mitochondrial lineage to
somewhere between Libya and Sudan (Figures 5 and 6).

The absence of deep phylogeographic structure observed in the addax suggests a lack
of barriers to dispersal and gene flow across its former range and that addax may have
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originally consisted of a single gene pool, consistent with its high mobility and nomadic
behaviour [127]. This makes sense considering the large foraging areas that must have been
required to sustain herds in the hyperarid environments and meagre vegetational resources
of the Sahara. Former reports indicating that the addax would temporarily aggregate in
groups of “several hundreds” of individuals, although usually living “in small herds of up
to 15 animals” [127], show how successful they were at this.

As the PSMC method rapidly loses resolution as it moves toward the present, any
correspondence with multiple climatic cycles with a periodicity of ~100 kyr or less is
difficult to test. However, we did see some fluctuations over the last 500 kyr, with peaks
in effective population size at ~500 and ~44 kya. We can only speculatively attempt to
relate these to climatic changes, in part because the climatic history of the Sahara remains
poorly resolved. For example, while previous work had proposed arid–dry cycles in this
region at 100 ky periodicity corresponding to that of Northern Hemisphere glacial cycles
(e.g., de Menocal [128], Dupont [129]), a more recent assessment of the Saharan dust record
suggests dominance of 23 ky (precessional) climatic cycles [130]. Moreover, while previous
work on lake core records had proposed a pan-African period of “megadrought” between
135 and 70 ka [131,132], Saharan records in fact indicate the presence of humid habitats at
120 ka, and probably at several times during previous interglacials [133–135]. Within this
context, it could be that addax population size decreased (or that gene flow across its range
was disrupted) with the advent of humid conditions during the last interglacial (~120 ka)
and increased again during the last glacial period (Figure 3). The fact that this pattern
appears to be inverted in the scimitar-horned oryx may also support this interpretation.
In contrast with the truly Saharan addax, the scimitar-horned oryx historically resided
in the semi-arid grasslands along the peripheries of the Sahara in the Sahel and North
Africa [14,136]. Our PSMC results suggest that the scimitar-horned oryx might have
benefited from Pleistocene humid periods, during which its grassland range might have
expanded deep into the Sahara. In contrast, it would appear that the addax fared poorly
during these times of increased productivity, which would be surprising. Perhaps the
addax is so specialized to its desert habitats that it cannot take advantage of the increased
availability of grasses and shrubs, or possibly was outcompeted by encroaching large
savanna herbivores. Alternatively, the increased food availability accompanying humid
conditions may have decreased the need for addax populations to migrate long distances,
thereby potentially restricting gene flow across the Sahara during these times, thereby
resulting in a drop in effective population size as measured here.

4.3. Conservation Implications

Sahelo-Saharan large mammals such as the addax and the dama gazelle have lost
over 90% of their former ranges, and both are on the verge of becoming extinct in the
wild [6]. These species potentially face the same fate as the scimitar-horned oryx (O.
dammah), which has been extinct in the wild since 2000 [119]. However, a reintroduction
program for this species in Chad that started in 2016 is ongoing and this population is
slowly growing in numbers [137]. Many additional Sahelo–Saharan mammal species
are similarly threatened, such as the slender-horned gazelle (G. leptoceros) and barbary
sheep (Ammotragus lervia) [138,139], escalating the potential extinction crisis facing Sahelo–
Saharan wildlife [16,140]. The baseline information about the addax generated in our study
can be used to draw several important conservation implications for the species.

First, although we detected ~12% of the 500-kb windows with no heterozygosity
in the addax genome (Figure 2c) when using ANGSD, which could indicate inbreeding,
we did not detect any inbreeding by means of runs of homozygosity within the nuclear
genome of the addax using ROHan. These seemingly contradictory results could be caused
by the parameter “-baq 1” (adjusting quality scores around insertions/deletions with
normal BAQ calculation) in ANGSD [58], which can lead to a reduction of the overall
heterozygosity [54]. Moreover, for the 500-kb window analysis, windows with <0.001
heterozygous sites were binned to 0, which is stricter than in the ROHan analysis (0.00001).
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Therefore, as ROHan was specifically developed to uncover ROH, and as we also detected
ROH in the scimitar-horned oryx showing the ability to detect inbreeding via ROH, we
deem the result of no signs of inbreeding in our addax individual to be reliable. This
implies that the addax’s relatively low diversity was not caused by recent inbreeding,
similar to the cases of brown (Parahyaena brunnea) and striped hyenas (Hyaena hyaena) [70].
This is a somewhat surprising result since more ROH are expected in small populations [72]
and since the addax also shows low overall heterozygosity. However, this is consistent
with a study by Brüniche-Olsen et al. [141], which found that IUCN Red List status was
not a significant indicator of inbreeding levels. Nevertheless, if the zoo individual we
sequenced is representative of the European zoo population as a whole, this would be very
good news for addax reintroduction programs that use animals from the European zoo
population (e.g., Riordan et al. [142]) and could be seen as a reassurance that the mainly
pedigree-based breeding program [143] is able to maintain genomic diversity even with
a limited population size. Our zoo individual is a descendant of the European and the
American zoo population. Therefore, we would assume that it might be considered as a
representative of the zoo population as a whole. However, without insight into the detailed
pedigree this question cannot currently be resolved with complete certainty.

Second, the panmictic nature of the historical addax population indicates this species
is highly mobile, and confirms that its population ranged widely across the Sahara [2].
Reintroduction programs in small protected areas may therefore prove problematic and
very large ranges may be needed to ensure the long-term survival of the addax in the wild
(see also Dolan [2]).

Third, only very small populations are left in the wild [1], which are naturally prone
to losing diversity through drift. This, together with the lower genomic and possibly low
contemporary mitochondrial diversity in the captive population, could indicate that larger
amounts of the addax’s diversity might already be lost. However, this is hard to predict
from only one investigated nuclear and two contemporary mitochondrial genomes. In
addition, nuclear diversity does not decline as fast as mitochondrial diversity, hence only
the loss of mitochondrial diversity might be an issue for the addax. An unpublished study
of the last wild addax population in Niger suggests that its mitochondrial diversity is
higher than that of the captive population [9,142]. Similarly, a study on dama gazelles
using mitochondrial markers discovered that this species harbors more diversity in the
wild than in captivity [125].

It is important that the diversity of the remaining wild populations is conserved
as rapidly as possible, with the goal of establishing a larger wild population comprised
of wild and reintroduced individuals. In this case, the conservation dilemma that Senn
et al. [125] discuss for the dama gazelle would not apply, since likely only one viable addax
population is left in the wild. One way to achieve this could be to locate and capture
all remaining wild individuals and include them into local breeding programs together
with individuals from zoos and private ranches. Since addax breed well in captivity,
this could be a viable way to preserve its remaining diversity if a systematic breeding
program is applied. Another option could be to reintroduce animals into the areas where
the last wild individuals remain or to other parts of its former range in order to create
diverse and demographically stable wild populations. However, both approaches require
elimination of the current threats to the addax’s survival in the wild (see Brito et al. [16]
for a detailed discussion on how this could be managed), primarily poaching by military
personnel accompanying oil and mining companies [14], and habitat degradation due to
oil exploration and exploitation [17,20].

The mentioned measures are by far not easy tasks to undertake and have in similar
ways already been proposed by the IUCN for the Réserve Naturelle Nationale du Termit et
du Tin Toumma in Niger [15]. Certainly, a combined effort including business and govern-
mental authorities as well as conservationists is the most promising way forward [15].
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5. Conclusions

Through the generation of ten mitochondrial genomes from across the addax’s histori-
cal range, and, to our knowledge, the first nuclear genome assembly, our study presented
baseline information for a highly threatened desert species. The addax seems to have
already had low population sizes in historical and prehistoric times before more recent
human interference, which nevertheless is thought to be the reason for its current crisis of
severe population decline in the wild. We found only limited evidence for phylogeographic
structuring in the historical addax population, suggesting past gene flow and a formerly
high degree of mobility across its range. Concerning Pleistocene arid–humid climatic cycles,
our data does not give conclusive results but suggests surprisingly that the addax may not
have responded positively to the Saharan humid period of the last interglacial. There are
indications to suggest that part of the addax’s mitochondrial diversity is already lost, with
only very few individuals left in the wild and the zoo population possibly not capturing
the historical mitochondrial diversity. However, no or very low levels of inbreeding were
detected in the European zoo population, which bears positive implications for reintro-
duction programs. As conservation measures, we suggest two alternative approaches
to preserve as much diversity of the addax as possible. Without rapid action, a species
adapted to one of the harshest environments on earth is likely to soon disappear from its
natural habitat. Concerted efforts are necessary if we are to ensure the persistence of this
species in the wild.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12081236/s1. Supplementary File S1: Table S1: Paired-end sequencing yields from
our contemporary addax sample (IZW 607/10) mapped to the addax nuclear assembly (this study).
Table S2: Paired-end sequencing yields from our contemporary addax sample (IZW 607/10) mapped
to the scimitar-horned oryx nuclear assembly. Text S1: Assembly Statistics. Figure S1: Pairwise
sequential Markovian coalescent model for the addax and the scimitar-horned oryx on a linear
scale. Figure S2: Pairwise sequential Markovian coalescent model for the addax with a mutation
rate per generation of 1.59 × 10−8. Figure S3: Pairwise sequential Markovian coalescent model
for the addax with a mutation rate per generation of 8.08 × 10−9. Table S3: Accession numbers
of raw reads and genome assemblies used in the heterozygosity estimate. Table S4: Estimated
autosomal heterozygosity for all scaffolds larger 1 Mb and 20–100-Mb windows in ANGSD v0.923
for the addax and six other wild ungulate species. Table S5: Standard deviation of heterozygosity of
500-kb windows across autosomal scaffolds larger 1 Mb of the addax and six other wild ungulate
species. Table S7: Results from ROHan analysis using default parameters for the addax (Addax
nasomaculatus). Table S8: Results from ROHan analysis using default parameters for the scimitar-
horned oryx (Oryx dammah). Text S2: ZMB MAM 2165 Skin Sample. Table S9: Pooling strategy
for hybridization capture batch 1. Table S10: Pooling strategy for hybridization capture batch 2.
Table S11: Paired-end sequencing yields of four historical and one contemporary addax samples
from paired-end sequencing mapped to the addax mitochondrial genome. Table S12: Single-end
sequencing yields of seven historical addax samples mapped to the addax mitochondrial genome.
Table S13: Mitochondrial sequences from Genbank included in the calibrated Bayesian species
phylogeny. Text S3: Fossil Calibrations for the Bayesian Species Phylogeny. Table S14: Calculated
mutation rates per year and per generation time assuming different splits of Oryx/Addax lineage
from the species phylogeny assuming a generation time of 6.7 years. Text S4: Mitochondrial Genomes
of the Sable Antelope (Hippotragus niger). Table S15: Sequences used for the mitochondrial diversity
comparison using pairwise distances. Table S16: Average pairwise distances (k) of seven complete
mitochondrial genomes per species for the addax and seven wild ungulate species. Supplementary
File S2: Supplementary Table S6: Scaffold IDs that aligned to the X chromosome of the domestic goat,
the Y chromosome of the wild goat, and the mitochondrial genome of the respective species using
SatsumaSynteny v2.0. Supplementary File S3: Mitochondrial species alignment used to build the
calibrated Bayesian species phylogeny. Supplementary File S4: Mitochondrial population alignment
used to build the Bayesian population phylogeny. Supplementary File S5: Mitochondrial population
alignment used to build the phylogenetic network.

https://www.mdpi.com/article/10.3390/genes12081236/s1
https://www.mdpi.com/article/10.3390/genes12081236/s1


Genes 2021, 12, 1236 19 of 24

Author Contributions: Conceptualization, E.H., F.M., J.M., M.H. and F.B.; data curation, E.H. and
J.H.G.; formal analysis, E.H., M.V.W., J.H.G. and S.K.; funding acquisition, M.H. and F.B.; investiga-
tion, A.T.; methodology, E.H., M.V.W., J.H.G., J.L.A.P., S.K., A.B., M.H. and F.B.; project administration,
K.-P.K., M.H. and F.B.; resources, F.M., L.C. and M.H.; supervision, M.V.W., J.L.A.P., M.H. and F.B.;
visualization, E.H.; writing—original draft, E.H.; writing—review and editing, E.H., M.V.W., J.H.G.,
A.T., J.L.A.P., S.K., A.B., F.M., J.M., L.C., K.-P.K., M.H. and F.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation), project number 315696891 to M.H. and F.B. (HO 3492/3-1 & BI 1879/2-1) and the
Innovation Fund of the Museum für Naturkunde, Berlin.

Data Availability Statement: The Bioproject number of this project in GenBank is PRJNA742532.
The complete addax mitochondrial genomes are available at GenBank with the accession numbers
MZ474955–MZ474965 and for the sable antelope with MZ488448–MZ488453 (Sable antelope Bio-
project PRJNA403773 and PRJNA403774). The assembly of the addax nuclear genome is available
at GenBank under JAIEZW000000000. The untrimmed raw data were uploaded for the addax mi-
tochondrial capture data to the short-read archive under SRR15177977–SRR15177987 and for the
nuclear data under SRR15177988, SRR15193276 and SRR15193277.

Acknowledgments: We thank Gudrun Wibbelt and Andreas Wilting from the Institute of Zoo and
Wildlife Research for providing the contemporary addax sample, and Detlef Wilborn and Christiane
Funk from the Museum für Naturkunde, Berlin for sampling the archival specimens. In addition, we
thank Ulrike H. Taron for conducting the lab work for the contemporary sample and Marie Gurke
for help with downloading and checking raw data and assemblies. We are grateful to Andreas Abele-
Rassuly and the wiki of AG Sammlerbiographien at the Museum für Naturkunde, Berlin for help in
researching sample locations. We thank Sebastian Duchene for support with the BEAST analyses,
Nicola Heckeberg for assistance with the fossil calibrations, and Y. Chaid Saoudi for assistance
tracking down the fossil maxilla described by Balout [22].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IUCN SSC Antelope Specialist Group. Addax nasomaculatus. IUCN Red List Threat. Species 2016, e.T512A50180603. [CrossRef]
2. Dolan, J., Jr. Notes on Addax nasomaculatus (De Blainville, 1816). Z. Säugetierkd. 1966, 31, 23–31.
3. Newby, J. Can addax and oryx be saved in the Sahel? Oryx 1980, 15, 262–266. [CrossRef]
4. Beudels-Jamar, R.C.; Devillers, P.; Lafontaine, R.-M.; Newby, J. Addax nasomaculatus. In Sahelo-Saharan Antelopes. Status and

Perspectives. Report on the Conservation Status of the Six Sahelo-Saharan Antelopes; Beudels, R.C., Devillers, P., Lafontaine, R.-M.,
Devillers-Terschuren, J., Beudels, M.-O., Eds.; CMS SSA Concerted Action (2nd ed.); CMS Technical Series Publication No. 11;
UNEP/CMS Secretariat: Bonn, Germany, 2005; pp. 39–56.

5. Newby, J. Addax nasomaculatus Addax. In Mammals of Africa; Bloomsbury: London, UK; New Dehli, India; New York, NY, USA;
Sydney, NSW, Australia, 2013; Volume 6, pp. 566–571.

6. Durant, S.M.; Wacher, T.; Bashir, S.; Woodroffe, R.; De Ornellas, P.; Ransom, C.; Newby, J.; Abáigar, T.; Abdelgadir, M.; El Alqamy,
H.; et al. Fiddling in biodiversity hotspots while deserts burn? Collapse of the Sahara’s megafauna. Divers. Distrib. 2014, 20,
114–122. [CrossRef]

7. Rabeil, T. Addax survey in Niger. Sandscript 2016, 19, 6.
8. DCFAP & DFCPR. Plan d’Action Regional pur l’Addax et la Gazelle Dama 2018–2022; Mallon, D., Pinchon, S., Eds.; NOÉ: Paris,

France, 2017.
9. Chardonnet, P.; Mallon, D.; Woodfine, T. To Save the Addax Antelope, the Oil Sector and Government Must Work Together

with Conservationists. Available online: https://www.iucn.org/crossroads-blog/202011/save-addax-antelope-oil-sector-and-
government-must-work-together-conservationists (accessed on 7 January 2021).

10. Wacher, T.J.; Newby, J.E.; Monfort, S.L.; Tubiana, J.; Moksia, D.; Houston, W.; Dixon, A.M. Sahelo-Saharan interest group antelope
update Chad 2001 and Niger 2002. In Antelope Survey Update. Number 9: November 2004. IUCN/SSC Antelope Specialist Group
Report; Chardonnet, B., Chardonnet, P., Eds.; IUCN: Gland, Switzerland, 2004; pp. 52–59.

11. Wildt, D.; Miller, P.; Koepfli, K.-P.; Pukazhenthi, B.; Palfrey, K.; Livingston, G.; Beetem, D.; Shurter, S.; Gregory, J.; Takács, M.;
et al. Breeding centers, private ranches, and genomics for creating sustainable wildlife populations. BioScience 2019, 69, 928–943.
[CrossRef]

12. Riordan, P.; Gilbert, T.C.; Petretto, M.; Craig, M.S.; Banfield, L.; Ivy, J.; Senn, H.; Abid, H.; Nouioui, M. The genetic diversity of
addax Addax nasomaculatus in reintroduced and ex-situ managed populations. Gnusletter 2017, 34, 21.

13. Spatz, P. Meine Reise nach Rio de oro. Reisebericht und Beobachtungen an Säugetieren. Z. Säugetierkd. 1926, 1, 23–28.

http://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T512A50180603.en
http://doi.org/10.1017/S0030605300024662
http://doi.org/10.1111/ddi.12157
https://www.iucn.org/crossroads-blog/202011/save-addax-antelope-oil-sector-and-government-must-work-together-conservationists
https://www.iucn.org/crossroads-blog/202011/save-addax-antelope-oil-sector-and-government-must-work-together-conservationists
http://doi.org/10.1093/biosci/biz091


Genes 2021, 12, 1236 20 of 24

14. Newby, J.E. Aridland wildlife in decline: The case of the scimitar-horned oryx. In Conservation and Biology of Desert Antelopes;
Dixon, A., Jones, D., Eds.; Christopher Helm: London, UK, 1988; pp. 146–162.

15. IUCN Saharan Addax Antelope Faces Imminent Extinction. Available online: https://www.iucn.org/content/saharan-addax-
antelope-faces-imminent-extinction-0 (accessed on 1 October 2020).

16. Brito, J.C.; Durant, S.M.; Pettorelli, N.; Newby, J.; Canney, S.; Algadafi, W.; Rabeil, T.; Crochet, P.-A.; Pleguezuelos, J.M.; Wacher, T.;
et al. Armed conflicts and wildlife decline: Challenges and recommendations for effective conservation policy in the Sahara-Sahel.
Conserv. Lett. 2018, 11, e12446. [CrossRef]

17. Gilbert, T.; Woodfine, T.; Petretto, M.; Nouioui, M.; Houston, B.; Riordan, P. Reintroduction of addax to Djebil National Park,
Tunisia. In Global Reintroduction Perspectives: 2018. Case Studies from around the Globe; Soorae, P.S., Ed.; IUCN, International Union
for Conservation of Nature & Environment Agency: Gland & Abu Dhabi, United Arab Emirates, 2018; pp. 120–124.

18. Ewi, M. A decade of kidnappings and terrorism in West Africa and the Trans-Sahel region. Afr. Secur. Rev. 2010, 19, 64–71.
[CrossRef]

19. Lohmann, A. Who Owns the Sahara?: Old Conflicts, New Menaces: Mali and the Central Sahara between the Tuareg, Al Qaida and
Organized Crime; Friedrich-Ebert-Stiftung: Abuja, Nigeria, 2011.

20. Sahara Conservation Fund. Niger’s addax hit by drought & oil. Sandscript 2010, 8, 5.
21. Newby, J. Niger—The Aïr-Ténéré National Nature Reserve. In Living with Wildlife: Wildlife Resource Management with Local

Participation in Africa; Kiss, A., Ed.; World Bank Technical Paper; The World Bank: Washington, DC, USA, 1990; pp. 53–58.
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