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Animal models, particularly pigs, have come to play an important role in translational biomedical research. There have been many pig models 
with genetically modifications via somatic cell nuclear transfer (SCNT). However, because most transgenic pigs have been produced by 
random integration to date, the necessity for more exact gene-mutated models using recombinase based conditional gene expression like mice 
has been raised. Currently, advanced genome-editing technologies enable us to generate specific gene-deleted and -inserted pig models. In 
the future, the development of pig models with gene editing technologies could be a valuable resource for biomedical research.
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Introduction

The use of animal models has been a valuable tools in both 
basic science and in vivo studies. Initially for finding animal 
models, a natural mutated individual was selected and the 
inbreeding was used for increasing the population. Another way 
is to produce animal models by chemicals or drug treatment. It 
has been very limited as to secure a sufficient number or 
consistent phenotype of the models. Thus, the best approach for 
obtaining animal models is use of genetically modified animals. 
Along with the isolation of germ-line transmitted murine 
embryonic stem cell lines [6], animal models, particularly in 
mice, can now be rapidly generated. As a result, thousands of 
mouse models have been developed for biomedical research.

However, the use of mice has many disadvantages, including 
their small size, short-life span and multiple differences from 
human metabolism. These shortcomings have brought about a 
need for large animal models. In particular, pig models have 
been used in translational biomedical research because they 
have many anatomical and physiological similarities with 
humans [10]. For example, several pig models have been 
actively developed, investigated, and used for clinical research 
in areas such as organ transplantation in the xenotransplantation 

field [26]. They have also been utilized in studies involving 
cancer [7], neuronal [16,34] and metabolic models.

Unlike mice models, there is still remained to improve in the 
development of multiple genetically modified porcine models 
[10]. The first transgenic pigs were generated by DNA 
microinjection [11]. However, this technique has low efficiency 
and various gene expressional levels (mosaicism) [5], which 
has led to somatic cell nuclear transfer (SCNT) being the 
preferred for developing transgenic pigs [25]. To produce 
transgenic pigs via SCNT, donor cells are transfected with 
exogenous DNA. In an initial SCNT study, fluorescent 
expressing piglets were generated through transfected donor 
cells [19]. Since then, various consistent trials for DNA 
engineering, transfection, and cell cultures have enabled us to 
produce multiple genes expressing piglets, even knockout (KO) 
pigs, via homologous recombination (HR). Even though these 
process is still inefficient, advances in SCNT based on 
improving in vitro maturation, activation conditions, and 
culture have accelerated the development of pig models for 
biomedical research. Recently, conditional transgenic pigs have 
been created by tetracycline-dependent gene expression and 
genome-editing technologies including DNA endonucleases 
(ZFN and TALEN) [17], in which every gene that can be edited 
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Table 1. Lists of pig models

Classification DNA References

Cell tracking

Cancer
Metabolic

Neuronal

Xenotransplatnation

eGFP
RFP
TP53
ApoCIII
HGF
Omega-3
Huntingtin 
APP695sw
Parkin and DJ-1
GGTA1
CMAH
hDAF

[19]
[37]
[31]
[38]
[35]

[18,42]
[34]
[16]
[40]
[29]
[17]
[32]

eGFP, enhanced green fluorescence protein; RFP, red fluorescent protein; 
HGF, hepatocyte growth factor; GGTA1, α1,3-galactosyltransferase; 
CMAH, cytidine monophospho-N-acetylneuraminic acid hydroxylase; 
hDAF, human decay accelerating factor.

Fig. 1. Gene expression by cassette exchange via cyclic 
recombinase (Cre). (A) Floxed blasticidin-resistant gene by loxP
and lox2272 were integrated into porcine cells. (B) Donor DNA 
(puromycin-linked RFP gene) and Cre recombinase were 
co-transfected and blasticidin gene was then exchanged. (C) 
Genomic polymerase chain reaction (PCR) on recombinant 
target genes confirmed cassette exchange by Cre recombinase. 
1, DNA ladder; 2, wild type cells; 3, blasticidin integrated cells; 
4, cassette exchanged cells; (−), negative control.

theoretically has been inserted into pig genome. The purpose of 
this review is to examine the current state of transgenesis and 
genome-editing technologies in producing pig models for 
biomedical research.

Current state of transgenic pigs

The first transgenic pig using microinjection has been 
generated [11]. As described above, most transgenic pigs have 
been produced by SCNT with mutated cell lines. Recently, KO 
and Knockin (KI) pig models have also been generated via 
homologous recombination and genome-editing technologies. 
Recent scientific developments have led to the use of pig 
models in several specific fields, as summarized in Table 1.

Transgenesis

Simply constitutive or tissue-specific promoter dependent 
overexpression and conditional gene-regulation systems 
including recombinase- dependent gene expression are 
necessary to produce better transgenic pig models.

Overexpression: For overexpression, constitutive promoters, 
primarily CMV, EF1 and CAG, were utilized for expression 
vector construction with the target gene and as selection 
markers. Early studies employed transgenic pig models based 
on simple transgene overexpression using constitutive 
promoters. However, the use of this approach has been reduced 
because constitutive expression may cause unexpected damage 
to transgenic animals. Therefore, tissue-specific promoters are 
used as an alternative. Initially, using a tissue-specific 
promoters from mice or human, transgenic pig models were 

generated [24]. Subsequently, a specific tissue promoter for 
transgenic pigs was developed and used [15]. In the future, a 
greater diversity of porcine-specific tissue promoters should be 
developed as higher genetic models.

Conditional gene expression: Ubiquitous expression in 
transgenic animals may be lethal in early embryonic 
development or not be different from genetic expression pattern 
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Fig. 2. Dre-rox recombination in porcine cells and embryos. (A) DNA construction and PCR-detection regions. (B) With or without Dre
recombinase transfection in porcine skin fibroblasts — upper without Dre, lower with Dre. (C) Validation of DNA excision by PCR. (D)
Target gene expression by Dre recombinase injection into the cloned embryos from donor cells with transfection.

because some genes will be expressed in the adult stage or under 
specific conditions. Because of these reasons, an increasing 
number of involving studies on conditional gene expressions 
such as Cre-loxP and Tet-on/off have been widely applied to 
mimic the disease or gene function in mice. In contrast, 
conditional gene expression models in pigs remain limited. This 
review considers the following gene-regulation systems 
utilizing experimental data: Cre-loxP, Dre-rox, PhiC31 and 
Tet-on/off systems.

Cre-loxP. Cre-loxP is the most widely employed system for 
generating conditional gene expression. Cyclic recombinase (Cre) 
recognizes specific sequences, named loxP, that are composed 
of 34 bps including an 8 bps asymmetric core region enclosed 
by two 13 bps inverted repeat regions and cause excision, 
insertion, inversion and translocation [3,23]. Due to this 
genome conditional engineering, Cre-loxP has primarily been 
applied in generating conditional transgenic mice [4]. In 
contrast, its use in producing large animals has been very 
limited. However, as the importance of pig models in 
biomedical research has increased, so has interest in producing 
conditional pig models using Cre-loxP.

Recently, transgenic pig research has been carried out using 
the Cre-loxP system [8,20–22]. In those studies, gene excision 
and insertion were successfully completed using Cre 

recombinase. Additionally, our study confirmed the viability of 
using Cre recombinase to execute gene cassette exchanges (Fig. 
1). If transgenic pigs can be generated via SCNT using cassette 
exchangeable donor cells, then various genetic functions with 
no change in expression level can be analyzed after gene 
exchange.

Dre-rox. Recently, another site-specific recombinase, Dre, was 
identified in P1-like phages. Like Cre, Dre recombinase 
recognizes the specific sequence, rox, and causes excision of 
the flanked gene. Although Dre recombinase has a similar 
structure to Cre, it does not recognize loxP sequences, 
indicating that there is no crossover-recombination between 
Cre-rox and Dre-loxP [1]. In a study, the Cre and Dre 
recombination were used to produce a double conditional gene 
expression mouse model for retinal ganglion cell labeling [30]. 
However, Dre-rox recombination in pigs has not yet been 
investigated. As a preliminary study, our research group used 
porcine fibroblasts and embryos to excise the flanked 
fluorescence gene, rox, utilizing Dre recombinase (Fig. 2). 
Dre-rox can be another valuable tool conditional gene 
regulation in pigs.

PhiC31 recombinase. Unlike Cre- and Dre-recombinase with 
various genome engineering functions, PhiC31 recombinase 
can integrate the target gene into a site-specific sequence 
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Fig. 3. Gene integration and expression by PhiC31 recombinase.
(A) Porcine fibroblasts with the attP-blasticidin gene were 
generated. AttB-DNA and PhiC31 recombinase were 
co-transfected into the fibroblasts and recombination occurred. 
(B) After recombination, the fibroblast expressed eGFP. (C) 
Recombination was confirmed by genomic PCR. 1, control 
fibroblasts; 2, attP-transfected fibroblasts; 3, recombinated 
fibroblasts by PhiC31.

region, attP. PhiC31 protein recombines attB and attP 
sequences, resulting in the gene being inserted via attB-attP 
recombination (Fig. 3). Several mice models have been 
generated using the PhiC31 integrase system. In addition, a few 
studies using phiC31 recombinase were carried out in livestock, 
particularly cattle. However, few studies involving pigs have 
been reported to date [2,41]. Therefore, we investigated the 
possibility of attB-attP recombination by PhiC31 in porcine 
cells as well. As shown in Fig. 3, DNAs (a vector DNA; attB 
containing a fluorescence gene and a vector DNA; phiC31) 
were transfected in porcine fibroblasts with attP sequences, 
selected, and confirmed by genomic polymerase chain reaction. 
Producing pig models using PhiC31 recombination research is 
still in the preliminary stage. However, hopefully it can become 
a viable option for generating conditional transgenic pigs. 

Tet-on/off. The Tet-on/off system is a powerful tool for 
understanding the relationships involved in gene expression. 
Basically, the Tet-on/off system regulates the expression of 
genes by tetracycline (i.e., doxycycline) indicating that the 
target gene expression can be on or off at specific time. 
Consequently, this system can be a useful model for 
understanding both time-dependent gene expression and 
specific gene expression (Fig. 4). Various studies of mice using 
tet-on/off models have been conducted. In addition, two pig 
studies for producing live transgenic piglets using this system 
have been carried out [13,14].

In pig studies, the Tet-on system has been applied to expression 
of the reporter gene (fluorescence protein) [13] or the 
immunological gene [14]. Even though numerous tet-on/off 
mutant mice have been produced, progress toward applying this 
system to pigs has been limited. Research has demonstrated that 
one pig model for functional genes (RANKL and CTLA-4Ig) 
was dose-dependent, meaning it was regulated by doxycycline 
supplementation [14]. 

KO

HR: HR is a classic approach to delete the endogenous gene 
using a selection marker. DNA for HR consists of three parts, a 
5’-arm, a selection marker (such as an antibiotic resistance 
gene) and a 3’-arm. To clone the DNA, the long size of the left 
or right homology arm is needed (3 kbs greater in each arm). 
Consequently, it is difficult to prepare the DNA for HR and the 
system is very inefficient. Nevertheless, several cloned KO 
piglets have been generated using this method because of the 
importance of KO pigs. Progress in this area has been still slow 
because there is the limitation to increase HR efficiency in 
porcine primary cells. After DNA endonucleases for gene 
editing emerged, HR-based KO pigs were replaced with 
genome-editing technologies, which are briefly explained in the 
next section.

DNA endonuclease: Genome-editing technologies using 
DNA endonuclease (ZFN, TALEN and CRISPR-Cas9) have 
recently been developed. These technologies are efficient 
techniques for producing KO animals, including pigs. Prior to 
development of these technologies, the low efficiencies 
associated with HR and SCNT represented a major hurdle for 
generating KO pigs.

Watanabe et al. [36] were the first to report that ZFN 
efficiently deleted the exogenous eGFP gene from porcine 
somatic cells. Subsequently, the bi-allelic KO of endogenous 
genes (GGTA1 and CMAH) was efficiently disrupted in 
somatic cells. Those cells then produced KO piglets via SCNT 
[12,17]. Even though ZFN could be efficiently applied to 
produce KO pigs, this technique has several disadvantages, 
including toxicity and off-target events [28]. Another 
genome-editing technology, DNA endonuclease (TALEN) and 
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Fig. 4. Conditional gene expression with or without doxycycline. (A) Illustration of Tet-on gene expression by doxycycline. (B) RFP 
expression (left; with doxycycline) and non-expression (right; without doxycyline) in porcine fibroblasts after transfection of tet-on RFP 
vector.

Fig. 5. Illustration of the deletion of a specific gene in the endogenous gene (CMAH) in the porcine cell line. Cas9 and sgRNA were
transfected into porcine fibroblasts and mutations were analyzed by T7E1 assay and sequencing.

CRISPR-Cas9, has recently emerged, and it has functioned 
efficiently (Fig. 5). These methods have also been used to 
rapidly produce many KO pigs [33,39]. It is expected that 

increasing numbers of KO and KI pigs will be produced in the 
near future.
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SCNT

In addition to the development of transgene expression and 
genome-editing technologies to produce mutant pig models, the 
improvement of SCNT has been studied consistently because it 
is a very practical method for generating pig models. Therefore, 
most transgenic pigs have been produced via SCNT with 
transformed cell lines via overexpression, conditional expression 
and KO/KI. However, SCNT-derived pig production involves 
epigenetic issues such as abnormalities of offspring, sudden 
death and low efficiency. Histone deacetylase inhibitors 
(HDACi) have been used to improve the SCNT approach 
[27,43]. Additionally, in vitro maturation or culture should be 
improved to produce mutants pig models more efficiently [9].

As an alternative to SCNT, microinjection, which is, the 
direct injection of DNA into in vitro fertilized embryos, should 
be considered in pigs because SCNT-derived offspring 
exhibited epigenetic abnormalities. If this process becomes 
better established, then mutant pig models without abnormal 
epigenetic issues could be produced and grown to germ-line 
fertility.

Summary

Based on a literature review and our studies, we conclude that 
interests in the use of pig models for translation research will 
increase and genome engineering will become an important 
method to produce these models. Many mutant pigs have been 
developed via gene expression and genome-editing 
technologies. In the future, more exact gene-regulated pig 
models will be generated and applied to various genetic models 
for xenotransplantation or metabolic diseases.
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