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Abstract: The antioxidative properties of a novel curcumin analogue 

(2E,6E)-2,6-bis(3,5-dimethoxybenzylidene)cyclohexanone (MCH) were assessed by 

several in vitro models, including superoxide anion, hydroxyl radical and 

1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and PC12 cell protection from 

H2O2 damage. MCH displayed superior O2
•− quenching abilities compared to curcumin and 

vitamin C. In vitro stability of MCH was also improved compared with curcumin. 

Exposure of PC12 cells to 150 µM H2O2 caused a decrease of antioxidant enzyme 

activities, glutathione (GSH) loss, an increase in malondialdehyde (MDA) level, and 

leakage of lactate dehydrogenase (LDH), cell apoptosis and reduction in cell viability. 

Pretreatment of the cells with MCH at 0.63–5.00 µM before H2O2 exposure significantly 

attenuated those changes in a dose-dependent manner. MCH enhanced cellular expression 

of transcription factor NF-E2-related factor 2 (Nrf2) at the transcriptional level. Moreover, 

MCH could mitigate intracellular accumulation of reactive oxygen species (ROS), the loss 

of mitochondrial membrane potential (MMP), and the increase of cleaved caspase-3 

activity induced by H2O2. These results show that MCH protects PC12 cells from H2O2 

injury by modulating endogenous antioxidant enzymes, scavenging ROS, activating the 

Nrf2 cytoprotective pathway and prevention of apoptosis. 
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1. Introduction 

Curcumin (diferuloylmethane, Figure 1) is isolated from the rhizome (turmeric) of the herb 

Curcuma longa L. and has been widely used in traditional Indian and Chinese medicine for the 

treatment of many diseases including inflammation, dyspesia, respiratory disorders, arthritis and  

others [1]. Curcumin has exhibited diverse pharmacological activities such as anti-carcinogenic, 

anti-inflammatory, antioxidant and antimicrobial activities [2]. Furthermore, some reports have 

suggested possible beneficial effects of curcumin on the animal models and human studies of 

Alzheimer’s disease [3]. 

Figure 1. Chemical structure of curcumin and synthesis of 

(2E,6E)-2,6-bis(3,5-dimethoxybenzylidene)cyclohexanone (MCH). 
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However, curcumin is limited in its clinical efficacy owing to its poor absorption across the gut, 

limited tissue distribution, rapid metabolism, and its subsequent elimination from the body [4]. To 

circumvent this limitation, several approaches have been carried out, including the design and 

synthesis of novel curcumin analogues [4–8]. Previous studies have demonstrated that some of those 

analogues have higher antioxidant activity than curcumin [5,9]. It was believed that the instability of 

curcumin structure was attributed to the active methylene group and β-diketone moiety [10,11]. 

Omitting the active methylene group and one carbonyl group leading to 1,4-pentadiene-3-ones, 

cyclopentanone and cyclohexanone analogues resulted in more stable compounds possessing 

antioxidative properties [12]. Oxidative stress is involved in the pathogenesis of neurodegenerative 

disorders such as Parkinson’s and Alzheimer’s diseases, and curcumin analogues have been  

proven effective in neuroprotection [3,13]. In rat pheochromocytoma PC12 cells, a model of  

neuronal cells, curcumin, demethoxycurcumin and bisdemethoxycurcumin attenuated neuronal  

cell death caused by β-amyloid-induced oxidative stress [14]. In light of the above discoveries  

and in order to highlight the interest of designing neuroprotective agent, a new curcumin analogue, 

(2E,6E)-2,6-bis(3,5-dimethoxybenzylidene)cyclohexanone (MCH, structure given in Figure 1), has 

been developed and is expected to exhibit antioxidant properties and protective effects against 

H2O2-induced cytotoxicity in PC12 cells. Further research into the development of the synthetic 

analogues has resulted in the discovery of several active molecules [15]. In the present study, we 
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evaluated the antioxidant potential of MCH by DPPH/superoxide/hydroxyl radical scavenging, 

observed its effect on the mitochondrial membrane potential (ψm), reactive oxygen species (ROS) 

generation, glutathione (GSH) levels, catalase (CAT) and superoxide dismutase (SOD) activities, as 

well as the expressions of cleaved caspase-3 activity in PC12 cells. These studies were carried out to 

assess the possible protective effects from oxidative stress by MCH on neurons, as a preliminary step 

in the understanding of its mechanism of action. 

2. Results 

2.1. Free Radical Scavenging Activities and Reducing Power of MCH 

MCH and curcumin were subjected to scavenging experiments on DPPH, superoxide anion and 

hydroxyl radicals and the results are shown in Table 1. MCH was found to be a stronger scavenger on 

superoxide anion, with a lower EC50 value of 64.78 ± 7.72 µM than curcumin (EC50 = 88.09 ± 5.97 µM) or 

the positive control vitamin C (EC50 = 100.93 ± 4.10 µM). However, MCH exhibited weaker 

scavenging capacity on DPPH and hydroxyl radical than those of curcumin. 

Table 1. Free radical scavenging activities and reducing power of MCH (a). 

Compound 
EC50 (µM) (b) 

DPPH Superoxide anion Hydroxyl radical 

MCH 466.79 ± 30.50 ** 64.78 ± 7.72 ** 94.03 ± 1.12 ## 
Curcumin 14.24 ± 0.60 88.09 ± 5.97 ** 58.84 ± 3.14 
Vitamin C 13.00 ± 0.37 100.93 ± 4.10 n.d. (c) 

(a) Data are expressed as the mean ± SD, n = 3; (** p < 0.01 MCH or curcumin versus vitamin; ## p < 0.01 

MCH versus curcumin); (b) EC50: the effective concentration at which the antioxidant activity was 50%; 

1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion or hydroxyl radicals were scavenged by 50%;  
(c) n.d. = not detected. 

Figure 2. Stability comparison of MCH and curcumin measured by visible absorption in 

the absence or presence of 0.1% FBS. A0 means absorption of the solution measured at  

410 nm at 0 min; A means absorption of the solution measured at 410 nm. Data presented 

are the means ± SD of results from three independent experiments.  
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2.2. Stability of MCH and Curcumin 

To investigate the stability of MCH and curcumin in physiological media, the absorption variation 

was measured in phosphate-buffered solutions (pH 7.4) in the presence or absence of 0.1% fetal 

bovine serum (FBS) under daylight condition (Figure 2). It was found more than 38.8% curcumin 

degraded very rapidly in the absence of 0.1% FBS within 120 min. In the presence of 0.1% FBS, 

curcumin was a little stable. In contrast, the absorption of MCH remained almost unchanged, no matter 

0.1% FBS was present or absent, indicating that the monoketone-linked curcumin analogue MCH was 

much more stable during the measurement. 

2.3. Cytotoxicity of MCH in PC12 Cells 

After 24 h treatment with MCH at concentrations between 0.63 and 5 µM, the reduction in cell 

viability was no greater than 9% (Figure 3). At the highest concentration (30 µM) evaluated, the 

reduction in cell viability was 21.8%. There is no significant difference in cytotoxicity induced by 

MCH and curcumin in PC12 cells. 

Figure 3. Effects of MCH and curcumin on PC12 cells. Cells were treated with 0.63–30 µM 

MCH or curcumin for 24 h. Data presented are the means ± SD of results from three 

independent experiments. 
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2.4. MCH Protects PC12 Cells against H2O2-Induced Cytotoxicity 

Compared with normal PC12 cells, cells exposed to 150 µM H2O2 for 3 h exhibited morphological 

alteration, including a marked decrease in cell number, cell shrinkage and membrane blebbing  

(Figure 4A). The pretreatment of 5 µM MCH or 10 µM curcumin could mitigate such cell damages. 

As estimated by MTT assay, cell viability was markedly decreased to 46.2% after a 3 h exposure to 

150 µM H2O2. However, when cells were pre-incubated with MCH (0.63–10.00 µM) for 30 min, cell 

toxicity was significantly attenuated in a dose-dependent manner (Figure 4B). Pretreatment of PC12 

cells with MCH (0.63–10.00 µM) and 10 µM curcumin for 30 min significantly elevated the cell 

viability of PC12 cells to a range of 60.9%–75.4% and 72.7%, respectively. A 50% reduction in 

H2O2-induced cell death (EC50) was achieved with the reference substance curcumin at 9.85 ± 0.66 µM 

and the positive control vitamin E at 13.08 ± 0.71 µM, respectively. MCH possessed remarkable PC12 

protective capacities, with EC50 values of 7.02 ± 0. 32 µM (data not shown). 
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Figure 4. The protective effect of MCH on H2O2-induced damage in PC12 cells. (A) Cell 

morphology, Original magnification: ×100; (B) Cell viability was determined by the MTT 

reduction assay. Cells were pretreated with 0.63–10.00 μM MCH or 10.00 μM vitamin E  

(Vit E), 10.00 μM curcumin (Cur) for 30 min and then incubated in the presence of  

150 μM H2O2 for 3 h. The control group was treated with 0.2% (v/v) DMSO under the 

same culture conditions. Data presented are the means ± SD of results from three 

independent experiments (# p < 0.01 versus control; * p < 0.05 and ** p < 0.01 versus 

H2O2-treated cells). 

 

To further investigate the protective effects of MCH, the release of LDH, another indicator of cell 

toxicity, was performed. As shown in Figure 5, a significant increase in LDH release was observed 

after 3-h exposure to 150 µM H2O2. MCH attenuated markedly this increase. Our results clearly 

indicated that H2O2-induced cytotoxicity in PC12 cells was attenuated in the presence of MCH. 

Figure 5. Inhibition of LDH release by MCH. Cells were pretreated with 0.63–5.00 µM 

MCH or 10.00 µM vitamin E (Vit E), 10 µM curcumin (Cur) for 30 min and then 

incubated in the presence of 150 µM H2O2 for 3 h. The control group was treated with 

0.2% (v/v) DMSO under the same culture conditions. Data presented are the means ± SD of 

results from three independent experiments (## p < 0.01 versus control; * p < 0.05 and  

** p < 0.01 versus H2O2-treated cells). 
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Figure 6. Effect of MCH on the MDA level in PC12 cells. Cells were pretreated with 

0.63–5.00 μM MCH or 10 µM vitamin E (Vit E) for 30 min and then incubated in the 

presence of 150 µM H2O2 for 3 h. The control group was treated with 0.2% (v/v) DMSO 

under the same culture conditions. Data presented are the means ± SD of results from three 

independent experiments (## p < 0.01 versus control; * p < 0.05 and ** p < 0.01 versus 

H2O2-treated cells). 

 

Figure 7. Effect of MCH on the activity of SOD (A); CAT (B) and intracellular GSH level 

(C) in PC12 cells. Cells were pretreated with 0.63–5.00 µM MCH or 10.00 µM vitamin E 

(Vit E) for 30 min and then incubated in the presence of 150 µM H2O2 for 3 h. The control 

group was treated with 0.2% (v/v) DMSO under the same culture conditions. Data 

presented are the means ± SD of results from three independent experiments (## p < 0.01 

versus control; * p < 0.05 and ** p < 0.01 versus H2O2-treated cells). 
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2.5. MCH Reduced Lipid Peroxidation and Rescued Loss of Antioxidant Enzyme Activities in 

H2O2-Treated PC12 Cells 

Treatment of PC12 cells with 150 µM H2O2 for 3 h caused an increase of the intracellular MDA 

level, while pre-incubation of cells with 0.63–5.00 µM MCH markedly attenuated this increase  

(Figure 6). Additionally, the exposure of PC12 cells to 150 µM H2O2 caused a decrease in the activity 

of SOD, CAT (Figure 7A,B), and GSH level (Figure 7C), respectively. Pretreatment with MCH 

significantly attenuated the decrease of GSH level and the activity of SOD and CAT in a 

dose-dependent manner. 

2.6. MCH Prevents H2O2-Induced ROS Generation 

To investigate whether MCH could prevent H2O2-induced ROS generation and resulting oxidative 

stress, we next measured the ROS production in the cells by using the fluorescence probe DCFH-DA. 

Exposure of the cells to 150 µM H2O2 for 3 h significantly increased the intracellular ROS level to 

426.1% of the control (Table 2). PC12 cells pretreated with 0.63–5.00 µM MCH before H2O2 exposure 

markedly reduced the ROS levels in PC12. 

Table 2. Effects of MCH on the changes of the MMP and ROS level in PC12 Cells (a). 

Treatment ROS (percentage of the control %) MMP (percentage of the control %) 

Control (0.2% DMSO) 100 ± 7.35 100 ± 7.58 
H2O2-only (150 µM) 426.09 ± 36.20 ## 48.32 ± 1.14 ## 

MCH (0.63 µM) + H2O2 294.78 ± 57.32 ** 74.84 ± 5.05 ** 
MCH (1.25 µM) + H2O2 269.18 ± 1.17 ** 74.01 ± 4.72 ** 
MCH (2.50 µM) + H2O2 248.70 ± 22.55 ** 79.78 ± 1.55 ** 
MCH (5.00 µM) + H2O2 231.59 ± 12.90 ** 82.01 ± 5.53 ** 
Vit E (10.00 µM) + H2O2 241.16 ± 4.06 ** 86.64 ± 3.95 ** 

(a) Cells were pretreated with 0.63–5.00 μM MCH or 10.00 µM vitamin E (Vit E) for 30 min and then 

incubated in the presence of 150 µM H2O2 for 3 h. The control group was treated with 0.2% (v/v) DMSO 

under the same culture conditions. Data presented are the means ± SD of results from three independent 

experiments (## p < 0.01 versus control; ** p < 0.01 versus H2O2-treated cells).  

2.7. MCH Protected PC12 Cells against H2O2-Induced Apoptosis 

To test whether H2O2-induced cell death via apoptosis, AO/EB staining was used. After 3 h 

treatment with 150 µM H2O2 alone, chromatin in most of PC12 cells was stained by orange, indicating 

that cells were apoptotic (Figure 8A). The treatment of MCH at 1.25–5.00 µM on H2O2-treated PC12 

cells significantly reduced the number of stained cells. The percentage of apoptotic cells treated with 

150 µM H2O2 was approximately 21.8% by the AV/PI assay (Figure 8B). MCH (1.25–5.00 µM) and 

vitamin E (10 µM) significantly attenuated cell apoptosis induced by H2O2 to 8.3%–13.5% and  

10.0%, respectively. 
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Figure 8. Inhibitory effect of MCH on H2O2-induced apoptosis in PC12 cells.  

(A) Morphological assessment by acridine orange-ethidium bromide (AO/EB) staining 

under the microscope (×100); (B) AV-FITC/PI analysis by flow cytometry method showed 

the percentage of apoptotic cells. Cells were pretreated with 0.63–5.00 μM MCH or  

10.00 μM vitamin E (Vit E) for 30 min and then incubated in the presence of 150 μM H2O2 

for 3 h. The control group was treated with 0.2% (v/v) DMSO under the same culture 

conditions. Data presented are the means ± SD of results from three independent 

experiments (## p < 0.01 versus control; * p < 0.05 and ** p < 0.01 versus H2O2-treated cells).  

 

 

2.8. MCH Prevented Loss of MMP in PC12 Cells 

A decreasing MMP (ψm) is associated with mitochondrial dysfunction linked to apoptosis [16]. 

Thus, we next evaluated the effect of MCH on MMP of PC12 cells with flow cytometry using the 

ψm-dependent fluorescent rhodamine123. After incubation of PC12 cells with 150 µM H2O2 for 3 h, 

the MMP level was rapidly reduced to 48.32% ± 0.41% of the control (Table 2). Pretreatment with 

MCH at 0.63–5.00 µM or vitamin E at 10.00 µM significantly reduced the changes in MMP induced 

by H2O2. MCH increased the levels of MMP by 26.5%–33.7%, while vitamin E increased the level of 

MMP by 38.3%, as compared to the PC12 cells treated with H2O2, which indicated that MCH 

protected cells against the H2O2-induced lowering of MMP in PC12 cells. 
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2.9. MCH Inhibited H2O2-Induced Expression of Cleaved Caspase-3 in PC12 Cells 

Cleaved caspase-3 is the key apoptotic executive protein, which could be activated by both 

death-receptor and mitochondrial pathways [17]. Figure 9 showed that H2O2 treatment significantly 

up-regulated the expression of caspase-3, and this was markedly reduced by pretreatment with MCH 

(1.25–5.00 µM) or vitamin E (10 µM). 

Figure 9. Effect of MCH on the expression of cleaved caspase-3 levels in PC12 cells. Cells 

were pretreated with MCH at 1.25–5.00 μM or 10.00 μM vitamin E (Vit E) for 30 min and 

then incubated in the presence of 150 μM H2O2 for 3 h. The control group was treated with 

0.2% (v/v) DMSO under the same culture conditions. (A) The expression of cleaved 

caspase-3. β-actin was used for normalization and verification of protein loading;  

(B) Quantitative cleaved caspase-3 expression after normalization to β-actin. Data 

presented are the means ± SD of results from three independent experiments (## p < 0.01 

versus control; * p < 0.05 and ** p < 0.01 versus H2O2-treated cells). 

 

2.10. MCH Promoted the Expression of Nrf2 in PC12 Cells 

Curcumin does not only have the ability to scavenge free radicals, but most importantly, it can 

strongly induce the expression of many antioxidant genes in mammalian cells including the activation 

of the transcription factor NF-E2-related factor 2 (Nrf2), a master regulator of intracellar detoxifying 

systems [18]. To determine the effects of MCH on Nrf2 gene transcription, Nrf2 mRNA expression 

was analyzed by semi-quantitative RT-PCR (Figure 10). The mRNA expression of Nrf2 was 

significantly induced by the treatment with curcumin or MCH at 5 µM. After incubation of PC12 cells 

with 150 µM H2O2 for 24 h, higher expression level of Nrf2 gene was retained with the pretreatment  

of curcumin or MCH at 5 µM, which was approximately 1.9, 1.6 fold (versus H2O2-only  

treatment), respectively. 
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Figure 10. Effects of MCH on the expression of Nrf2 genes. PC12 cells were treated for  

24 h with 150 μM H2O2 in the absence/presence of 5 μM of Cur/MCH pretreatment  

(30 min). The expression of Nrf2 was determined by semi-quantitative RT-PCR. GAPDH 

was used as an internal control in both experiments. Ratio, band densitometric of Nrf2 

gene/band densitometric of GAPDH. (** p < 0.01 versus control and ## p < 0.01 versus 

H2O2-treated cells). 

 

3. Discussion 

Curcumin, a natural phenolic diarylheptanoid was reported to have neuroprotective effects via 

reducing oxidative stress [3]. The potent chain-breaking antioxidant activity of curcumin has currently 

received remarkable interest for its typical radical trapping ability [19]. Although a lot of work has 

been reported on the potential use of curcumin as an antioxidant, the search for new derivatives or 

analogues is ongoing to develop compounds that have a better antioxidant activity [5]. In our present 

study, a novel curcumin analogue MCH, proved effective in superoxide anion scavenging and PC12 

cell protection from oxidative damage. Although MCH was less potent than curcumin in scavenging 

capacity on DPPH and hydroxyl radical by chemical reaction in vitro, it exhibited significant 

protective effects on PC12 cells against oxidative damage with an EC50 value of 7.02 ± 0. 32 µM, 

similarly effective as curcumin (EC50 = 9.85 ± 0.66 µM). Moreover, MCH and curcumin exhibited a 

similar slight cytotoxic effect at concentrations greater than 30 µM (Figure 3). As the presence of the 

active methylene group and β-diketone moiety contributed to the instability of curcumin under 

physiological conditions [12], we adopted the chemical synthesis of MCH, a mono-carbonyl analogue 

of curcumin by eliminating the unstable methylene group and β-diketone moiety, which showed a 

much better stability in the test (Figure 2). The distinct protective ability against oxidative damage as 

well as the much improved stability makes the novel curcumin analogue MCH a promising antioxidant. 

Cell culture of PC12 cells is commonly used as a screening model for testing the prevention of 

ROS-induced neuronal death [14]. H2O2 can generate detrimental hydroxyl radicals and increase the 

ROS levels in cells. In this study, treatment of PC12 cells with 150 µM H2O2 for 3 h caused significant 

increase of the intracellular ROS level (Table 2), elevation of oxidative stress characterized by MDA 

production (Figure 6) and LDH release (Figure 5). Although MCH exhibited weaker scavenging 

capacity on DPPH and hydroxyl radicals in vitro (Table 1), it markedly reduced the ROS levels in 
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PC12 cells after the pretreatment at 0.63–5.00 µM. In addition to possible direct free radical 

scavenging, MCH may have indirect effects, such as the modulation of endogenous antioxidant 

enzymes to reduce ROS levels. Among the most important defenses against oxygen radicals are CAT 

and SOD enzymes. SOD catalyses dismutation of the superoxide anion into H2O2 and CAT detoxifies 

H2O2 to oxygen and water [20]. The combined action of these two enzymes reduces ROS levels in 

cells and repairs oxidized injury on membrane components. It was reported that SOD and CAT 

activities in PC12 cells were reduced after the treatment of H2O2 [21]. In this study, when PC12 cells 

were pre-incubated with MCH, a rescue on loss of SOD and CAT activities as well as cell survival was 

observed in H2O2-treated PC12 cells (Figures 4 and 7). On the other hand, GSH is another key 

regulator of intracellular redox potential. It serves as an electron donor to unstable ROS and performs 

cell-protective antioxidant role, cycling between its reduced form GSH and oxidized form glutathione 

disulfide (GSSG). Many studies have shown that GSH depletion is associated with ROS generation, 

mitochondrial dysfunction and apoptosis induction [22,23]. Our study showed that PC12 cells treated 

with H2O2 caused the decrease in GSH content by 62.6%, however, pretreatment of PC12 cells by 

MCH at 5 µM resulted in a 3.3-fold increase in GSH level compared to the H2O2-treated cells  

(Figure 7C). This result indicated that GSH metabolism could be regulated by MCH as another 

detoxifying system to prevent damage caused by ROS in PC12 cells. 

NF-E2-related factor 2 (Nrf2), a cap “n” Collar (CNC) transcription factor, is a key regulator of an 

expansive set of antioxidant response element (ARE)-mediated gene expression to remove ROS [24]. 

Curcumin was found to have the capacity to upregulate Nrf2 expression and protect the rat brain from 

focal ischemia [18]. Bisdemethoxycurcumin is more active than curcumin in inducing Nrf2-mediated 

induction of heme oxygenase-1 (HO-1) [25]. A novel water soluble curcumin derivative (NCD) could 

induce HO-1 in the pancreatic and cardiac tissues of the diabetic rats and exhibit anti-diabetic  

activities [26]. The α,β-unsaturated diketone moiety in curcumin is a Michael reaction acceptor,  

which can activate Nrf2 followed by up-regulation of HO-1 expression and induce the phase-II  

response [27,28]. Jeong et al. (2006) also suggested that the presence of methoxy groups in the ortho 

position on the aromatic ring of curcuminoids was essential to enhance HO-1 expression. In our newly 

synthesized curcumin analog MCH, two Michael reaction acceptors (α,β-unsaturated diketone group) 

and methoxy groups in the ortho position on the aromatic ring were remained (Figure 1). We found 

that MCH and curcumin both significantly increased mRNA expression of Nrf2 after 30 min of 

incubation (Figure 10). Under the oxidative injury caused by H2O2, MCH upregulated cellular Nrf2 

expression at the transcriptional level, suggesting a possible involvement of the Nrf2 pathway in 

MCH-induced cytoprotective effect in PC12 cells. 

Excessive production of ROS causes oxidative damage to cellular proteins, lipids, nucleic acids and 

ultimately leads to an apoptotic or necrotic cell death pathway in several cell types [29]. In this study, 

treatment of PC12 cells with 150 µM H2O2 for 3 h caused a marked apoptosis and decrease in cell 

survival (Figures 4 and 8). MCH could attenuate cell apoptosis and reduce cell death. It was reported 

that the increase of ROS may impair mitochondrial function, leading to a disruption of MMP and the 

release of apoptosis-inducing factors, which activate the caspase cascade to apoptosis [30]. In the 

present study, treatment of PC12 cells with H2O2 caused the intracellular accumulation of ROS and 

further induced the loss of MMP (Table 2). The subsequent disruption of MMP caused an increase in 

cleaved caspase-3 activities and eventually apoptosis (Figure 9). However when PC12 cells were 
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pretreated with MCH, the accumulation of ROS, the loss of MMP, the increase of cleaved caspase-3 

activities and apoptosis were attenuated. These results suggested that ROS scavenging effects of MCH 

might be important in reducing the level of apoptosis and the cell death induced by H2O2. 

4. Materials and Methods 

4.1. Materials 

The PC12 cell line was purchased from the Chinese Type Culture Collection (Shanghai Institute  

of Cell Biology, Chinese Academy of Science, Shanghai, China). Curcumin, 

1,1-diphenyl-2-picrylhydrazyl (DPPH), rhodamine123 (Rh123), nicotinamide adenine 

dinucleotide-reduced (NADH), α-tocopherol, nitroblue tetrazolium (NBT) and phenazine  

methosulfate (PMS), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and 

N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). 2-Thiobarbituric acid (TBA), trichloroacetic acid (TCA), hydrogen peroxide 

(H2O2), and ascorbic acid from Sinopharm Chemical Reagent Company (Shanghai, China). RPMI 

1640 medium was purchased from Gibco (Carlsbad, CA, USA). Calf serum was purchased from 

Hangzhou Sijiqing Co., Ltd. (Hangzhou, China). The kits for lactate dehydrogenase (LDH) activity, 

GSH activity, malondialdehyde (MDA) activity, SOD activity and ROS assay were purchased from 

Beyotime Institute of Biotechnology (Shanghai, China). Annexin V (AV)-FITC/propidium iodide (PI) 

kit was purchased from KeyGEN (Nanjing, China). The cleaved caspase-3 and β-actin antibody was 

purchased from Sangon Biotech Co., Ltd. (Shanghai, China). All other chemicals were analytical 

reagent (AR)-grade. 

4.2. Synthesis of MCH 

MCH was synthesized according to Figure 1. Cyclohexanone (1.1 g, 0.011 mol) and 

3,5-dimethoxybenzaldehyde (3.6 g, 0.022 mol) was added into 10 mL of 10% NaOH in ethanol 

solution, and to make sure the reaction was complete; the solution was stirred overnight at room 

temperature. Ethanol was removed in vacuo and ethyl acetate (20 mL × 3) was added to extract, the 

organic potions was washed by H2O and brine, and dried by anhydrous sodium sulfate. The crude 

product was obtained by removing solution in vacuo, which was purified by silica chromatography 

column (petroleum ether:ethyl acetate = 15:1 (v/v)), to obtain the product as pale yellow needle-like 

crystals 3.55 g, yield 81.8%, m.p.: 135.7~136.5 °C. 1H-NMR (400 MHz, CDCl3), δ (ppm): 7.71  

(s, 2H, =CH), 6.60 (d, 4H, J = 2.1 Hz, ArH), 6.46 (t, 2H, J = 2.1 Hz, ArH), 3.82 (s, 12H, OCH3), 2.92 

(t, 4H, J = 5.5 Hz, CH2), 1.78 (quint, 2H, J = 6.6 Hz, CH2). 
13C-NMR (400 MHz, CDCl3), δ (ppm): 

190.525, 160.833, 137.995, 137.243, 136.866, 108.592, 101.041, 55.702, 28.813, 23.181. HRMS 

(AP-ESI) m/z Calcd. For C24H26O5 [M + H]+ 395.1853, Found 395.1869. 

4.3. DPPH Radical Scavenging Assay 

DPPH radical scavenging activity was measured as described in our previous work [31]. 

α-Tocopherol and vitamin C were used as positive control and the sample solution without DPPH was 

used as sample blank. 
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4.4. Superoxide Radical Scavenging Assay 

The superoxide radical scavenging ability was measured as described in our pervious work [32]. 

The color reaction of superoxide radicals and nitroblue tetrazolium (NBT) was detected at 560 nm 

using a microplate reader (Molecular Devices, Sunnyvale, CA, USA). Vitamin C was used as the 

positive control in this experiment. 

4.5. Hydroxyl Radical Scavenging Assay 

The hydroxyl radical scavenging activity was measured using the Fenton reaction assay as 

described in our previous work [31]. Curcumin was used as a reference compound. 

4.6. Stability Studies in Vitro 

The stability of the tested compounds was measured according to the procedure of Fang et al. [33] 

with some modification. MCH and curcumin were dissolved in 100% DMSO at 5 mM for the 

measurement. When measurement began, 80 µL of the tested compound solution was diluted with  

4 mL of 1.5 mM phosphate-buffered solution (pH 7.4). The degradation process was followed by 

visible absorption spectroscopy at 410 nm in a rectangular quartz cuvette with a 1 cm optical path 

length at 37 °C on a Shimadzu 2600 UV/visible spectrophotometer in the presence or absence of  

0.1% FBS. The absorption of the solution measured at 0 min was recorded as A0; the absorption of  

the solution measured at other time was recorded as At. All results are representative of three 

independent experiments. 

4.7. Culture of PC12 Cells 

PC12 cells were cultured in RPMI 1640 medium (pH 7.4) with 10% calf serum at 37 °C under  

5% CO2. Before treatment, cells were plated at appropriate density on 96- or 6-well culture plates and 

cultured for 24 h. In all experiments, cells were pretreated for 30 min with indicated concentrations of 

MCH or vitamin E for 30 min, and later, 150 µM H2O2 was added to the medium for 3 h. MCH was 

not removed after the addition of H2O2. MCH was freshly prepared as stock solution in 

dimethylsulfoxide (DMSO) and diluted with RPMI 1640 medium before every experiment. DMSO 

(0.2%, v/v) had no protective or toxic effect by itself. The control group was performed in the presence 

of 0.2% (v/v) DMSO under the same culture conditions. 

4.8. Measurement of Cell Viability 

To investigate the cytotoxicity of MCH and curcumin in PC12 cells, cells (6.0 × 103 per well) were 

seeded into 96-well plates and exposed to various concentration of MCH and curcumin for 20 h. 10 µL 

MTT at 5 mg/mL was added to each well. The cells were then incubated at 37 °C for another 4 h and 

then 10% sodium dodecyl sulfate (SDS) in 0.01 M HCl was added to each well. The absorbance was 

detected at 570 nm with a microplate reader KLx808 (Bio-Tek, Norcross, GA, USA). Cell viability is 

expressed as a percentage of untreated cells. 
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To investigate the protective effect of MCH on H2O2-induced damage in PC12 cells, cells were 

pretreated with 0.63–5.00 µM MCH or 10 µM Vit E, 10 µM curcumin for 30 min and the control 

group was treated with 0.2% (v/v) DMSO under the same culture conditions. Then cells were 

incubated in the presence of 150 µM H2O2 for 3 h. The protection of the compound on H2O2-induced 

damage in PC12 cells was expressed as an EC50, defined as the concentration required for 50% 

reduction in H2O2-induced cell death compared with control cells and determined from at least three 

independent experiments. 

4.9. Lactate Dehydrogenase (LDH) Assay 

PC12 cells in 96-well plates were cultured and treated according to the procedures described above. 

After the treatment, the medium were harvested for the spectrophotometrical determination of the 

amount of LDH released by cells using an assay kit (Nanjing Jiancheng Bioengineering Institute, 

Nanjing, China) according to the protocol of the manufacturer, and the absorbance of the samples was 

read at 490 nm. 

4.10. Measurement of Intracellular ROS Accumulation 

The production of intracellular ROS was quantified using a DCFH-DA assay [34]. PC12 cells were 

loaded with 10 µM DCFH-DA and incubated at 37 °C for 30 min. And then washed three times with 

PBS (0.1 M, pH 7.4) and treated with MCH for 30 min, followed by the addition of 150 µM H2O2. 

After 3 h of incubation, the cells were harvested and suspended in PBS. The fluorescence intensity was 

measured by a flow cytometer Beckman-Coulter FC500 (Brea, CA, USA) at an excitation wavelength 

of 488 nm and an emission wavelength of 530 nm. 

4.11. Assays for GSH Content and Antioxidant Enzymes 

To determine GSH level and the activity of CAT and SOD, PC12 cells (5 × 105 cells/mL) were 

plated in culture plates and cultured for 24 h. After the treatments, cells were washed twice in ice-cold 

PBS and homogenized. The homogenate was centrifuged at 10,000 rpm for 10 min at 4–8 °C. The 

supernatants were collected for the assay. The catalase activity was assessed according to the method 

described by Cohen et al. [35]. The activities of SOD and the content of GSH were all determined by 

using assay kits (Beyotime Institute of Biotechnology, Haimen, China). Protein content was measured 

by the Bradford method using bovine serum albumin as standard [36]. 

4.12. Measurement of Mitochondrial Membrane Potential (MMP) 

Alteration in MMP was analyzed by flow cytometry using the Rh123 fluorescent dye as previously 

described [37]. Briefly, cells were resuspended in PBS (0.1 M, pH 7.4), incubated with Rh123  

(10 mM) at 37 °C for 30 min, washed twice with PBS (0.1 M, pH 7.4). The cellular fluorescence 

intensity was quantified using flow cytometry Beckman-Coulter FC500 (Brea, CA, USA) at an 

excitation wave-length of 480 nm and an emission wavelength of 530 nm. Cellular mitochondrial 

membrane potential was expressed as a percentage of control cells. 
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4.13. Apoptosis Analysis by AO/EB and Annexin V-FITC/PI Staining 

Apoptotic morphology was investigated by AO and EB staining [31], cells were harvested and 

washed twice with PBS (0.1 M, pH 7.4) after the treatment and then stained with 100 µg/mL AO and 

EB for five min. Nuclei were visualized and photographed under a fluorescent microscope Olympus 

CKX41 (Tokyo, Japan). 

Cell Apoptosis was also observed under annexin V-FITC/PI Staining. The treated cells were 

washed twice with ice-cold PBS (0.1 M, pH 7.4). Cells were resuspended in 500 µL of 1× binding 

buffer, 5 µL annexin V-FITC added, 5 µL PI, and then incubated at room temperature for 15 min in 

the dark. The cells were analyzed by a flow cytometry Beckman-Coulter FC500 (Brea, CA, USA). 

4.14. Analysis of Cleaved Caspase-3 Expression with Western Blot 

Cells were harvested, washed in PBS (0.1 M, pH 7.4), centrifuged, and resuspended in cell lysis 

solution containing 20 mM Tris (pH 7.5), 150 mM NaCl, 1% Triton X-100 and several protein 

inhibitors such as sodium pyrophosphate, β-glycerophosphate, EDTA, Na3PO4 and leupeptin 

(Beyotime Institute of Biotechnology, Haimen, China). The protein concentration of each extract was 

determined by the bicinchoninic acid (BCA) assay [38]. Western blot was performed according to the 

procedure of Towbin et al. [39] with some modification. Cell extracts (60 µg protein/lane) were 

separated by electrophoresis on 12% SDS-polyacrylamide gels. Proteins were subsequently transferred 

to a nitrocellulose membrane, which was then incubated with 5% skimmed milk in Tris-buffered saline 

with 0.1% Tween 20 (TBST) for 1 h at room temperature. Afterward, the membranes were incubated 

with the primary antibodies (rabbit monoclonal anti-cleaved caspase-3 (1:100) and anti-β-actin 

(1:100)) overnight at 4 °C. After washing with TBST, membranes were then incubated with 

FITC-labeled secondary antibodies (Beyotime Institute of Biotechnology, Haimen, China), and the 

signal was read with an Odyssey® Western Blot Analysis system (Li-COR Biosciences, Lincoln, NE, 

USA). The signal intensity of primary antibody binding was quantitatively analyzed with Sigma Scan 

Pro 5 (Systat Software Inc., San Jose, CA, USA) 

4.15. Semi-Quantitative RT-PCR Analysis 

RT-PCR was used to analyze the level of Nrf2 mRNA. Total RNA was isolated from 5 × 106 

treated PC12 cells at logarithmic phase by using RNAiso Plus (Takara, Shiga, Japan) according to the 

manufacturer’s instructions. Forward and reverse primers were 5'-CCATTTACGGAGACCCAC-3' 

and 3'-CTTATTTCAACGGCGAGT-5' for Nrf2, 5'-AAATGGGTGATGCTGGTG-3' and 

3'-TGAGCGAGTTCTAACAGTCG-5' for GAPDH [40]. Reverse transcription used reagents from 

Promega following the manufacturer’s instructions. The RT-PCR products were separated on 1.2% 

agarose gel and the intensity of each band was quantified using SynGene software (SynGene, 

Cambridge, UK) and expressed in arbitrary units (GeneGenius Super 12, Syngene, Cambridge, UK). 
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4.16. Statistical Analysis 

The experimental date was expressed as means ± standard deviations. One-way analysis of variance 

(ANOVA) was carried out to determine significant differences between the means by SPSS (version 11.0, 

SPSS Inc. Chicago, IL, USA). 

5. Conclusions 

In summary, MCH, a mono-carbonyl analogue of curcumin was synthesized simply and effectively. 

MCH exhibited better protective ability against H2O2-induced oxidative damage in PC12 cells than 

curcumin and furthermore, the in vitro stability of MCH is also improved compared with curcumin. 

The protective effect was, at least in part, attributed to its scavenging activity on superoxide anion, the 

prevention of GSH loss, the ability of modulating endogenous antioxidant enzymes and the possible 

involvement of the Nrf2 pathway. We propose that MCH attenuates H2O2-induced apoptosis through 

direct and indirect scavenging of ROS, leading to inhibition of the mitochondria-mediated apoptotic 

pathway. Our results suggest the potential for MCH to be used in treating diseases in which free 

radical and oxidative damage are involved. 

Acknowledgments 

The authors are grateful to the Soochow Scholar Program (No. 14317363) and the projects 

sponsored by the NNSF (No. 81273487), PAPD and SRF for ROCS (No. K513201011) for financial 

support of this work. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin’’: From kitchen to 

clinic. Biochem. Pharmacol. 2008, 75, 787–809. 

2. Strimpakos, A.S.; Sharma, R.A. Curcumin: Preventive and therapeutic properties in laboratory 

studies and clinical trials. Antioxid. Redox Signal. 2008, 10, 511–549. 

3. Hamaguchi, T.; Ono, K.; Yamada, M. Curcumin and Alzheimer’s disease. CNS Neurosci. Ther. 

2010, 16, 285–297. 

4. Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: 

Problems and promises. Mol. Pharm. 2007, 4, 807–818. 

5. Youssef, K.M.; El-Sherbeny, M.A.; El-Shafie, F.S.; Farag, H.A.; Al-Deeb, O.A.; Awadalla, S.A. 

Synthesis of curcumin analogues as potential antioxidant, cancer chemopreventive agents.  

Arch. Pharm. 2004, 337, 42–54. 

6. Amolins, M.W.; Peterson, L.B.; Blagg, B.S.J. Synthesis and evaluation of electron-rich curcumin 

analogues. Bioorg. Med. Chem. 2009, 17, 360–367.  



Int. J. Mol. Sci. 2014, 15 3986 

 

7. Lee, K.H.; Chow, Y.L.; Sharmili, V.; Abas, F.; Alitheen, N.B.; Shaari, K.; Israf, D.A.;  

Lajis, N.H.; Syahida, A. BDMC33, A curcumin derivative suppresses inflammatory responses in 

macrophage-like cellular system: Role of inhibition in NF-κB and MAPK signaling pathways.  

Int. J. Mol. Sci. 2012, 13, 2985–3008.  

8. Lee, K.H.; Abas, F.; Alitheen, N.B.; Shaari, K.; Lajis, N.H.; Ahmad, S. A curcumin derivative, 

2,6-bis(2,5-dimethoxybenzylidene)-cyclohexanone (BDMC33) attenuates prostaglandin E2 

synthesis via selective suppression of cyclooxygenase-2 in IFN-γ/LPS-stimulated macrophages. 

Molecules 2011, 1, 9728–9738.  

9. Bhullar, K.S.; Jha, A.; Youssef, D.; Rupasinghe, H.P. Curcumin and its carbocyclic analogs: 

Structure-activity in relation to antioxidant and selected biological properties. Molecules 2013, 10, 

5389–5404.  

10. Wang, Y.J.; Pan, M.H.; Cheng, A.L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin 

in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997, 

15, 1867–1876. 

11. Liang, G.; Li, X.; Chen, L.; Yang, S.L.; Wu, X.D.; Studer, E.; Gurley, E.; Hylemon, P.B.;  

Ye, F.Q.; Li, Y.R.; et al. Synthesis and anti-inflammatory activities of mono-carbonyl analogues 

of curcumin. Bioorg. Med. Chem. Lett. 2008, 18, 1525–1529. 

12. Sardjiman, S.S.; Reksohadiprodjo, M.S.; Hakim, L.; van der Goot, H.; Timmerman, H. 

l,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and 

structure-activity relationship. Eur. J. Med. Chem. 1997, 32, 625–630. 

13. Ringman, J.M.; Frautschy, S.A.; Cole, G.M.; Masterman, D.L.; Cummings, J.L. A potential role 

of the curry spice curcumin in Alzheimer’s disease. Curr. Alzheimer Res. 2005, 2, 131–136. 

14. Kim, D.S.; Park, S.Y.; Kim, J.K. Curcuminoids from Curcuma longa L. (Zingiberaceae) that 

protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from 

βA(1-42) insult. Neurosci. Lett. 2001, 303, 57–61. 

15. Xu, Y-Y.; Cao, Y.; Ma, H.K.; Li, H-Q.; Ao, G.-Z. Design, synthesis and molecular docking of 

α,β-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with 

antiproliferative activity. Bioorg. Med. Chem. 2013, 21, 388–394. 

16. Chipuk, J.E.; Bouchier-Hayes, L.; Green, D.R. Mitochondrial outer membrane permeabilization 

during apoptosis: The innocent bystander scenario. Cell Death Differ. 2006, 13, 1396–1402. 

17. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001, 15, 2922–2933. 

18. Yang, C.; Zhang, X.; Fan, H.; Liu, Y. Curcumin upregulates transcription factor Nrf2, HO-1 

expression and protects rat brains against focal ischemia. Brain Res. 2009, 1282, 133–141. 

19. Barclay, L.R.C.; Vinqvist, M.R.; Mukai, K.; Goto, H.; Hashimoto, Y.; Tokunaga, A.; Uno, H. On 

the antioxidant mechanism of curcumin: Classical methods are needed to determine antioxidant 

mechanism and activity. Org. Lett. 2000, 2, 2841–2843. 

20. Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 

1979, 59, 527–605. 

21. Tusi, S.K.; Ansari, N.; Amini, M.; Amirabad, A.D.; Shafiee, A.; Khodagholi, F. Attenuation of 

NF-κB and activation of Nrf2 signaling by 1,2,4-triazine derivatives, protects neuron-like PC12 

cells against apoptosis. Apoptosis 2010, 15, 738–751. 



Int. J. Mol. Sci. 2014, 15 3987 

 

22. Armstrong, J.S.; Steinauer, K.K.; Hornung, B.; Irish, J.M.; Lecane, P.; Birrell, G.W.; Peehl, D.M.; 

Knox, S.J. Role of glutathione depletion and reactive oxygen species generation in apoptotic 

signaling in a human B lymphoma cell line. Cell Death Differ. 2002, 9, 252–263. 

23. Yang, C.F.; Shen, H.M.; Ong, C.N. Intracellular thiol depletion causes mitochondrial permeability 

transition in ebselen-induced apoptosis. Arch. Biochem. Biophys. 2000, 380, 319–330. 

24. Ishii, T.; Itoh, K.; Takahashi, S.; Sato, H.; Yanagawa, T.; Katoh, Y.; Bannai, S.; Yamamoto, M. 

Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in 

macrophages. J. Biol. Chem. 2000, 275, 16023–16029. 

25. Pugazhenthi, S.; Akhov, L.; Selvaraj, G.; Wang, M.; Alam, J. Regulation of heme oxygenase-1 

expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in 

mouse beta-cells. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E645–E655. 

26. Aziz, M.T.A.; Ibrashy, I.N.E.; Mikhailidis, D.P.; Rezq, A.M.; Wassef, M.A.A.; Fouad, H.H.; 

Ahmed, H.H.; Sabry, D.A.; Shawky, H.M.; Hussein, R.E. Signaling mechanisms of a water 

soluble curcumin derivative in experimental type 1 diabetes with cardiomyopathy.  

Diabetol. Metab. Syndr. 2013, 5, 1–13. 

27. Jeong, G.S.; Oh, G.S.; Pae, H.O.; Jeong, S.O.; Kim, Y.C.; Shin, M.K.; Seo, B.Y.; Han, S.Y.;  

Lee, H.S.; Jeong, J.G.; et al. Comparative effects of curcuminoids on endothelial heme 

oxygenase-1 expression: Ortho-methoxy groups are essential to enhance heme oxygenase activity 

and protection. Exp. Mol. Med. 2006, 38, 393–400. 

28. Dinkova-Kostova, A.T.; Massiah, M.A.; Bozak, R.E.; Hicks, R.J.; Talalay, P. Potency of Michael 

reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their 

reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. USA 2001, 98, 3404–3409. 

29. Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in 

apoptosis induction. Apoptosis 2000, 5, 415–418. 

30. Stridh, H.; Kimland, M.; Jones, D.P.; Orrenius, S.; Hampton, M.B. Cytochrome c release and 

caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett. 1998, 429, 

351–355. 

31. Gao, L.W.; Wang, J.W. Antioxidant potential and DNA damage protecting activity of aqueous 

extract from Armillaria mellea. J. Food Biochem. 2012, 36, 139–148. 

32. Sun, C.; Wang, J.W.; Fang, L.; Gao, X.D.; Tan, R.X. Free radical scavenging and antioxidant 

activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella 

sp. YS 4108. Life Sci. 2004, 75, 1063–1073. 

33. Fang, X.B.; Fang, L.; Gou, S.H.; Cheng, L. Design and synthesis of 

dimethylaminomethyl-substituted curcumin derivatives/analogues: Potent antitumor and 

antioxidant activity, improved stability and aqueous solubility compared with curcumin.  

Bioorg. Med. Chem. Lett. 2013, 23, 1297–1301. 

34. Takahashi, M.; Shibata, M.; Niki, E. Estimation of lipid peroxidation of live cells using a 

fluorescent probe, diphenyl-1-pyrenylphosphine. Free Radic. Biol. Med. 2001, 31, 164–174. 

35. Cohen, G.; Dembiec, D.; Marcus, J. Measurement of catalase in tissue extracts. Anal. Biochem. 

1970, 34, 30–38. 

36. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of 

protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. 



Int. J. Mol. Sci. 2014, 15 3988 

 

37. Chen, W.; Zhao, Z.; Li, L.; Wu, B.; Chen, S.-F.; Zhou, H.; Wang, Y.; Li, Y.-Q. Hispolon induces 

apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway.  

Free Radic. Biol. Med. 2008, 45, 60–72. 

38. Walker, J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. In The Protein 

Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 1994; Volume 32,  

pp. 5–8. 

39. Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide 

gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 1979, 

76, 4350–4354. 

40. Li, H.Y.; Wu, S.Y.; Shi, N.A. Transcription factor Nrf2 activation by deltamethrin in PC12 cells: 

Involvement of ROS. Toxicol. Lett. 2007, 171, 87–98. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


