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Adenoid cystic carcinoma (ACC) is a rare, basaloid, epithelial tumor, arising mostly from
salivary glands. Radiation therapy can be employed as a single modality for unresectable
tumors, in an adjuvant setting after uncomplete resection, in case of high-risk pathological
features, or for recurrent tumors. Due to ACC intrinsic radioresistance, high linear energy
transfer (LET) radiotherapy techniques have been evaluated for ACC irradiation: while fast
neutron therapy has now been abandoned due to toxicity concerns, charged particle
beams such as protons and carbon ions are at present the beams used for hadron
therapy. Carbon ion radiation therapy (CIRT) is currently increasingly used for ACC
irradiation. The aim of this review is to describe the immunological, molecular and
clinicopathological bases that support ACC treatment with CIRT, as well as to expose
the current clinical evidence that reveal the advantages of using CIRT for treating ACC.

Keywords: adenoid cyst carcinoma, hadrontherapy, carbon ion radiotherapy (CIRT), tumor immunology, radioresistance
Abbreviations: ACC, Adenoid cystic carcinoma; CD, Cluster of differentiation; CIRT, Carbon ion radiation therapy; CSC,
Cancer stem cell; CTA, Cancer-testis antigen; DC, Dendritic cell; EGFR, Epithelial growth factor receptor; EMT, Epithelial-
mesenchymal transition; HN, Head and neck; IHC,Immunohistochemistry; IMRT, Intensity modulated radiation therapy; LC,
Local control; LEM, Local effect model; LET, Linear energy transfer; MDSC, Myeloid-derived suppressor cells; mMKM,
Modified microdosimetric kinetic model; OER, Oxygen enhancement ratio; OS, Overall survival; PBT, Proton beam therapy;
PFS, Progression free survival; PNI, Perineural invasion; RBE, Relative biological effectiveness; RFS, Relapse free survival; RNA,
Ribonucleic acid; RT, Radiation therapy; TAA, Tumor-associated antigen; TAM, Tumor-associated macrophages; TCD50,
Tumor control dose 50; TF, Transcription factor; TMB, Tumor mutational burden; TME, Tumor microenvironment; TNA,
Tumor-specific neo-antigens; VEGF, Vascular endothelial growth factor.
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1 INTRODUCTION

Adenoid cystic carcinoma (ACC) is a rare tumor, which has a dual
component of myoepithelial and ductal cells. Most of the ACCs
arise from minor salivary glands, and account for about 10% of all
malignant salivary tumors (1). Other involved head and neck
(HN) sites include the external ear and the lacrimal glands. Less
frequently, ACC might be diagnosed in non-HN sites, including
the breasts, the lungs, the prostate gland, the esophagus, the cervix,
the vulva or the skin (2–4). Overall, around 3000 cases have been
identified between 1973 and 2007 in the US National Cancer
Institute’s Surveillance, Epidemiology and End Results (SEER)
program (5) and around 2600 cases have been described between
1983 and 1994 in the European EUROCARE registry (6).

Photon beam radiotherapy (RT) technological developments
gave a substantial contribution in HN patient prognosis
improvement last decades especially in patients bearing
squamous cell carcinoma (7). RT plays a key role in different
phases of ACCmanagement: in the adjuvant setting after surgery
for potentially resectable cases or as a definitive modality for
non-operable tumors; or in a reirradiation context for local
recurrent disease (8). Due to the radioresistance of ACC, RT
techniques using high linear energy transfer (LET) particles have
been evaluated for more than 50 years, in particular fast neutron
beams (9). However, the use of neutron beams, while efficient,
has been abandoned for late toxicity due to the difficulty of
obtaining an advantageous dose gradient between the target and
the organs-at-risk. On the other hand, carbon ion radiation
therapy (CIRT) harbors both the high LET of fast neutron
beams and the specific spatial distribution of charged particle
beams. Charged particle beams are characterized by a Bragg peak
that deposits most of the dose in a very short path, the deepness
of which depends on the start energy of the beam, allowing
Frontiers in Oncology | www.frontiersin.org 2
targeted irradiation. CIRT has consequently been increasingly
evaluated for ACC irradiation during the last years.

To this date, no in vitro or preclinical study have specifically
evaluated CIRT irradiation effects on ACC cell lines.
Nevertheless, multiple immunological and biological properties
justify ACC management with CIRT (Table 1). We reviewed the
literature on the biological bases and the clinical evidence that
support the use of CIRT in ACC management.
2 MOLECULAR RATIONALE OF CIRT
FOR ACC

2.1 ACC Heterogeneity Represents a
Challenge for Radiotherapy
2.1.1 ACC Is a Heterogeneous Group of Tumors
From a Molecular Point of View
Based on whole-exome sequencing (WES) of 34 tumor samples
from primary and metastatic ACC tumors isolated from eight
patients, Liu et al. (10) demonstrated that there was an important
spatial and temporal clonal diversity within and between primary
and metastatic tumors. The average mutation rate was evaluated
around 0.32 per million base pair and the incidence of shared
mutations between primary and metastatic tumor samples was
21.9%; truncal genetic alterations included NOTCH pathway
genes (such as NOTCH1 or SPEN) or the t (6, 9) translocation
(MYB–NFIB fusion). Nevertheless, this apparent diversity of
tumor mutations allows a variety of potential systemic targeted
treatments. For instance, Ho et al. (11) demonstrated that
tumoral activation of the VEGF/KIT/PDGFR pathway could be
effectively targeted by anti-angiogenic agents (such as Axitinib),
while the NOTCH-mutated ACCs could be specifically blocked
TABLE 1 | Biological rationale for adenoid cystic carcinoma (ACC) with carbon ion radiation therapy (CIRT).

ACC adverse characteristics Molecular determinants Biological rationale of CIRT

Tumor antigenicity Low TMB ↗ tumor immunogenicity
Immunosurveillance escape ↗ PD-L2 and HLA-G expression ↗ ICAM1

↘ ICAM-1 expression
Immunotolerant
microenvironment

↘ CD1a and CD83 infiltrate ↗ DC
↘ MDSC and M2 macrophage infiltrate ↘ M2 and MDSC
T-cell exclusion phenotype ↗ proinflamattory cytokines

↗ CD8, ± NK
Hypoxia ↗ HIF1a expression low OER

VEGFA-mediated vascular mimicry ↘ tumorigenesis and angiogenesis
Stemness ↗ HSP27 expression Anti-tumor response on radioresistant tumor cell lines

↗ Brachyury expression
VEGF A, Nodal, Lefty, Oct-4, Pac6, Rex1, Nanog

Autophagy ATG3, 4A, 5, PIK3R4, MAP1LC3B
Perineural invasion BNDF/TrkB; CCLR/CCR5; NGF/TrkA ↘ migration, invasion, adhesion

↘ cell mobility
↘ integrin expression

Tumoral heterogeneity Biphasic tumor: ductal and myoepithelial components Anti-tumor response ± independent on tumoral
heterogeneityMolecular heterogeneity within/between primary tumors and metastatic

disease
The rationale to use CIRT for ACC management is based on immunological, molecular, and pathological considerations, despite the fact that no in vitro or preclinical study have specifically
evaluated CIRT irradiation on ACC cell lines; CD, cluster of differentiation; DC, dendritic cell; HIF1a, hypoxia-inducible factor 1a; ICAM-1, intercellular adhesion molecule 1; MDSC, myeloid-
derived suppressor cell; NK, natural killer cell; OER, oxygen enhancement ratio; TMB, tumor mutational burden; VEGF, vascular-endothelial growth factor.
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by agents targeted NOTCH pathway (such as Bronctictuzumab
or AL101) (12, 13). NOTCH-mutated ACC are over-represented
in solid variant and are associated with a higher rate of liver and
bone metastases, as well as shorter relapse-free survival (RFS)
and overall survival (OS) (12). The molecular diversity of ACC
tumors is striking in a relapsed or a metastatic context (14). Up
to 26.3% of relapsed or metastatic ACC patients are NOTCH-
mutated, including 18.3% of activating NOTCH mutations,
which have the poorest prognosis among all NOTCH
mutations types. Ho et al. (14) further demonstrated that
mutations in the KDM6A gene, which intervenes in chromatin
remodeling, had a pejorative prognosis for relapsed or metastatic
ACC, and that TERT pathway mutations were exclusive of
NOTCH mutations and of MYB fusions. Consequently, it
appeared that four distinct relapsed/metastatic ACC molecular
subgroups could be proposed, based on the presence of NOTCH,
TERT mutations and MYB fusion: MYB-mutated/NOTCH-
mutated; MYB-mutated/other mutations; MYB wild-type/
NOTCH-mutated and MYB-mutated/TERT-mutated.

2.1.2 ACC Is a Heterogeneous Group of Tumors
From an Anatomopathological Point of View
ACC is characterized by a biphasic composition made of ductal
cells (characterized by CK7 protein expression) and myoepithelial
cells (characterized by CK5/6, P63, P40, D2-40, Calponin, a-SMA,
S-100, and vimentin protein expression). The histological tumoral
organization defines three ACC variants based on the
predominant anatomopathological pattern: cribriform, tubular
(both characterized by CK7 protein expression), or solid pattern
(characterized by a glandular architecture and a loss of
myoepithelial differentiation). Solid patterns usually have a
higher Ki67 index. Multiple histological grading systems have
been proposed based on the estimated proportion of the solid
pattern component [Perzin grading using a 30% threshold (15),
Spiro grading using a 50% threshold (16)]. It should be noted,
however, that VanWeert et al. (17) recently demonstrated that the
mere presence of solid components, independently of its
proportion, was a negative prognostic factor. Bell et al. (18)
evidenced that the c-Kit protein was systematically expressed,
and EGFR was consistently negative, in the solid ACC subtype. C-
Kit expression was limited to inner ductal epithelial cells, and
Frontiers in Oncology | www.frontiersin.org 3
EGFR expression was restrained to the outer myoepithelial cells,
the latter being found in the majority of tubular and cribriform
ACC patterns.

2.1.3 CIRT Anti-Tumor Efficiency Is Not Influenced
by Tumor Heterogeneity
Based on three cellular sublines of resistant prostate tumors in
murine models, Glowa et al. (19) demonstrated that the values of
the tumor control dose 50 (TCD50) differed significantly less for
CIRT than for photon RT. They concluded that response to
CIRT was relatively independent on the molecular and
histological tumoral heterogeneity. Additionally, Masunaga
et al. (20) found that quiescent tumor cells were more
sensitive to CIRT than to photon RT. They suggested that
CIRT anti-tumor efficacy could be relatively independent
from intra-tumoral cellular heterogeneity, resulting from the
co-existence of quiescent and proliferative cell populations in
various proportions.

2.2 ACC Radioresistance Properties Might
Be Overcome by CIRT
ACC are radioresistant tumors. The main molecular actors of
ACC EMT and radioresistance features are provided in Table 2.

2.2.1 Epithelial-Mesenchymal Transition and Cancer
Stem Cell Properties Are Related to ACC
Radioresistance
Wang et al. (21) demonstrated that hypoxic conditions promoted
ACC epithelial-mesenchymal transition (EMT) and cancer stem
cell (CSC) properties. Molecular actors of ACC EMT and
stemness were characterized by Chen et al. (22) who found
that HSP27 protein overexpression increased cell migration and
invasion properties and induced an up-regulation of Snail 1 and
Prrx1, which are potent EMT regulators. Expectedly, increased
HSP27 levels in ACC correlated with radioresistance of ACC cell
lines in vitro; it was also found that high HSP27 expression in
ACC had a poor prognosis value. Finally, acquisition of CSC
properties in ACC correlated with increased expression of
CD133 and CD44. Shimoda et al. (23) further evidenced
stemness was a generic characteristic of metastatic ACC cells,
which express stemness-related transcription factors (TF) (such
TABLE 2 | Notable molecular actors of ACC stemness and radioresistance properties.

Molecular actor Roles in ACC radioresistance

BNIP3 BCL2/adenovirus E1B 19 kDa protine-
interacting protein 3

Apoptotic Bcl-2 protein. Intervenes in autophagosome formation; can induce autophagic cell death.

Brachyury Transcription factor. Represses expression of adhesion molecules which promotes epithelial mesenchymal
transition (EMT)

CD133/
CD44

CD133: Surface glycoproteine. Marker of cancer stem cells.

CD44: Surface glycoprotein. Intervenes in cellular interactions and cell adhesion
HIF1a Hypoxia-inducible factor 1-alpha Transcription factor (subunit) responsive to oxygen level. Induces cell proliferation and survival
HSP27 Heat Shock Protein 27 Chaperone protein. Has an anti-apoptotic role and a cytoprotection function under stress conditions;

modulates reactive oxygen species
MAP1LC3B Microtubule-associated proteins 1A/1B light

chain 3B
Ubiquitin-like protein. Selects substrate for autophagic degradation

Snail Zinc finger protein SNAI1 Transcription factor. Represses expression of adhesion molecules which promotes EMT
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as Nodal, Lefty, Oct-4, Pac6, Rex1, and Nanog). In particular, the
T-box Brachyury TF was highly expressed in clinical ACC
samples and was found to regulate both EMT and CSC
properties of ACC. Kobayashi et al. (24) further demonstrated
that a knock-out of the Brachyury gene in ACC cells lines with
short hairpin RNA (shRNA) suppressed both tumor
chemoresistance and radioresistance in vitro.

2.2.2 ACCs Are Characterized by Hypoxia Markers
De Mendoça et al. (25) demonstrated that ACCs were associated
with high Hypoxia-Inducible Factor (HIF) 1a expression levels
compared with normal salivary gland, which is expressed in the
absence of adequate tissular oxygenation. Liu et al. (26) further
observed that salivary ACC had an up-regulation of autophagy-
related genes (such as ATG3, 4A, 5, PIK3R4, and MAP1LC3B),
controlled by HIF1a. It should be recalled that hypoxia-induced
autophagy is a notable actor of resistance to anti-tumor
treatments, including radiation therapy (27). Chen et al. (28)
demonstrated that BNIP3, a regulator of hypoxia-induced
autophagy, was expressed by 63.1% of ACCs, and that BNIP3
in ACC cell lines could be induced in vitro by hypoxia. Another
notable consequence of ACC hypoxia was to induce tumoral
vascular mimicry and cell migration invasion as a response to
VEGF-A secretion (21, 29).

2.2.3 CIRT Is Valuable for Radioresistant and
Hypoxic Tumors
Peschke et al. (30) found on murine models of radioresistant
prostate carcinomas that the TCD50 were 32.9 Gy for CIRT and
75.7 Gy for photon RT for single dose irradiation, and 38.0 Gy for
CIRT and 90.6 Gy for photon radiotherapy for multiple-dose
irradiation. This observation suggested that CIRT was more
potent than photon radiotherapy for intrinsically radioresistant
tumors, which is the case for ACC. In addition, Grimes et al. (31)
evidenced that carbon ion beams had a lower oxygen
enhancement ratio (OER) than proton beams, in particular
towards the Bragg peak where the LET substantially increased
for carbon beams, making CIRT valuable in case of hypoxic
tumors. Nevertheless, Antonovic et al. (32) underlined that
hypoxia could anyhow influence the outcome of CIRT because
of the non-negligible OER of the low LET contributions in the
spread-out Bragg peak (SOBP). Taking into account inter-fraction
local oxygenation changes, occurring after tumor shrinkage (even
for hypoxic tumors), CIRTOER was estimated around 1.2. Finally,
using a glioma model, Liu et al. (33) demonstrated that CIRT
superiority in tumorigenesis and angiogenesis inhibition
compared with photon beams, resulted from modulation of
VEGF level in the tumor micro-environment (TME).
2.3 CIRT May Control ACC Tumoral
Invasion Properties
2.3.1 Perineural Invasion Is a Characteristic Feature
of ACC Local Malignancy
ACCs are characterized by an elevated propensity to locally
invade surrounding tissues through perineural invasion (PNI).
Frontiers in Oncology | www.frontiersin.org 4
Shan et al. (34) demonstrated that the BDNF/TrkB axis plays a
causative role in ACC PNI. Gao et al. (35) found that the CCL5/
CCR5 axis increases salivary ACC PNI invasion and that
blocking this chemokine axis inhibited perineural invasion in
ACC cell lines. CCR5 chemokine receptor expression was
elevated in salivary ACC tissue samples. Kobayashi et al. (36)
observed that NGF and TrkA signaling contributed to PNI, and
that both were expressed in around 65% of ACC patients.

2.3.2 CIRT Might Control Tumoral Invasion
Fujita et al. (37) demonstrated that CIRT irradiation decreased
tumor cell mobility through a process involving ubiquitinoylation
and proteasome destruction of Rac1 and RhoA proteins. Rieken
et al. (38) also found that CIRT decreased tumor integrin
expression 24h after irradiation, and significantly reduced
glioma cell migration. Matsumoto et al. (39) observed that CIRT
could reduce the metastatic abilities of malignant melanoma cells
(including cell migration, invasion, and adhesion), both in vitro
and in vivo, in murine models.
3 IMMUNOLOGICAL RATIONALE OF CIRT
FOR ACC

3.1 ACC Tumoral Immunology
3.1.1 ACC Cell Immunogenicity Is Limited to Few
Tumor-Associated Antigens
ACC cells express few tumor-specific neo-antigens (TNA)
against which specific anti-tumor immune responses could be
directed, which is explained by their low tumoral mutation
burden (TMB). Based on 60 ACC tumor samples, Ho et al.
(40) estimated that ACC TMB was around 0.31 non-silent
mutation per megabase. Nevertheless, TMB-high ACCs have
already been described, either microsatellite-instable (MSI) or
POLE-mutated, but these cases represent only a minority of ACC
patients (41). Consequently, T-cell receptor (TCR) clonotype
diversity in ACCs is usually lower than in most other solid tumor
types and CD8 tumor-infiltrating lymphocytes (TIL) are rare
(41). On the other hand, ACC cells express diverse types of
tumor-associated antigens (TAA), in particular cancer-testis
antigen (CTA). Based on 84 head and neck (HN) ACC tumor
samples, Veit et al. (42) found that NY-ESO-1 and pan-MAGE
CTA were significantly expressed in 57.1% and 31.2% of ACC
patients, respectively. In addition, tumor expression of these two
CTA has been found to be linked to a worse prognosis, since
median overall survival (OS) was 282 months in the absence of
NY-ESO-1 and pan-MAGE expression, 190.5 months when one
of these two antigens was present, and only 90.5 months in case
of simultaneous co-expression. Beppu et al. (43) estimated that
MAGE-A CTA was detected in 60% of ACC tumors and
represented an independent risk factor for locoregional
recurrence. Finally, in addition to CTA, ACC also expresses
less immunogenic tissue-differentiation TAA. Prostate-specific
membrane antigen (PSMA) expression without predictive value
was found in 94% of ACC patients (44).
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3.1.2 ACC Cells Evade Immune Surveillance by
Regulating the Expression of Membrane Receptors
Based on immunohistochemistry (IHC) analyses on 36 ACC
tumor samples, Mosconi et al. (45) found that ACC expressed a
high level of inhibitory immune membrane proteins, particularly
PD-L2 and HLA-G. Notably, PD-L1 expression was
systematically negative, and CTLA-4 expression was low,
which are the targets of most current immune checkpoint
inhibitors. PD-L2 expression has a prognosis value: Chang
et al. (46) demonstrated that low PD-L2 expression was
associated with a shorter RFS in a cohort of 70 patients with
malignant salivary gland tumors (including 15 ACC). In
addition, ACC cells have a reduced expression of ICAM-1
adhesion protein (47), and IHC analysis of tumor samples
demonstrated reduced staining for surface antigens of T cells,
NK cells, macrophage (TIA1 and CD68) (47), and antigen-
presenting cells (APC) (CD1a and CD83) (45). It has
consequently been proposed that the reduced ACC membrane
expression of ICAM-1 might promote immune evasion by
limiting the ICAM-1/LFA-1-mediated interaction between
ACC cells and anti-tumoral immune cells. Conversely, high
ICAM-1 expression was associated with a significantly better
DFS for ACC (47).

3.1.3 ACC Tumoral Micro-Environment Is Characterized
by a Pro-Tumoral Immune Polarization
ACC TME is characterized by a pro-tumoral polarization. Based
onWES of 76 malignant salivary tumor samples, including ACC,
myoepithelial carcinomas (MECA) and salivary duct carcinomas
(SDC), Linxweiler et al. (48) demonstrated that ACC had the
highest infiltration of M2-polarized tumor-associated
macrophages (TAM) and of myeloid-derived suppressor cells
(MDSC), among all types of salivary gland carcinomas.
Simultaneously, ACC TME had the lowest infiltration of anti-
tumoral immune cells, with a T-cell exclusion phenotype
characterized by a limited population of innate immunity cells
(NK cells, mast cell, neutrophils, macrophages, and eosinophils),
of APC [dendritic cells (DC)], and lymphocytes (CD8 T cells;
Th1, Th2, and Th17 CD4 T cells; follicular helper T cells;
regulator T cells; gd T cells; and B cells). Sridharan et al. (49)
demonstrated that alterations in the PI3K and the WNT
pathways (in particular, involving FGF17, BCL2, beta-catenin,
and BAMBI genes) strongly correlated with a lack of immune-
cell infiltrates in ACC TME. In addition, it was found that
cytokine landscape of ACC TME contributed to its pro-
tumoral properties: CCL2 chemokine produced by ACC cells
recruit M2-polarized TAM, which, in response, increase tumor
cell invasive and migrative properties by secreting glial cell line-
derived neurotrophic factor (GDNF).

3.2 CIRT and Immune System Modulation
3.2.1 CIRT Increases Tumoral Cell Immunogenicity
Imadome et al. (50) found that CIRT upregulated stress-
responsive genes and immunity-related cell-communication
genes (notably ICAM1) in tumor cells. At the same time, CIRT
increased gene expression of cytokines and chemokines. Six to 36
hours after CIRT irradiation, Ohkubo et al. (51) demonstrated
Frontiers in Oncology | www.frontiersin.org 5
that an increased expression of ICAM-1 membrane receptor
could be observed, which interacts with APC through their LFA1
receptors, but which is usually downregulated in ACC tumors
(47). Based on murine lung tumor models, it was demonstrated
that combination of CIRT with DC inhibited the development of
lung metastases (51), while Ando et al. (52) evidenced that CIRT
increased tumor cells immunogenicity and DC activation to a
higher level than photon beam radiotherapy, as evidenced by
greater CD40 and IL-12 level.
3.2.2 CIRT Activates Adaptative Immunity
Hartman et al. (53) found in vitro that CIRT and photon beam
radiotherapy had common radiobiological properties such as
induction of cell cycle arrest, surface expression of immune-
modulating molecules, and activation of cytotoxic lymphocytes.
Nevertheless, other authors have suggested that CIRT-induced
immune activation might be more potent. Spina et al. (54)
demonstrated that CIRT could induce a more pro-inflammatory
cytokine landscape compared with photon beam radiotherapy on
mammary tumor cell lines: high levels of IL-2, IL-1b, and IFNgwere
observed after CIRT (compared with an isolated IL-6 increase after
photon radiotherapy). Simultaneously, CIRT induced an activated
CD8 TIL phenotype in TME, as evidenced by high levels of
granzyme B, IL-2, and TNFa expression, while the authors found
that photon therapy decreased CD8 TILs. Takahashi et al. (55)
demonstrated that, when combined with anti-PD-L1 and anti-
CTLA-4 immunotherapies, CIRT substantially increased CD8 TIL
infiltrates andHMGB-1 level, a potent danger-associatedmolecular
pattern (DAMP), suggesting a rational therapeutic strategy
combining immune checkpoint inhibitors with CIRT.
3.2.3 TME Acquires Anti-Tumoral Polarization
After CIRT Irradiation
In a murine glioblastoma model, Chiblak et al. (56)
demonstrated that CIRT reduced the population of M2-
polarized TAM and MDSC while simultaneously increasing
CD8 TILs, compared with photon beam radiotherapy. Xie
et al. (57) further evidenced that low-dose whole-body CIRT of
mice (up to 0.05Gy) might increase NK cell activity and induce
an IFNg pro-inflammatory cytokine signature. The propensity of
CIRT to induce an immune-permissive anti-tumoral TME might
be of significant interest for ACC management.
4 CLINICAL CONSIDERATIONS ON ACC
IRRADIATION WITH CIRT

4.1 Photon RT Leads to Substantial
Toxicity Due to Critical OAR
Radiation Exposure
Photon radiotherapy for ACC management usually leads to
unsatisfying exposure of organs-at-risk (OAR) with substantial
toxicity. On the other hand, CIRT, taking advantage of a superior
dose deposition characterized by a Bragg peak, increases
OAR sparing.
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4.1.1 OAR Toxicity for Head and Neck ACC
Treated With Photon RT
Münter et al. (58) irradiated with intensity-modulated radiation
therapy (IMRT) 17 ACC localized at the base of the skull or in
maxillary sinuses with a median dose of 66Gy observed 20% of
grade 3 mucositis. For sinonasal tumors (including 4 ACC
patients) treated to the median dose of 70 Gy with IMRT,
Madani et al. (59) also found non-negligible radiation-induced
toxicity with 14.1% of grade 3 mucositis, 5.1% of grade 3
dysphagia, 5.1% of grade 3 dermatitis, and three cases of
asymptomatic radio-necrosis. Lesueur et al. (60) evaluated that
lachrymal ACC radiation therapy could be associated with brain
radio-necrosis, bone exposure, radiation neuropathy, secondary
glaucoma, and radiation neuropathy.

4.1.2 OAR Toxicity for Thoracic
ACC Treated With Photon RT
Thoracic ACC RT exposes multiple OARs: the heart, the lungs,
the esophagus, the trachea, and the thyroid. Out of 31 tracheal
ACC patients treated with photon RT (mean dose of 62 Gy),
Levy et al. (61) observed five tracheal stenoses, four dyspnea, five
hypothyroidism, and four pericarditis. Je et al. (62) irradiated 13
tracheal ACC patients with photon RT (59.4 Gy in an adjuvant
setting and 74.4 Gy in a definitive setting): two patients
developed tracheal stenoses, and both died (abrupt respiratory
failure after 1 year and tracheal infection after 13 years). Finally,
Dracham et al. (63) treated 19 tracheal ACC patients with
photon RT (50 Gy for adjuvant and 67.8 Gy for definitive
setting) and observed seven grade ≥2 acute pneumonitis and
two grade 3 esophagitis.

4.1.3 OAR Toxicity for Digestive and Pelvic ACC
Treated With Photon RT
The largest cohort of Bartholin’s gland ACC has been reported
by Cardosi et al. (2) consisting of 12 patients treated with surgery;
seven patients underwent adjuvant RT. One vulva radio-necrosis
was observed, followed by a grade 5 sepsis, and one patient
developed concomitant digestive and urinary fistulas. It should
be recalled that fistulas have a significant impact on the quality of
life of the patient. Zelga et al. (64)demonstrated that the simplest
and safest treatment of radiation-induced rectovaginal fistulas
was a fecal diversion with an ileostomy. While cardia (65) and
esophageal (3) ACC exist, no report of RT-induced toxicity with
photon RT has been published to this date; nevertheless, CIRT is
expected to reduce radiation exposure to the unaffected digestive
tract and to the heart.

4.2 Evidence of CIRT by ACC Tumor Site
4.2.1 Materials and Methods
A search was conducted on the PubMed, Medline, Google
Scholar, Cochrane library and Web of Science databases using
the following keywords: [“particle therapy” or “hadrontherapy”
or “carbon ion” or “CIRT” or “heavy ion” or “ion beam” or “ion
radiation”] and [“adenoid cystic carcinoma” OR “ACC”]. Search
was independently conducted by PL and EO. Inclusion criteria,
defined using the PICOS framework, were the following: clinical
studies (trials, prospective or retrospectives studies, and case
Frontiers in Oncology | www.frontiersin.org 6
reports) evaluating CIRT for ACC, in any setting, and reporting
toxicity and efficacy data. Exclusion criteria were pre-clinical or
purely dosimetric studies. References from the selected studies
were screened for potential additional articles.

4.2.2 Head and Neck (Primary Tumor)
The current clinical experience of CIRT for ACC is summarized
in the Table 3. CIRT has been evaluated as a sole modality for
definitive irradiation of head and neck ACC by Japanese centers.
Mizoe et al. (67) evaluated the efficacy of 64 Gy(RBE) on 236
patients with head and neck cancers, including 69 ACC (mostly
from the paranasal sinuses), with 5-year LC and OS of 73% and
68%, respectively. Sulaiman et al. (68) retrospectively described
the outcome of all ACC patients treated in the four active CIRT
facilities in Japan treated between 2003 and 2014. Overall, 289
ACC patients were treated with a median CIRT dose of 64 Gy
(RBE) (ranging between 55.2 Gy(RBE) and 70.4 Gy(RBE)); 2-
year OS, PFS, LC were 94%; 68% and 88%, respectively. Two
patients died from bleeding ulcers, and 15% of all patients
developed grade ≥3 toxicity. Ikawa et al. (71) observed 5-year
LC and OS of 78.8% and 58.3% in a cohort of 74 oral non-
squamous cell carcinomas, including 34 ACC patients, treated
with doses ranging from 57.6 to 64 Gy(RBE). Analyses of specific
tumoral localization demonstrated the efficacy of CIRT for ACC
arising from the nasopharynx (72) (2-year LC: 88%), from the
paranasal sinuses (73)(5-year LC: 51%), from the tongue (74)(5-
year LC: 92%), from the parotid (66) (5-year LC: 74.5%), or from
the lacrimal gland (69)(5-year LC: 62%).

An alternative approach has been evaluated at the Heidelberg
Ion-Beam Therapy Center, using CIRT as a boost to
conventional photon radiotherapy. In 2004, Schulz-Ertner et al.
(70) obtained a 3-year LC of 62% on a series of 21 patients
affected by head and neck unfavorable and locally advanced
ACC, using an 18 Gy(RBE) CIRT boost coupled to photon
radiotherapy delivering 54 Gy. Similarly, using CIRT as an 18-
24 Gy(RBE) boost to IMRT photon radiotherapy (50-56Gy),
Akbaba et al. (76) treated 59 nasopharyngeal ACC patients to a
2-year LC, distant PFS and OS of 83% 81% and 87%. Seven
patients developed acute grade 3 toxicities (mucositis, dysphagia,
and odynophagia) and four patients had late grade 3 toxicities
(locked jaw, tympanic effusion, and hypopituitarism). Akbaba
et al. (75) treated 227 patients for sinonasal ACC with an 18-24
Gy(RBE) CIRT boost added to IMRT radiotherapy (48-56Gy).
With a median follow-up of 50 months, 3-year local control was
79% when treated in a definitive context and 82% when treated
in an adjuvant setting. Acute toxicity was observed for 34.4% of
the patients in a definitive setting and for 41.6% in an adjuvant
setting. CIRT as a boost to IMRT has also been evaluated for
laryngeal ACC (80), demonstrating an excellent local control on
a cohort of eight ACC patients without any relapse at 24 months.
Lacrimal ACC has also been treated with a CIRT boost (81), with
a 2-year local control of 93%.

4.2.3 Head and Neck (Reirradiation)
Jensen et al. (82) re-irradiated 52 recurrent head and neck ACC
with a median dose of 51 Gy(RBE). Median follow-up was 14
months; one-year local and distant controls were 70.3% and 72.6%
November 2021 | Volume 11 | Article 789079

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Loap et al. Hadrontherapy for Adenoid Cystic Carcinoma
TABLE 3 | Clinical studies evaluating carbon ion radiation therapy (CIRT) for adenoid cystic carcinoma (ACC) irradiation.

Indication Study Year Center Type Number CIRT
fractionation

Efficacy Grade ≥3
toxicity

Grade 4-5 toxicity (detail)

Head and neck
(diverse sites)

Schulz-
Ertner
et al. (66)

2004 Heidelberg Retrospective 21 ACC
(out of
152
tumors)

18 Gy(RBE) CIRT
boost + 54 Gy
photon RT.

3-year LRC:
62%.
3-year OS:
75%.

Acute: 2 pts. Late:
0 pt (10%). (ACC
cohort)

Ø (ACC cohort)

Mizoe
et al. (64)

2011 NIRS Phase II 69 ACC
(out of
236
tumors)

57.6-64 Gy(RBE)/
16 fr

5-year LC:
73%.
5-year OS:
68%.

Acute: 39 pts
(56%). Late: 4 pts
(6%).

4 G4 blindness (late).

Sulaiman
et al. (65)

2017 NIRS,
Hyogo,
Gunma,
HIMAT

Retrospective 289 ACC 57.6-64 Gy(RBE)/
16 fr

5-year LC:
68%.
5-year OS:
74%.

Acute: 92 pts
(32%). Late: 48 pts
(17%).

2 G5 hemorrhage, 9 G4
blindnesses, 1 G4 brain
necrosis(late).

Ikawa
et al. (67)

2019 NIRS Retrospective 34 ACC
(out of 74
tumors)

57.6-64 Gy(RBE)/
16 fr

5-year LC:
75.2%.
5-year OS:
65.7%.

Acute: 43 pts
(58%). Late: 22 pts
(30%) (10 G3
osteonecrosis).
(Whole cohort)

3 G4 blindness (late).
(Whole cohort)

Nasopharynx Abe et al.
(68)

2018 NIRS,
Hyogo,
Gunma,
HIMAT

Retrospective 43 ACC 57.6-64 Gy(RBE)/
16 fr

2-year LC:
88%.
2-year OS:
84%.

Acute: 14 pts
(33%). Late: 9 pts
(21%).

2 G5 pharyngeal
hemorrhage, 1 G4
blindness (late).

Akbaba
et al. (69)

2019 Heidelberg Retrospective 59 ACC 18-24Gy(RBE)
CIRT boost + 50-
56 Gy photon RT.

5-year LC:
49%.
5-year OS:
69%.

Acute: 7 pts (12%).
Late: 4 pt (7%).

Ø

Paranasal
sinuses

Akbaba
et al. (70)

2019 Heidelberg Retrospective 227 ACC 15-18Gy(RBE)
CIRT boost + 48-
56 Gy photon RT.

3-year LRC:
79% (primary) -
82%
(postoperative).
3-year OS:
64% (primay) -
79%
(postoperative).

Acute: 88 pts
(39%). Late: 26 pts
(11%).

Ø

Hagiwara
et al. (71)

2020 NIRS Retrospective 22 ACC 57.6-64 Gy(RBE)/
16 fr

5-year LC:
51%. 5-year
OS: 62.7%.

Acute: 0 pts. Late:
9 pts (41%).

6 G4 blindness, 1 G4 brain
necrosis (late).

Tongue Koto et al.
(72)

2016 NIRS Retrospective 18 ACC 57.6-64 Gy(RBE)/
16 fr

5-year LC:
92%. 5-year
OS: 72%.

Acute: 10 pts
(56%). Late: 3 pts
(16.7%).

Ø

Parotid Koto et al.
(73)

2017 NIRS Retrospective 16 ACC 57.6-64 Gy(RBE)/
16 fr

5-year LC:
74.5%. 5-year
OS: 70.1%.

Acute: 1 pt (6%).
Late: 8 pts (50%).

1 G4 blindess (late).

Lacrimal gland Hayashi
et al. (74)

2018 NIRS Retrospective 16 ACC
(out of 33
tumors)

57.6-64 Gy(RBE)/
16 fr

5-year LC:
62%. 5-year
OS: 65%.

Acute: 0 pt. Late:
22 pts (67%).
(Whole cohort)

12 G4 blindness, 2 G4
brain necrosis (late). (Whole
cohort)

Akbaba
et al. (75)

2019 Heidelberg Retrospective 18 ACC
(out of 24
tumors)

18-24Gy(RBE)
CIRT boost + 50-
54 Gy photon RT.

5-year LC:
90%. 5-year
OS: 94%.

Acute: 3 pts (13%).
Late: 2 pt (8%).
(Whole cohort)

Ø

Larynx Akbaba
et al. (76)

2018 Heidelberg Retrospective 8 ACC
(out of 15
tumors)

18-24Gy(RBE)
CIRT boost + 50-
54 Gy photon RT.

3-year LRC:
100%. 3-year
OS: 100%.

Acute: 4 pts (27%).
Late: 0 pt. (Whole
cohort)

Ø

Tracheobronchial
tree

Chen
et al. (77)

2021 Shanghai Retrospective 18 ACC 66-72.6 Gy(RBE)/
22-23 fr

2-year LC:
100%. 2-year
OS: 100%.

Acute: 0 pt. Late:
1 pt (6%).

1 G4 tracheal stenosis
(late).

Högerle
et al. (78)

2019 Heidelberg Retrospective 7 ACC
treated
with CIRT
(out of 38
ACC)

24Gy(RBE) CIRT
boost + 50-54 Gy
photon RT (n=4).
60-63 Gy(RBE)
(n=2)

1-year LC:
100%. 1-year
OS: 100%.

Acute: 1 pt (14%).
Late: 0 pt. (CIRT
cohort)

1 G4 stomatitis (acute).

Bartholin’s gland Bernhardt
et al. (79)

2018 Heidelberg Retrospective 1 ACC 24Gy(RBE) CIRT
boost + 50 Gy
photon RT

NA Ø Ø

(Continued)
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respectively. Held et al. (83) re-irradiated 124 ACC, in a cohort of
229 patients (54%) with recurrent head and neck cancers. The
median reirradiation dose was 51 Gy(RBE). Median PFS and OS
were respectively 24.2 months and 26.1 months. Hayashi (84)
evaluated CIRT reirradiation on 17 ACC on a cohort of 48 patients
with recurrent head and neck tumors. The median reirradiation
doses ranged between 40.0 Gy(RBE) and 64 Gy(RBE) in 8 to 16
fractions. The median follow-up was 27.1 months; two-year local
control, locoregional control, PFS and OS were 40.5%, 33.5%,
29.4% and 59.6% respectively. There was 10.4% of acute grade 3
toxicity and 37.5% of late grade 3 toxicity, including one grade 5
central nervous system necrosis. Finally, Vischioni et al. (85)
evaluated CIRT re-irradiation on 38 ACC in a cohort of 51
patients (75%). The median prescription dose was 60 Gy(RBE).
The median follow-up was 19 months; two-year PFS and OS were
52.2% and 64%. Two other studies have CIRT for head and neck
recurrent tumor re-irradiation, but ACC histologies only
represented a minority of the included cases: Combs et al. (77),
who treated four ACC on a cohort of 28 patients, and Gao et al.
(78) with 10 ACC on a cohort of 141 patients.

4.2.4 Thoracic, Abdomen and Pelvis
Chen et al. (86) treated 18 patients with tracheobronchial adenoid
cystic carcinoma with definitive CIRT treatment. Prescription
doses ranged between 66 Gy(RBE) and 72 Gy(RBE). With a
median FU of 20.7 months, the overall response rate (ORR) was
88.2%, and the 2-year OS, local control rate, and PFS were
respectively 100%, 100%, and 61.4%. One G4 tracheal stenosis
was observed, but no other grade 3 toxicity. Högerle et al. (79)
treated six patients with tracheal ACC with CIRT (four patients
received CIRT as a targeted boost added to photon irradiation);
one patient was treated in an adjuvant setting, while six patients
received definitive CIRT treatment. Prescription doses ranged
between 60 Gy(RBE) and 74.4 Gy(RBE). One-year OS, freedom
from local progression, and freedom from distant progression
were both 100%. One grade 4 stomatitis was observed, but no
other G3 toxicity. CIRT has also been proposed for gynecological
Frontiers in Oncology | www.frontiersin.org 8
ACC (87), but available clinical data is limited; to this date, only
one patient seems to have been treated for a Bartholin’s gland
ACC, with a 24 Gy(RBE) CIRT boost added to IMRT (50 Gy) (88).

4.3 Present and Future Considerations
for CIRT Practice
4.3.1 Treatment Planning System Considerations
Molinelli et al. (89) evaluated the possible prescription
corrections in CIRT planning when comparing the modified
microdosimetric kinetic model (mMKM) and the local effect
model (LEM) relative biological effectiveness (RBE) models;
overall, a 64 Gy(RBE) prescribed to the target volumes based
on the mMKM model was found to be close to that of 68.8 Gy
(RBE) with the LEM model. A new calculation of the OAR dose
constraints, adapted to the RBE calculation model was therefore
recommended in order to enhance the target control probability,
such as for brain stem and optic pathway (90, 91).

For a full CIRT irradiation, ACC is generally irradiated with a
sequential strategy consisting of a first phase of nine to ten
fractions to a low-risk volume (including the surgical bed and
zones at risk of perineural spread), followed by a second phase of
six to seven fractions to a high risk volume (boost), with a unique
nominal dose per fraction, according to the protocol adopted in
Japan since 1997 (67). In this context, CIRT is usually delivered
with a limited number of beams, typically two or three, achieving
both a high conformation and an improved normal tissue
sparing. However, in the absence of isocentric CIRT gantry,
only fixed beam irradiations are available (which is for instance
the case at CNAO) and it is difficult to change the beam
arrangement between the two sequential phases: as a
consequence, part of the low-risk volume receives unintended
dose from the beam paths of the boost phase. A simultaneous
integrated boost (SIB) approach is thus being evaluated at
CNAO, in comparison to the sequential protocol, to improve
the dose distribution of the two target volumes.

Robust planning is of prime importance for CIRT, to take into
account range and positioning uncertainties (92). Finally, the use
TABLE 3 | Continued

Indication Study Year Center Type Number CIRT
fractionation

Efficacy Grade ≥3
toxicity

Grade 4-5 toxicity (detail)

Reirradiation
(Head and neck,
diverse sites)

Jensen
et al. (80)

2015 Heidelberg Retrospective 48 ACC 51 [36-74] Gy
(RBE)

1-year LC:
70.3%. 1-year
OS: 81.8%.

Acute: 0 pt. Late:
8 pt (6.5%). (Whole
cohort)

2 G4 carotid artery
haemorrhage (late).

Held et al.
(81)

2019 Heidelberg Retrospective 124 ACC
(out of
229
tumors)

51 [30-66] Gy
(RBE)

1-year LC:
60%. 1-year
OS: 72%.

Acute: 7 pt. Late:
18 pt. (Whole
cohort)

2 G4 laryngeal edema
(acute). 2 G4 blindness, 1
brain necrosis, 1 vascular
hemorrhage (late). (Whole
cohort)

Hayashi
et al. (82)

2019 NIRS Retrospective 17 ACC
(out of 48
tumors)

54 [40-64] Gy
(RBE)

2-year LC:
40.5%. 2-year
OS: 59.6%.

Acute: 4 pt. Late:
25 pt. (Whole
cohort)

1 G5 brain necrosis, 9 G4
blindness, 1 G4 brain
necrosis, 1 G4 infection, 1
G4 arterial injury (late).
(Whole cohort)

Vischioni
et al. (83)

2020 CNAO Retrospective 38 ACC
(out of 51
tumors)

60 [45-68.8] Gy
(RBE)

2-year PFS:
52.2%. 2-year
OS: 64%.

Acute: 2 pt (3.9%).
Late: 3 pt (17.5%).
(Whole cohort)

Ø

November 2021 |
G, grade; LC, local control; LRC, locoregional control; OS, overall survival; PFS, progression-free survival; pts, patients.
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of Monte-Carlo algorithms combined with GPU-running
processors make it possible to carry out extremely fast
calculations, thus allowing the combination of accurate physical
dose computation with biological effects modelling as well as
inverse planning for CIRT, with a reasonable calculation time (93).

4.3.2 Monitoring Tumoral Response and
Anatomical Changes
The predicted range of carbon ion beams should be calculated as
precisely as possible during treatment planning and treatment
delivery. While small errors in margins quantification with
photon RT leads to target underdosage, such errors with CIRT
may have critical consequences; due to the sharp dose
diminution at the distal edge of the Bragg peak, parts of the
tumor might not receive any dose. The location of the distal dose
fall-off notably depends on anatomical modifications, and minor
anatomical changes might consequently negatively affect target
coverage as well as substantially increase OAR toxicity. For head
and neck ACC irradiation, where multiple nearby OARs have
critical functions, CIRT might thus benefit from advanced
techniques to monitor tumor response and potential
anatomical changes during irradiation. This could for example
be conveniently done by systematic CT scan reevaluations, the
implementation of image guided CIRT, or robust planning. The
dosimetric interest of adaptative planning for CIRT, relying on
daily CT imaging, has been demonstrated for pancreatic
irradiation (94) and might be conveniently implemented in the
near future in clinical practice for hadrontherapy, possibly
relying on automatic tools (95, 96). Fiorina et al. (97)
demonstrated that in-beam positron emission tomography
(PET) imageries allowed detection of morphological changes
for head and neck proton therapy in clinical practice; while the
primary fluence is lower in CIRT which introduces additional
uncertainties compared to proton treatments, such devices have
been successfully evaluated in phantoms for CIRT (98, 99) with a
1mm to 2mm agreement on the range prediction.
5 DISCUSSION

We have detailed the rationale to use CIRT for ACC management,
based on immunological, molecular, and pathological
considerations, even though no in vitro or preclinical study have
specifically evaluated CIRT irradiation on ACC cell lines to date. In
addition, clinical data demonstrate that CIRT is associated with
superior local control compared to conventional photon
radiotherapy. In the future, further improvement of the outcomes
of ACC treatment with CIRT may be possible by personalizing the
treatment by taking into account ACC molecular and pathological
features. Vered et al. (100) found that around 85% of ACC
expressed EGFR receptors, which motivated the use of anti-EGFR
systemic therapies in addition to radiation therapy, as
radiosensitizers and to increase micrometastatic disease control.
Adeberg et al. (101) recently evaluated adjunction of Cetuximab to
photon radiation therapy (54 Gy) with a CIRT boost [24 Gy(RBE)],
in 33 head and neck ACC patients. The toxicity was noticeable since
17% of the patients developed grade 3 rashes, 22% grade 3 radiation
Frontiers in Oncology | www.frontiersin.org 9
dermatitis and 48% grade 3 mucositis, but tumoral control was
encouraging with a three-year DFS and OS of 67% and 90%,
respectively. The ongoing NCT02942693 trial is a 2-arm study
evaluating six weeks of Apatinib, an anti-VEGFR2 drug, followed by
mixed irradiation with 56 Gy in photons and 15 Gy(RBE) in
carbons. Immunotherapy combined with CIRT, although
potentially attractive, considering the immunomodulatory effects
of CIRT, is not currently evaluated in clinical trials.

However, CIRT might face competition with low-LET RT
techniques for ACC management in the future. Takagi et al.
(102) evaluated the outcome of 40 ACC patients treated with
proton beam therapy (PBT) and 40 patients treated with CIRT;
no difference between PBT and CIRT were observed in terms of
OS, PFS, or local control at 5 years. However, in addition to the
inherent weakness of a retrospective non-randomized
comparison, there was a significant difference in the equivalent
dose prescription between treatment groups in favor of PBT.
Patient selection for CIRT (instead of PBT) must consequently
be defined; NTCP or dosimetric considerations could be used. In
some specific cases, fear of adverse events in case of rapid tumor
shrinkage second to CIRT irradiation might justify considering
normofractionated PBT irradiation. Reirradiation with photon
stereotactic radiotherapy has been evaluated for relapsed head
and neck ACC patients (103), with a total dose of 30 Gy in 5
fractions: the 3-year LC of 49% was lower than that observed
with CIRT (possibly due to the relatively low prescribed dose),
but this technique might be easily implemented in radiotherapy
centers where hadrontherapy is not available. Other ongoing
trials comparing CIRT with low-LET RT techniques include the
ETOILE trial (NCT02838602) comparing CIRT and PBT or
photon radiotherapy for radioresistant tumors, including ACC,
and the COSMIC trial (NCT04214366) comparing CIRT with a
mix of CIRT and photon beam radiotherapy for ACC. In
addition, financial sustainability is an issue that may weigh
against CIRT compared with other low-LET techniques. Jensen
et al. (104) estimated that IMRT with a carbon boost might have
a mean survival benefit of 0.86 years for a single head and neck
ACC, with an incremental cost-effectiveness ratio of 20.638€
per year.

Finally, other high-LET techniques are currently being
investigated for ACC, such as boron neutron capture therapy
(BNCT), currently under development in various European and
Asian centers. Kato et al. (105) treated one ACC patient to a dose
of 14Gy, which was well-tolerated without any grade ≥2 toxicity.
Other reports include Kankaanranta et al. (106), who re-irradiated
four inoperable recurrent ACC and Aihara et al. (107), who
treated four inoperable head and neck ACC (including two
recurrent diseases). This latter reported complete response for
all patients within 6 months, a median OS of 32 months and no
grade ≥3 toxicity.
6 CONCLUSION

The use of CIRT for ACC management is motivated by
immunological, molecular and clinicopathological considerations.
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Although no prospective randomized trials have been published to
this date and might not be easily feasible, due to the rarity of ACCs
and the scarce availability of particle beam RT facilities, clinical
studies demonstrated that CIRT was well tolerated and associated
with a substantial tumor control in diverse clinical situations,
especially in advanced unresectable stages. Current technical
developments ensure safe treatments.
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