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ABSTRACT

Chromosome-long haplotyping of human genomes
is important to identify genetic variants with differ-
ing gene expression, in human evolution studies,
clinical diagnosis, and other biological and medical
fields. Although several methods have realized hap-
lotyping based on sequencing technologies or pop-
ulation statistics, accuracy and cost are factors that
prohibit their wide use. Borrowing ideas from group
testing theories, we proposed a clone-based haplo-
typing method by overlapping pool sequencing. The
clones from a single individual were pooled combi-
natorially and then sequenced. According to the dis-
tinct pooling pattern for each clone in the overlapping
pool sequencing, alleles for the recovered variants
could be assigned to their original clones precisely.
Subsequently, the clone sequences could be recon-
structed by linking these alleles accordingly and as-
sembling them into haplotypes with high accuracy.
To verify the utility of our method, we constructed
130 110 clones in silico for the individual NA12878
and simulated the pooling and sequencing process.
Ultimately, 99.9% of variants on chromosome 1 that
were covered by clones from both parental chromo-
somes were recovered correctly, and 112 haplotype
contigs were assembled with an N50 length of 3.4
Mb and no switch errors. A comparison with cur-
rent clone-based haplotyping methods indicated our
method was more accurate.

INTRODUCTION

Human genomes are diploid, with the homologous chro-
mosomes being derived from each parent, respectively (1).
The process of resolving the diploid nature, which assigns
each allele to different homologous chromosomes, is called
haplotyping (2). For many biological and medical studies,
it is very valuable to obtain chromosome-long haplotyp-

ing information. For example, haplotypes can identify ge-
netic variants associated with altered gene expression (2),
and can be used to study human migration, evolution se-
lection and population structure. Most importantly, haplo-
types are very useful in clinical diagnosis (3).

At present, several methods have been proposed to re-
solve haplotypes, but all of them have advantages and
disadvantages. Computational methods based on popula-
tion genotype data can phase common variants cheaply
and accurately, but are incapable of dealing with rare or
individual-specific variants (4–6). The most direct experi-
mental method for haplotyping is physically separating the
chromosomes during cell division (7,8), which requires ex-
pensive specialized devices and subtle manipulation. Al-
ternatively, HaploSeq exploits chromosomes’ spatial infor-
mation based on Hi-C techniques to construct haplotype
blocks (9), while leaving many variants un-phased between
“blocks”. Several dilution-based haplotyping methods have
been reported, including single-molecule dilution (1,10,11),
transposome-based virtual dilution (12) and clone pooling
(13–16). In the ideal scenario, the target DNA is diluted into
substantial distinct wells to guarantee that there would be
no DNA fragments from both parental chromosomes over-
lapping in each well. However, this scenario requires enough
dilution in which the target DNA will be diluted into too
many wells, leading to a significant bias for single-molecule
amplification before sequencing. The contiguity-preserving
transposition (CPT-seq) dilution method solves the para-
dox by importing an indexed Tn5 transposome into tar-
get DNA to create separate virtual genomic partitions (12).
However, the broad length distribution of the DNA library
makes the subsequent PCR non-uniform, which would de-
crease the haplotyping coverage.

The clone-based dilution method will produce more ac-
curate haplotyping because long subsections of a haploid
could be extracted from the constructed clone libraries
(13). Therefore, the clone-based haplotyping approach is
still widely used, although substantial cost is required for
clone library preparation. The basic principle behind this
method is pooling clones into different pools for sequencing
and then reconstructing the clones from shorter sequencing
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reads and assembling them into longer haploid fragments.
However, in real experiments, clones covering the same sites
from both homologous chromosomes could simultaneously
appear within a pool. The overlapping parts between clones
from the homologous chromosomes will produce heterozy-
gosity, which is not informative for haplotyping (13). Hence,
current clone-based haplotyping methods remove either all
the overlapping clones (14) or just the overlapping parts
(15), which wastes the information carried by these parts
and reduces the accuracy of the assembled haplotype con-
tigs. Considering that clones could be picked repeatedly, if
clones are mixed combinatorially into different pools and
sequenced (a strategy defined as overlapping pool sequenc-
ing), it would be possible to construct more accurate haplo-
types containing the overlapping parts by correctly assign-
ing variants in the overlapping parts to their original clones,
based on the unique pooling pattern for each clone. In ad-
dition, because of the error-tolerance of overlapping pool
sequencing strategy (17), the reconstructed clone sequences
will be more accurate compared with the simple pooling,
which will improve the accuracy of the assembled haplo-
types.

Hence, we present a method for single individual haplo-
typing that could resolve haplotypes from overlapping clone
parts. This method is based on the overlapping pool se-
quencing strategy, which originated from Group Test the-
ories (18,19), as we described before (17,20). Overlapping
pool sequencing techniques have been used to find rare
variant carriers among a large number of samples in re-
cent years. Defining samples carrying the target variant as
positive, overlapping pool sequencing can find rare positive
samples from a large number of samples by mixing sam-
ples combinatorially to different pools, and then decoding
the sequencing results according to the pooling patterns for
each sample. The DNA Sudoku design (21) and binary-
based design (22) were constructed to screen rare variant
carriers; however, the latter failed when more than one sam-
ple contained the variant. Shental et al. (23) used com-
pressed sensing theories to resolve the group testing ma-
trix, which makes use of the number of reads containing
the target variant to improve the decoding efficiency. How-
ever, all the above designs lack well-grounded cost models,
which lead to expensive non-optimized overlapping pool-
ing design. Cao et al. (17) proposed an optimized overlap-
ping pooling design strategy that achieved a better perfor-
mance. At present, the overlapping pool sequencing tech-
niques have made significant progress such that they can not
only find more than one variant carrier, but also tolerate se-
quencing errors.

In the clone-based haplotyping scenario, considering that
haplotyping is performed to ascertain all the alleles on a
single chromosome and all the clones have a haploid na-
ture, haplotyping could be realized by determining all the
alleles on all the clones and then assembling these clones
into haplotype contigs. Thus, the critical step is to assign
allelic variants called from the sequencing data to their orig-
inal clones. For a given variant site, both the reference allele
(allele in the reference) and the non-reference allele (allele
called by software) need to be assigned respectively. Tak-
ing the clones containing a target allele as positive samples,
overlapping pool sequencing can be used to assign every al-

lele to clones by combinatorial pooling design and decod-
ing. Successful decoding for overlapping pool sequencing
requires that the positive samples are rare. The clones are
randomly constructed; therefore, very few clones span each
variant site. In other words, for each variant site, the clones
carrying a specified allele are rare in the whole clone library,
which meets the decoding requirement. When all the alle-
les are correctly assigned, clones could be reconstructed by
linking the alleles. Accordingly, clones that belong to the
same chromosome could be assembled to form haplotype
contigs by chaining together heterozygous variants.

Considering the rarity of clones carrying a certain allele,
techniques from compressed sensing (CS) theory (24) can
be used in the clone-based haplotyping scenario to decode
which clones contain a certain allele. The CS theory is an
information theory tool first used to analyze sparse signals.
Following its fast development, it has been applied widely
in many research fields, including image processing (25),
geophysics (26), astronomy (27) and biological applications
(28).

In this paper, we first describe the design and decoding
procedure for single individual haplotyping using overlap-
ping pool sequencing. Employing a pooling design algo-
rithm, the clones are pooled combinatorially following a
specific pooling pattern and then sent for sequencing. Using
the decoding algorithm from the field of compressed sens-
ing theories, each allele can be assigned back to its original
clones. Accordingly, clones could be reconstructed by link-
ing these alleles and further assembled into haplotype con-
tigs. Next, we conducted an experiment to phase haplotypes
of a HapMap individual, NA12878, in silico, to verify the
accuracy and efficiency of our method. Finally, a compar-
ison experiment employing current clone-based haplotyp-
ing methods on the same individual was conducted, which
showed that our method achieved a higher accuracy.

MATERIALS AND METHODS

Overlapping pool sequencing

Overlapping pool sequencing is a newly developed strategy
that identifies rare variant carriers (positive samples) from
a large number of samples, according to the results of a few
sequencing tests. Suppose there are n samples in which s
samples contain the target variant (s � n). The n samples
are pooled into t pools (t < n) and each pool is sequenced;
subsequently, the samples containing the variant could be
found according to the pooling pattern and sequencing re-
sult. The pooling pattern is based on a pooling matrix M.
The M is a t × n binary matrix M = {mij}, in which the rows
are indexed by pools A1,...,At ⊂ {1...n}, the columns are in-
dexed by samples S1,...,Sn, and mij = 1 if and only if the jth
sample is contained in the ith pool (Figure 1A).

In the clone-based haplotyping scenario, clone libraries
are constructed by extracting long subsections of a hap-
loid and are then distributed randomly and independently
in wells of plates. The most naı̈ve method to obtain clone
sequences is sequencing clones one by one and the haplo-
types could be assembled accordingly. However, there are
so many clones that the sequencing cost would be unafford-
able and the sequencing errors are difficult to eliminate. The
currently available strategies reduce the sequencing cost by
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Figure 1. Illustration of alleles assignment. (A) Five clones are pooled into
three pools, which means pool #1 contains clones 1, 4 and 5; pool #2 con-
tains clones 2 and 4; and pool #3 contains clones 3 and 5. (B) The sequenc-
ing results. For example, allele 2 is sequenced three, two and one times in
pools #1, #2 and #3, respectively. (C) According to M and Y, the vector x
for every allele could be solved and the five clones could be reconstructed
accordingly, as shown in (C). For example, the sequencing result of allele
2 is (3, 2, 1)T, equaling the dot-product of the vector M with the target vec-
tor x of (1, 1, 0, 1, 1)T, which means allele 2 is contained in clone 1, clone
2, clone 4 and clone 5, but not in clone 3.

pooling clones, but could not obtain haplotype information
from overlapping clone parts within a pool, and also could
not correct sequencing errors. Based on the above introduc-
tion, overlapping pool sequencing might solve these prob-
lems by pooling clones combinatorially following a certain
pattern, sequencing all the pools, and then decoding to as-
signing alleles to their original clones. Clones can then be
reconstructed by linking all the assigned alleles and can be
further assembled into haplotype contigs. Hence, the key
step is to assign the alleles called from sequenced data to
their original clones. The clones carrying a certain allele are
rare in the whole clone library; therefore, the rare clones car-
rying one target allele are called as positive samples, and the
allele assigning problem is converted to finding rare positive
ones from a large number of samples, which can be solved
efficiently by employing techniques from the field of com-
pressed sensing.

In general, to construct haplotypes employing overlap-
ping pool sequencing, clones are first pooled combinatori-
ally into different pools and then sequenced. Next, all the
alleles are identified by calling variants from the sequencing
results and each allele should be independently assigned to
its original clones. Finally, clones are reconstructed by link-
ing these alleles and further assembled into haplotype con-
tigs. The impact of sequencing errors can be relieved and
haplotypes with high accuracy can be phased accordingly
because of the error-tolerance of pooling and the decoding
process.

Pooling design

In overlapping pool sequencing, the pooling strategy should
be designed initially to guarantee its ability. Before the pool-
ing design, we only know the total clone number (n) and

clone coverage (c) for a given genome. According to these
known conditions, a pooling matrix M could be constructed
by employing a random size-k design (29), where a constant
number of clones are randomly chosen and pooled into each
pool. Therefore, there are three parameters for random size-
k design: the number of pools (t), the data throughput for
each pool (dt), and the percent of clones for each pool (k).
To achieve a correct decoding rate with the maximum effi-
ciency, the optimal combination of the three parameters is
chosen on the basis of simulation experiments. First, some
reasonable values of the parameters are selected. Next, the
simulation experiments under all combinations of selected
values of the three parameters are conducted, and many
replicates under every combination are performed. Then,
keeping the decoding rate beyond a threshold, the optimal
design parameters are selected based on the whole cost of
the sequencing experiment (17,20). When the optimal pool-
ing pattern has been identified, the pooling matrix M can
be constructed, and the clones should be pooled combina-
torially according to M and then sequenced.

Normally the clone number (n) is >100 000. Studies in the
field of overlapping pool sequencing (30) have proved that
it is more efficient to split a large library into smaller blocks
of samples, which is called repeated blocks design. Hence,
the clones are first randomly divided into several blocks and
then pooled “intra-block”. The number of clones that span
a variant site follows a Poisson distribution; therefore, we
could calculate the block number (b), the clone numbers in
each block (cb), and the maximum number (s) of clones that
span a variant, i.e. the maximum number of positive sam-
ples in group testing. Thus the pooling design for each block
should guarantee the ability to find the correct set of clones
when the variant is covered by, at most, s clones.

Assigning alleles to clones

After sequencing the pooled clones, the next critical proce-
dure is to call the variants and assign the alleles to the cor-
rect clone set. Currently, variants may be obtained from the
next generation sequencing data by various methods (31).
Subsequently, alleles are assigned to their original clones
one by one, including both the reference allele and the non-
reference allele for every variant site. Considering that few
clones actually carry a certain allele, the allele assignment
problem can be solved using compressed sensing (CS). In
CS, the unknown sparse vector x, with few elements that
are non-zero, can be reconstructed by solving the equation:

Mx = Y (1)

In the allele assignment, M is the pooling matrix M =
{mij}, and for each allele, the ith element in Y represents
how many times the allele is sequenced in the ith pool, which
could be obtained from the sequencing results. M and Y are
known; therefore, vector x could be obtained by solving the
equation. The elements in x are either 1 or 0, meaning the
clone contains the allele or it does not. Figure 1 shows an
example. Suppose five clones are pooled into three pools,
according to Figure 1A. This means that pool #1 contains
clone 1, 4 and 5; pool #2 contains clone 2 and 4; and pool #3
contains clone 3 and 5. The sequencing results are shown in
Figure 1B. In this example, allele 2 is sequenced three, two
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and one times in pools #1, #2 and #3, respectively. Accord-
ing to M and Y, the vector x for every allele could be solved
and the five clones could be reconstructed accordingly, as
shown in Figure 1C. For example, the sequencing result of
allele 2 is (3, 2, 1)T, equaling the dot-product of the vector
M with the target vector x of (1, 1, 0, 1, 1)T, which means
allele 2 is contained in clone 1, clone 2, clone 4 and clone 5,
but not in clone 3.

To assign alleles correctly and efficiently in substan-
tial clones, the l1-squared nonnegative regularization
(NNREG) algorithm could be employed to solve equation
(1) and estimate x, which achieves sparse recovery using
a conventional non-negative least squares algorithm and
allows for sparsity promotion, constraining x to be non-
negative at the same time (32). NNREG recovers x by solv-
ing the optimization problem (2) for some large λ > 0.

x∗ = arg min ‖x‖2
l1 + λ

2 ‖Mx − Y‖2
l2 s.t. x ≥ 0 (2)

In general, NNREG reports a vector x∗ ∈ R+. To decide
which clones carry the target allele, a post-processing pro-
cedure should be performed to find the correct clone set.
Similar to (23), we chose a heuristic scheme to deal with x*.
We ranked all non-zero values obtained by NNREG, and
rounded the largest s non-zero values, setting all other val-
ues to zero to get the vector x*s. We then computed a post-
probability term PP(s) = P(O|M, x∗s) standing for the
probability that the sequencing result O is observed when
x*s indicates the set of clones that carry the target allele. The
details for PP(s) are given in Appendix 1. Repeating this
for different values of s, we selected the vector x*s, which
maximizes the post-probability term, because the probabil-
ity of observing the sequencing results under the exact set of
clones carrying the target allele should be greater than that
obtained considering other sets of clones.

Haplotype assembly

Following the assignment of alleles, HapCUT (33) was em-
ployed to assemble haplotypes. HapCUT requires two kinds
of input data: clone sequences and the set of variants cov-
ered by them. Clones could be reconstructed by linking al-
leles that belong to each clone. Meanwhile, the variant set
could be obtained by collecting all the alleles assigned to at
least one reconstructed clone.

The variants would be called as heterozygous if both ref-
erence alleles and non-reference alleles were observed, and
as homozygous if only non-reference alleles were observed.
Hence, in the assembly, variants that are homozygous are
discarded, as they are not useful for haplotype phasing.
Likewise, all sites with more than two alleles are discarded,
as all variant sites should be bi-allelic for a diploid genome.
The input to HapCUT can be represented as a matrix, X,
where each row represents a clone and each column repre-
sents a heterozygous variant. Alleles for each heterozygous
variant are arbitrarily relabeled as 0 and 1, and an entry in
the matrix, X[i][j], is either ‘0’, ‘1’ or ‘–’ depending on the
allelic value of position j in clone i.

In the absence of any errors, the rows of fragment matrix
X can be partitioned into two disjointed sets, such that ev-
ery column is homozygous in each set (34). Furthermore,

the consensus values can be used to phase the two haplo-
types. However, the sequencing process, for instance, will
produce errors in fragments, and perfect bi-partitions can-
not be achieved. On the basis of computing max-cuts in
graphs derived from the matrix X, HapCUT partitions the
clones to minimize the error correction, which is also known
as the minimum error correction (MEC) objective, which
produces significantly more accurate inferred haplotypes.

RESULTS

Experimental design

First, we downloaded the SNP variants for a
HapMap sample NA12878 (http://www.stanford.edu/∼
kuleshov/NA12878.vcf.gz, Supplementary Table S1). Re-
placing bases on the corresponding site of the reference
genome hg19 with these variants, we could artificially
produce two haplotype sequences for the individual
NA12878. Next, clones were generated by taking sequences
randomly from these two haplotypes. The length of the
clones followed a Poisson distribution, where the average
length was approximately 140 kb (Supplementary Figure
S1). The whole clone coverage was set as 6×, similar to Lo’s
research (13). Ultimately, 130 110 clones were generated.

Considering the large clone number, a repeated blocks de-
sign was employed to split these clones into smaller blocks,
where an optimized overlapping pool strategy was con-
ducted repeatedly for each block, which reduced the decod-
ing complexity (30). According to the above analysis, we
could calculate the maximum number of clones that span a
variant in different block designs, i.e., the maximum number
of positive samples in group testing (Supplementary Table
S2, Supplementary Figure S2). Hence, we finally split the
clones into eight blocks, each containing approximately 16
264 clones and more than 99.27% of the variants were cov-
ered by, at most, three clones. Accordingly, given a variant
site, the overlapping pool sequencing design should guaran-
tee the ability to find the correct set of clones when the site
was covered by, at most, three clones.

For each block with 16 264 clones, we applied a ran-
dom size-k design to pool the clones combinatorially (29),
where a constant number of clones was randomly chosen
and pooled into each pool. Therefore, there were three pa-
rameters for random size-k design: the number of pools (t),
the data throughput for each pool (dt), and the percent of
total clones that were pooled in each pool (k). As described
in the Methods section, the three parameters were chosen
on the basis of simulation calculations under all combina-
tions of the parameter values. First, some reasonable val-
ues of the parameters were selected. For t, according to our
previous design experience of finding three positive samples
from over 10 000 samples, 50, 60, 70 and 80 pools were cho-
sen. For k, because each pool containing too many or too
few clones would reduce the decoding efficiency, 20, 30, 40
and 50% were chosen. For dt, because we chose 15 000, 20
000, 25 000 and 30 000 as the overall sequencing depth for
each pool and average clone length was 140 kb, 2.1, 2.8, 3.5
and 4.2 GB were chosen. The correct decoding rates for dif-
ferent combinations of various k, t and dt were then cal-
culated and 1000 replicates were conducted for each sce-
nario. The results are shown in Figure 2. It was obvious

http://www.stanford.edu/%E2%88%BCkuleshov/NA12878.vcf.gz
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Figure 2. The correct decoding rate for different combinations of various
k (the percent of clones that are pooled in each pool), t (the number of
pools) and dt values (the data throughput for each pool). The color and
size of the circle denote the correct decoding rate for each scenario.

that setting the parameter k (the percent of clones in each
pool) at 20% (3252 clones per pool) produced the best per-
formance, because the sequencing depth for each clone was
higher when fewer clones were contained in the pool as the
data throughput was fixed. However, when k was less than
20%, because fewer clones within a pool would reduce the
encoding space, it was hard to construct a pooling matrix
with each column being unique to any other column, mean-
ing clones could possess identical pooling signatures, which
prevented correct decoding.

Therefore, we next fixed k as 20% and calculated the
correct decoding rate for various t and dt values (Supple-
mentary Figure S3). The results showed that the correct
decoding rates were lower when fewer pools or a lower
data throughput were used. Obviously, there was a trade-
off between the number of pools and the data throughput.
Hence, numerous simulations needed to be performed to
verify whether a pair of pool number and data throughput
could succeed in achieving high accuracy. Here, we set the
threshold for the correct decoding rate as 95%. The results
showed that 50 pools required more than 5.6GB, 60 pools
required 4.9GB, 70 pools required 3.5GB and 80 pools re-
quired 2.8GB of data throughput (Supplementary Figure
S3). Considering that 50 and 60 pools needed more sequenc-
ing data and 80 pools increased the cost of sequencing li-
brary preparation, we chose the design with 70 pools and
3.5GB data for each pool, meaning each pool had about
7.68× sequencing depth for each clone and the overall se-
quencing depth per clone was about 107×. We next verified
the decoding ability of the chosen design for variants cov-
ered by various numbers of clones (Supplementary Figure
S4). The results showed that the chosen design was success-
ful for more than 95% of variants covered by three clones
and could even assign correctly 80% of variants covered by
four clones, which was consistent with our expectation.

Simulation

According to the chosen overlapping pool design, we em-
ployed pIRS (35) to simulate 100 bp Illumina sequencing
reads for each clone and then mixed them. The average se-
quencing error rate was set as 1%, which decided the 99%
base calling accuracy, and the simulated sequencing depth
followed a Poisson distribution (Supplementary Figure S5).
Furthermore, mixing bias was also added to the simulation
procedure to bring it closer to a real situation. Based on
the study conducted by Shental et al. (23), a random vari-
able following a Gaussian distribution was added to each
non-zero element of the pooling matrix to simulate mixing
bias. The standard deviation of the Gaussian distribution
was 0.05, reflecting up to 5% average noise in the mixed
quantities of each sample.

For each block with 16 264 clones, sequencing of 70 pools
was conducted by mixing reads for each clone in silico. Bwa-
0.7.12 (36) was used to map the reads back to hg19, and
GATK 3.4–46 (37) was used to call variants for each pool.
We applied our decoding algorithm to assign these alleles to
their original clones. We only analyzed the results for chro-
mosome 1 of the human genome because of a limited com-
putation capability.

To assemble haplotype contigs based on the allele-
assigned results, HapCUT (33) required both clone se-
quences and the corresponding variant set. The clones were
selected first, each of which carried more than one allele and
was located in chromosome 1.

In the clone selecting procedure, 10 914 clones carrying
more than one allele were located in chromosome 1 initially.
Nevertheless, 1044 of the 10 914 were found to belong to
other chromosomes, which were mis-assigned to chromo-
some 1 and were defined as false positive clones. Actually,
these false positive clones resulted from false read mapping
and could be relieved by longer sequencing reads, which
produced more accurate read mapping. We implemented
two experiments with different read lengths (50 and 75 bp)
to reconstruct clones. The results proved that the numbers
of false positive and false negative clones were both re-
duced for longer reads (see Supplementary Table S3), be-
cause longer reads could be mapped more accurately than
shorter reads and resulted in fewer alleles that were mis-
assigned to incorrect clones. Meanwhile, these false positive
clones could also be reduced when the alleles for the whole
genome are considered and assigned. Remarkably, more al-
leles were carried by true positive clones than by false pos-
itive clones (Supplementary Figure S6), which means the
false positive clones represent only a small fraction of the
clones of other chromosomes that are mis-anchored by mis-
mapping reads. When considering all the chromosomes, the
reconstructed clones would be anchored correctly accord-
ing to the majority alleles, despite a few alleles being as-
signed to them that are mis-anchored to chromosome 1.

Alternatively, to filter out these false positive clones, we
chose at least 10 reference alleles that are located uniformly
between the assigned alleles for each clone to verify whether
the clones belong to chromosome 1. The candidate clones
were retained if the assignment for more than 70% of the
chosen alleles supported the clone belonging to chromo-
some 1, and were filtered out otherwise. Finally, 9881 clones
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were left, of which only 53 false positive clones that belong
to other chromosomes were mis-assigned to chromosome
1 (Supplementary Figure S6). However, 39 clones belong-
ing to chromosome 1 were also filtered out, mainly result-
ing from the intra-chromosome repeat sequences and the
limited capability of the design to assign those alleles that
were covered by too many clones. Meanwhile, 854 clones
were missed in the recovered clone set (Supplementary Fig-
ure S7). We found that the majority of these false negative
clones spanned very few or no variants (Supplementary Fig-
ure S8).

To obtain the recovered variant set for HapCUT, all the
alleles that were assigned to at least one selected clone were
collected. The results showed that we could recover ∼93.5%
of the variants from all those input (Table 1, Supplementary
Figure S9), which was defined as the variants recovery ac-
curacy. In chromosome 1, for all the 221 009 variants that
were covered by clones from both parental chromosomes,
220 734 (99.9%) were recovered correctly. However, for the
25 577 variants that were covered by clones from at most
one chromosome, most of them were missed or called in-
correctly. In theory, homozygous variants covered by clones
from only one chromosome should be recovered correctly;
however, heterozygous variants would be mis-identified as
homozygous if only the non-reference allele was sampled
by clones, and would be lost when only the reference allele
was sampled by clones.

On the basis of the clone sequences and the recovered
variant set, HapCUT (33) was used to assemble clones into
haplotypes. In summary, 112 haplotype contigs were as-
sembled to form haplotypes with an N50 length of 3.41
Mb (Table 2). Homozygous variants were neglected in Hap-
CUT; therefore, we only analyzed the heterozygous vari-
ants to measure the accuracy of the assembled haplotypes.
When comparing the assembled haplotypes with the in-
put individual haplotypes, a variant could fall into one of
five categories: (i) matching, variants with alleles identical
in both homologous chromosomes; (ii) mis-matching, vari-
ants with at least one allele different in the homologous
chromosomes; (iii) switch, variants with alleles switched
and a crossover was needed to recover the true phase; (iv)
false negative variants, variants that were missed in the as-
sembled haplotypes, and (v) false positive variants, false
variants that occurred only in the assembled haplotypes.
These values were defined as the haplotyping accuracy to
describe the matching degree between the assembled and
the simulated input haplotypes. We maximized the num-
ber of matching variants to anchor the assembled haplo-
type contigs to the homologous chromosomes, respectively,
and counted the number of variants falling in each category
(Table 3). The results showed that no mis-matching, switch
and false positive variants existed in the assembled haplo-
types and only 9783 false negative variants occurred. These
variants were missed because they were covered by clones
from at most one chromosome, and were mis-identified as
homozygous or lost during variant calling. The results re-
vealed that our method achieved highly accurate haplotypes
and could repress switch errors, indicating that our method
represents an accurate option for individual haplotyping.

Comparison with current methods

To verify the effectiveness of our method, we conducted
an experiment to compare the performance of our method
with current clone-based haplotyping methods. There are
several dilution-based haplotyping methods, including long
fragment read (LFR) technology (1), statistically aided,
long-read haplotyping (SLRH) (11), fosmid-based (14,15)
and BAC-based methods (13). Alternative implementations
of these methods mainly differ in the length of the orig-
inal fragments, the number of pools sequenced and other
parameters, which directly affect the cost versus haplotype
length trade-off. For example, LFR maximized the clone
coverage to 57.6×, which resulted in low sequencing depth
for each clone (<2×) for a given total read coverage (1).
SLRH sheared DNA into fragments of 10 kb and the total
clone coverage was only 3.84× which needed extra statisti-
cal data for haplotyping (11) (Supplementary Table S4). Lo
analyzed the effects of haplotype length on different pool-
ing parameters and found that the length of clones (or frag-
ments) should be chosen as high as possible to haplotype
longer contigs (13). The results of an experiment using 129
024 BAC clones with 140 kb (6× clone coverage) pooled
into 24 pools reported an N50 contig length of 2.4 M (13),
which performed better than other dilution-based methods
(Supplementary Table S4). Meanwhile, more clones need
much more sequencing data in our strategy and 6× clone
coverage is sufficient to provide variants recovery of 93.5%
in our simulation. Hence, we simulated experiments based
on Lo’s design to compare with our OPS method.

Taking the 130 110 clones of sample NA12878 con-
structed in our experiment as the source data, we randomly
pooled these clones into 24 pools following Lo’s strategy,
with each pool containing 5421 clones. Meanwhile, in our
method, the 130 110 clones were pooled into 560 pools be-
cause of the overlap pooling strategy. In Lo’s method, dilu-
tion of more pools would lead to fewer overlapping clones
in each pool and more effective alleles could be used to link
clones. To retain consistency with our method, the exper-
iment employing Lo’s method with 130 110 clones being
pooled into 560 pools was also conducted and each pool
contained about 232 clones.

For the experiments with 24 pools and 560 pools, the se-
quencing depth for each clone was set as 30× to guarantee
that more than 99% of base pairs in the clone were cov-
ered by at least 15 sequence reads. After generating artifi-
cial reads for each pool by running pIRS, we pooled to-
gether all the sequencing data and called the variants us-
ing GATK 3.4–46 (37) (Supplementary Figure S10). The
results of 24 and 560 pools were very similar, because vari-
ant calling is based on the sequencing data, on which the
number of pools would have little influence. Compared with
our method, Lo’s results presented some false positive vari-
ants that may have resulted from sequencing errors and false
mapping. However, this situation could be relieved in our
method by the error-tolerance of overlapping pool sequenc-
ing.

Clones were reconstructed using targetcut in the SAM-
tools library (38) to identify regions of enriched coverage
(i.e. clone contigs). Next, we broke up the identified regions
where significant changes in coverage occur, representing



PAGE 7 OF 11 Nucleic Acids Research, 2016, Vol. 44, No. 12 e112

Table 1. Comparison between the recovered variants set and the input variants set

Category
# of variants covered by clones
from at most one chromosome

# of variants covered by clones
from both parental chromosomes In total

Matching 9819 220 734 230 553
Mis-matching 7581 31 7612
Missing 8177 244 8421
In total 25 577 221 009 246 586

Table 2. The statistics of the assembled haplotypes for chromosome 1

OPSa Lo’s methodb Lo’s methodc Perfect Assemblyd

Number of contigs 112 177 109 110
Total length 204 296 736 200 122 742 204 613 934 204 643 568
Average length 1 824 078 1 130 636 1 877 192 1 860 396
Max 8 854 891 7 038 610 8 854 891 10 616 834
Min 1655 1259 1655 1655
N50 3 415 257 2 027 638 3 415 257 3 577 657
Avg het 1138.0 717.6 1166.6 1160.3

aThe overlapping pooled clone sequencing-based haplotyping (our method).
b,cLo’s clone-based haplotyping method (13). Twenty-four pools and 560 pools were used, respectively, for b and c.
dThe assembly for the perfect scenario, which has been defined as a comparison baseline.
‘Avg het’ represents the average number of heterozygous variants on a haplotype contig.

Table 3. The accuracy of the assembled haplotypes

OPSa Lo’s methodb Lo’s methodc Perfect Assemblyd

Match 127 454 122 620 126 617 127 631
Mismatch 0 0 0 0
Switch 0 4361 507 0
False negative 9783 9179 10 140 9773
False positive 0 27 33 0

aThe overlapping pooled clone sequencing-based haplotyping (our method).
b,cLo’s clone-based haplotyping method (13). Twenty-four pools and 560 pools were used, respectively, for b and c.
dThe assembly for the perfect scenario, which has been defined as a comparison baseline.
Homozygous variants were neglected in HapCUT and the numbers of heterozygous variants are shown.

the overlapping parts of the clones. Details of the proto-
col can be found in (13) and the length distributions of re-
constructed clones on chromosome 1 are shown in Supple-
mentary Figure S11. We still used HapCUT to assemble the
haplotypes and the results are shown in Table 3. In the as-
sembled haplotypes, our method produced 127 454 matched
variants, which was higher compared with Lo’s method,
regardless of whether 24 or 560 pools were used. For the
switch errors, in the experiment with 24 pools, 4361 switch
errors occurred, while in the experiment employing Lo’s
method with 560 pools, there were only 507 switch errors,
representing a significant decrease. However, there were no
switch errors in our method. The results of the matched
variants and the switch errors fully proved that the haplo-
types generated by our method were much more accurate
than those produced by Lo’s method employing 24 and 560
pools.

To establish a comparison baseline for these assembly
haplotypes, we considered the perfect scenario where all
alleles were recovered and in consistent with the original
clones, and all the alleles were assigned to the correct clones
with 100% accuracy. Using these alleles and clones, we em-
ployed HapCUT to assemble haplotype contigs, defined as
the perfect assembly. Subsequently, we compared the per-
fect assembly with the assembled haplotype contigs gener-
ated by our method (OPS) and Lo’s method (the details are

shown in Tables 2 and 3, Figure 3, and Supplementary Fig-
ures S12 and S13). In Table 3, 9773 false negative errors ap-
peared in the perfect assembly scenario because the clones
in the perfect assembly were also randomly extracted from
long subsections of a haploid, which might miss covering
some variant sites. These missed variants were counted in
as the false negative errors (Supplementary Figure S12).

Compared with Lo’s method, whether using 24 or 560
pools, our method (OPS) produced results that were more
similar to the perfect assembly, which proved that our
method was more accurate. Figure 3 shows the capability of
different methods to resolve alleles into their haploid clones.
Every scatter point in Figure 3 represents a reconstructed
clone and the coordinates of the point represent the number
of alleles whose genotype was identical to one of the hap-
lotypes for the individual NA12878. The figure shows that
almost all the alleles on the same clone reconstructed by our
method supported only one haplotype (Figure 3A), which
was similar to the perfect scenario (Figure 3B). For Lo’s
method, considering that the overlapping clone parts within
a pool were broken and eliminated, both reconstructed
clones before and after the break procedure were presented
in Figure 3C–F, respectively. These figures showed that the
alleles on some clones reconstructed by Lo’s method indeed
represented different haplotypes, which meant errors had
occurred during the clone reconstruction. Supplementary
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Figure 3. The number of alleles in each reconstructed clone sequence that support each haplotype in the diploid individual. Every scatter point in Figure 3
represents a reconstructed clone and the coordinates of the point represent the number of alleles whose genotype was identical to one of the haplotypes for
the individual NA12878. Subplots stand for the reconstructed clones for (A) our method; (B) perfect assembly; (C) Lo’s method before the break where 24
pools were used; (D) Lo’s method after the break where 24 pools were used; (E) Lo’s method before the break where 560 pools were used; (F) Lo’s method
after the break where 560 pools were used.
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Figure S12 shows that more switch errors appeared in Lo’s
method using 24 pools. We inferred that our method could
repress switch errors because of accurate allele assignment.
To support this, we conducted an experiment to determine
why switch errors appeared in Lo’s method. Clones cov-
ering the switch location and carrying variants from both
parental sides that appeared in Lo’s strategy were elimi-
nated and the remaining clones were assembled. The results
showed that the switch errors were avoided (Supplementary
Table S5). This experiment proved that the incorrect assign-
ment of variants in the simple-pooling haplotyping strat-
egy is the main reason for switch errors. In our method,
on the basis of accurate allele assignment, the majority of
the reconstructed clones were pure haplotype contigs, which
could repress switch errors.

More examples of error assembly in Supplementary Fig-
ure S13 showed that, compared with our method or the per-
fect assembly, Lo’s method tended to either link some dis-
junct haplotype contigs or break some contigs. These errors
might result from incorrect genotyping of variants and re-
tained overlapping clones.

However, the high accuracy of our method needs sub-
stantial sequencing data of 1960GB (3.5GB × 560). Actu-
ally, the sequencing data could be reduced. In our simula-
tion, the chosen parameters (70 pools, 3.5GB sequencing
data and 20% clones per pool) aimed to recover >95% vari-
ants covered by three clones. The decoding requirement is
too high, since alleles covered by three clones constitute a
very small fraction of the alleles and the majority of the
alleles were covered by fewer than three clones for each
block, with 0.75 clone coverage according to the Poisson
distribution (Supplementary Figure S2). To prove that the
sequencing data could be reduced in our method, we im-
plemented a simulation to calculate the accuracy of the as-
sembled haplotypes under different amounts of sequencing
data (see Supplementary Table S6). The correct-assigning
rates for variants covered by 1, 2 and 3 clones and the av-
erage rate were calculated respectively, based on which the
haplotyping were simulated employing HapCUT (Supple-
mentary Table S6). The results indicated that the correct-
assigning accuracy dropped as the amount of sequencing
data was reduced (Supplementary Figure S14). According
to this curve, we simulated another experiment using half
as much sequencing data (980GB), where the results met
our expectations and proved that our method could retain a
fairly high haplotyping accuracy using less sequencing data,
although 511 switch errors occurred because of a few incor-
rectly assigned alleles (Supplementary Table S7).

The program’s timings are listed in Supplementary Ta-
ble S8, according to our simulation experiment on a Dell
T630 workstation with 32 CPUs (encoding is hardly time-
consuming and is not listed). Results showed that the de-
coding took less time than other steps. However, the call-
ing variants step for a whole genome took about 71 days
which cost too much time. Because of the limited disk stor-
age of our workstation, variants were called from each pool
separately and merged at last in our experiment. Actually,
if the hardware of a workstation allowed, the sequencing
data from all the pools could be integrated together and
used to call variants, which could save the time dramatically.
We conducted another experiment to call variants from the

integrated data of a whole block, not from separate pools,
and the estimated time for calling variants of one genome
dropped from 71 days to about 12 days (Supplementary Ta-
ble S9). Meanwhile, the statistic of alleles called from sepa-
rate pools and the whole block showed that the calling ac-
curacy of the two strategies had no big differences (Supple-
mentary Figure S15).

Significantly, to make our method easier to use, OP-
Shap (in Perl) for encoding and decoding, with detailed in-
structions, is available online at http://bioinfo.seu.edu.cn/
OPShap.

DISCUSSION

We proposed a clone-based haplotyping method employ-
ing overlapping pool sequencing to design pooling patterns
and then decode them. First, the clones are randomly di-
vided into several blocks in which the clones are pooled
‘intra-block’, so that the pooling and decoding complexity
are dramatically reduced. The clones in every block are then
pooled combinatorially following the optimal pooling pat-
tern according to the random size-k design and sent for se-
quencing. The alleles called from the sequencing result are
then assigned to the correct clone set using techniques de-
rived from the compressed sensing theories. On the basis of
the correct assignment of alleles, the individual’s haplotypes
could be phased by assembling the reconstructed clones.

Compared with current simple-pooling haplotyping
strategy, our method achieves higher accuracy and longer
haplotype contigs. Significantly, in our simulation experi-
ment, the switch errors produced in Lo’s method were re-
pressed in our method, and false linkages or truncations
of haplotype contigs were also corrected. Meanwhile, our
method is sequencing error-tolerant, because random size-
k design could obtain an error-tolerant matrix M, which
could correct a small number of sequencing errors. When
an allele of a clone was sequenced as the wrong base pair in
a pool but sequenced correctly in other pools, this sequenc-
ing error could be corrected based on the majority of cor-
rect sequencing results. The capability to correct sequencing
errors was demonstrated by the accuracy of variant calling
in the experiment. Furthermore, compared with the vari-
ants recovery accuracy of 93.5% under 6× clone coverage
in our method, LFR recovered an average of 92.5% vari-
ants under very high haploid fragment coverage (38–116)
(1), and both Lo (13) and SLRH (11) need extra data to fill
gaps between haplotyping contigs to recover over 90% of
variants. Therefore, we believe our method performs bet-
ter than other dilution-based methods and is reliable for
phasing the chromosomes. Besides the improvement in ac-
curacy, our method could construct all the clones and locate
them on genomes, which are valuable by-products that are
achieved at no extra cost. This kind of information might
be used for other biological research, such as the discovery
of large genomic inversions.

With such high accuracy, our method still has some issues
that should be resolved before being widely accepted. First,
at present, longer sequencing read technologies produce
reads that are substantially longer than the read lengths of
the NGS platforms, such as Illumina’s phased-sequencing
platform (11,39). In essence, these methods produce much

http://bioinfo.seu.edu.cn/OPShap
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longer virtual reads on the basis of diluting long genome
fragments into substantial pools. The mechanism is identi-
cal to those haplotyping methods that are based on dilu-
tion (10,11). Furthermore, virtual reads by these technolo-
gies are still no longer than 10 kb because of the limita-
tion of the PCR’s ability to amplify fragments longer than
10 kb (40). Hence, it is likely that the contiguity of hap-
lotype assemblies resulting from these methods would be
limited compared with those haplotyping methods that ex-
ploit much longer DNA fragments, such as fosmid or BAC
clones. Besides, longer reads would lead to more accurate
mapping, which might improve the accuracy of allele as-
signment and clone reconstruction in our method. In ad-
dition, multiple alleles in the same read could validate the
allele assignment. Significantly, although single-molecule
sequencing technologies, such as the Nanopore (41) and
PacBio (42) sequencing platforms, allow the possibility of
obtaining long sequence reads of >10 kb without conduct-
ing PCR, these platforms still need to solve some issues be-
fore being widely used, such as low output and the com-
paratively high error rate, which requires error-correcting
steps based on the data obtained from second-generation
sequencing platforms (43,44). Moreover, in the evolution-
ary research fields of population genomics, metagenomics
and phylogenomics, the second-generation techniques will
remain state of the art for at least the next few years (45).

Second, the need for substantial sequencing data could
be reduced. The results of our calculation on different se-
quencing depths indicated that the correct-assigning accu-
racy drops slightly as the amount of sequencing data de-
creases. The results of our experiment using half as much
sequencing data met our expectations and proved that our
method could retain a fairly high haplotyping accuracy us-
ing less sequencing data. However, some switch errors oc-
curred because of a few incorrectly assigned alleles. Users of
our method could calculate the decoding results under dif-
ferent combinations, and then choose parameters according
to their requirements, such as the sequencing cost or num-
ber of pools.

Third, our strategy requires more pools to guarantee a
sufficient and distinct combinatorial pooling pattern for dif-
ferent clones. More pools mean more clone picking and
pooling operation, which is laborious, but fortunately an
automatic protocol iPipet (46) has been proposed recently
to pick and pool clones, which could vastly relieve the ef-
forts for the clone picking and pooling operation.

Finally, because the downstream analysis of our strategy
was based on large amounts of data, the timings might be
one of the major concerns of potential users. As aforemen-
tioned, variants calling strategy could be improved and the
analysing time would be reduced effectively. Actually, con-
sidering the large-scale workstations, such as supercomput-
ing centers or cloud computation platforms, the time for
analysis of one genome could also be further reduced. For
instance, we expect that the analysis for a whole genome
could be finished in just one day with 120 CPUs’ parallel
calculation.

In summary, our proposed strategy could construct
highly accurate haplotypes based on an individual’s clones.
Our method offers multiple options for individual haplo-
typing, almost perfect accuracy with higher cost, or cutting

sequencing cost by lowering accuracy to an extent that is
still ideal in most scenarios. At present, considering the se-
quencing cost as the main factor in selecting a haplotyp-
ing method, the parameters of our method could be ad-
justed to reduce the sequencing data. As the cost of sequenc-
ing continues to decrease, almost perfect haplotyping ac-
curacy could be achieved using our strategy by improving
the sequencing depth. Therefore, we conclude that, com-
pared with current simple-pooling haplotyping approaches,
our method achieves a more accurate performance and has
great potential for future application.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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