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Abstract

A variety of cardiovascular, neurological, and neoplastic conditions have been associated with oxidative stress, i.e.,
conditions under which levels of reactive oxygen species (ROS) are elevated over significant periods. Nuclear factor
erythroid 2-related factor (Nrf2) regulates the transcription of several gene products involved in the protective response to
oxidative stress. The transcriptional regulatory and signaling relationships linking gene products involved in the response to
oxidative stress are, currently, only partially resolved. Microarray data constitute RNA abundance measures representing
gene expression patterns. In some cases, these patterns can identify the molecular interactions of gene products. They can
be, in effect, proxies for protein–protein and protein–DNA interactions. Traditional techniques used for clustering
coregulated genes on high-throughput gene arrays are rarely capable of distinguishing between direct transcriptional
regulatory interactions and indirect ones. In this study, newly developed information-theoretic algorithms that employ the
concept of mutual information were used: the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE),
and Context Likelihood of Relatedness (CLR). These algorithms captured dependencies in the gene expression profiles of
the mouse lung, allowing the regulatory effect of Nrf2 in response to oxidative stress to be determined more precisely. In
addition, a characterization of promoter sequences of Nrf2 regulatory targets was conducted using a Support Vector
Machine classification algorithm to corroborate ARACNE and CLR predictions. Inferred networks were analyzed, compared,
and integrated using the Collective Analysis of Biological Interaction Networks (CABIN) plug-in of Cytoscape. Using the two
network inference algorithms and one machine learning algorithm, a number of both previously known and novel targets
of Nrf2 transcriptional activation were identified. Genes predicted as novel Nrf2 targets include Atf1, Srxn1, Prnp, Sod2, Als2,
Nfkbib, and Ppp1r15b. Furthermore, microarray and quantitative RT-PCR experiments following cigarette-smoke-induced
oxidative stress in Nrf2+/+ and Nrf22/2 mouse lung affirmed many of the predictions made. Several new potential feed-
forward regulatory loops involving Nrf2, Nqo1, Srxn1, Prdx1, Als2, Atf1, Sod1, and Park7 were predicted. This work shows the
promise of network inference algorithms operating on high-throughput gene expression data in identifying transcriptional
regulatory and other signaling relationships implicated in mammalian disease.
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Introduction

Sustained elevated levels of reactive oxygen species (ROS) have

been associated with the etiology of a vast range of pathological

conditions. These include a variety of neurodegenerative diseases,

cardiovascular diseases, cancer, diabetes mellitus, rheumatoid

arthritis, and obstructive sleep apnea [1]. ROSs are highly reactive

molecules. They include the superoxide anion, the hydroxyl radical,

and hydrogen peroxide. ROSs are a natural by-product of oxygen

metabolism. However, ROS levels can dramatically increase during

times of environmental stress, causing injury and damage by

attacking DNA, protein and lipid, thereby leading to oxidative

stress. A number of redox-regulated gene products serve to protect

cells from such ROS damage. The antioxidant response element

(ARE), a cis-acting DNA element, is known to be activated by

oxidative stress and to be responsible for the transcriptional

regulation of several redox-regulated gene products [2].

The principal transcription factor that binds to the ARE is

Nuclear factor erythroid 2-related factor (Nrf2) [3]. Nrf2 is a basic

leucine zipper (bZIP) transcription factor that translocates to the

nucleus following liberation under oxidative stress conditions from

its cytosolic inhibitor Keap1 [4]. In the nucleus, Nrf2 forms dimers
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with the proteins Maf, Jun, Fos, ATF4 and/or CBP, and regulates

transcription by binding to the ARE upstream of a number of

target genes [4–7]. Established Nrf2-regulated genes include Cu/

Zn superoxide dismutase, catalase, thioredoxin, thioredoxin

reductase, glutathione reductase, glutathione peroxidase and

ferritin (L) [3]. All of these genes are involved in the response to

oxidative stress. There are several other genes also known to be

involved in the response to oxidative stress [1]. The transcriptional

regulatory relationships at the mRNA level, and the signaling

relationships at the protein level linking these genes and their

products are only partially resolved.

To find direct regulatory targets of Nrf2, we use two algorithms

that can infer such regulatory links from gene expression data:

Context Likelihood of Relatedness (CLR) [8] and the Algorithm

for the Reconstruction of Accurate Cellular Networks (ARACNE)

[9–11]. These algorithms were applied to the analysis of the mouse

lung gene expression datasets to infer regulatory connections

between oxidative stress genes. Both of these algorithms use the

concept of mutual information (MI) from information theory [12].

The pair-wise MI scores calculated are derived from correlations

in the patterns of expression of the two genes involved. We also

annotate and perform further analysis of the putative target set

thus identified.

Data derived from the promoter regions of known Nrf2 targets

were used to train LibSVM, a machine learning support vector

machine classification algorithm [13]. LibSVM was then used to

confirm the predictions derived from gene expression data via a

separate analysis of upstream DNA sequences of the predicted

target genes. We also identify signaling partners of a key Nrf2

target, NAD(P)H:quinine oxidoreductase 1 (Nqo1), shedding light

on previously unidentified interactions, many of which are

supported by independent microarray and quantitative RT-PCR

experiments.. These results demonstrate the promise of network

inference algorithms in identifying transcriptional regulatory and

other signaling relationships implicated in mammalian disease.

Results

Use of the two network inference algorithms, ARACNE and

CLR, on the gene expression data, as well as use of the LibSVM

algorithm on sequence data, yielded a number of outcomes where

the same regulatory edge was predicted by all three algorithms

(Table 1). ARACNE and CLR use the MI metric on the

expression data to identify direct dependencies. LibSVM, trained

with sequence data from upstream regions of known Nrf2-

regulated genes (positive examples) and empirically determined

Nrf2-independent genes (negative examples), was used to predict

transcription targets from the test set of putative Nrf2-regulated

target genes previously identified by ARACNE and CLR. Figure 1

depicts findings of the CLR algorithm when applied to mouse lung

microarray data, with a focus on interactions involving Nrf2

determined by using (see Methods) the Collective Analysis of

Biological Interaction Networks (CABIN) software [14]. A z-score

cutoff of 2.0 on the CLR score set yielded eighteen edges above the

cutoff between the probe sets representing the Nfe2l2 gene that

produces Nrf2 and the probe sets for other genes in the combined

dataset. In other words, the set of gene states for Nfe212 contained

enough information on the states of 18 other genes (probe sets) to

lift their pairwise score two standard deviations or higher above

the average CLR score among all genes in the set. Given that

Nfe2l2 and other genes are represented by more than one probe

set, these eighteen edges yield connections from Nfe2l2 to twelve

other genes.

Author Summary

A variety of conditions including certain cancers and heart
diseases, diabetes mellitus, and rheumatoid arthritis have
been associated with the generation of high levels of
highly reactive molecular species under conditions known
as ‘‘oxidative stress.’’ A number of protein molecules have
been identified as participants in an elaborate response to
oxidative stress. Sustained elevated generation of reactive
species can overwhelm this response and lead to disease
conditions. In these studies, we make use of data
generated from over 250 studies (microarrays) in which
messenger RNA levels of the gene precursors of mouse
lung proteins have been examined collectively. We have
made use of computational approaches to help identify
the key regulatory relationships among the proteins that
respond to oxidative stress. Nrf2, a protein known as a
master regulator of oxidative stress response, was a
principal focus of our studies. Among the novel regulatory
targets of Nrf2 we identified is Als2, a protein involved in
amyotrophic lateral sclerosis (Lou Gehrig’s disease). We
also identify important candidate three-party regulatory
relationships, one of which involves the recently discov-
ered Srxn1, an antioxidant protein that reverses S-
glutathionylation, a common posttranslational modifica-
tion associated with diseases such as Parkinson’s disease,
diabetes, hyperlipidemia, Friedreich’s ataxia, renal cell
carcinoma, and HIV/AIDS. These studies demonstrate the
utility of network inference algorithms and affirm that Nrf2
has a direct regulatory role over the expression of other
genes responding to oxidative stress.

Table 1. Summary of Nrf2-regulated gene target predictions.

Gene ARACNE CLR LibSVM Q RT-PCR

Als2 + + + +

Atf1 + + +

Crebbp + 2 2

Epas1 + 2 2 +

Ercc6 + + 2 +

Fos + + 2 +

Hif1a + 2 2

Idh1 + 2 +

Jun + 2 2 +

Nfe2l2 N/A N/A +

Nfkbib + + +

Nqo1 + + + +

Park7 + 2 2 +

Ppp1r15b + + + +

Prdx1 + + +

Prdx2 + 2 2

Prnp + + +

Sod1 + 2 2

Sod2 + + + +

Srxn1 + + + +

Txnrd2 + + 2 +

+Nrf2 regulated.
2Nrf2 regulation NOT predicted.
Q RT-PCR confirmed by quantitative RT-PCR data.
doi:10.1371/journal.pcbi.1000166.t001

Algorithms Elucidate Nrf2
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Figure 2 is a depiction of the dependencies obtained using the

sets of microarrays and the ARACNE algorithm. A high

significance threshold for MI values was used, with a p-value of

1e-7. Post-processing of the inferred edges to remove indirect

regulatory relationships was done using a DPI tolerance of 0.15.

For a more focused view, interactions involving Nrf2 were

selected. Cutoffs for both the ARANCE and CLR algorithms

were empirically determined. The cutoffs were pushed as high as

possible to exclude false regulatory connections while still

retrieving at least a moderate size set of interactions to explore

and validate with quantitative RT-PCR, LibSVM, and literature

search. In this sense, our work is classic exploratory analysis. All

the Nrf2 target genes found using the CLR algorithm were also

selected under the ARACNE algorithm under the cutoff values as

stated above, and with the parameter settings as given in Methods.

However, ARACNE also found additional putative Nrf2 targets.

This finding is, however, not an indication that the dependencies

identified only by ARACNE are untrustworthy. As summarized in

Table 2, all of the direct dependencies predicted only by

ARACNE are backed by the force of biochemical evidence.

These observations underscore the power of these inference

algorithms (given large enough datasets) as potential guides in the

search for regulatory and signaling connections in biological

networks.

Seeking further evidence at the sequence level for direct, DNA-

binding regulation between Nrf2 and the potential sets of target

genes produced by the ARACNE and CLR runs, we used

LibSVM, our selected algorithm for supervised machine learning.

The training set in the classification of target gene, non-target gene

consisted of features of upstream DNA promoter regions of known

Nrf2 transcriptional regulation targets and empirically-determined

non-target Nrf2-independent genes (Text S1). Using the LibSVM

nu-SVC classifier at cost = 1, n = 0.36 and c = 2213, a true positive

rate of 0.7 or better was obtained under two cross-validation

conditions for the genes in the training set. Furthermore, the

precision, recall, and area under the ROC curves were 0.7 or

better (Table 3). The LibSVM predictions generated on a test set

obtained from the dependencies identified by CLR and ARACNE

(Figures 1 and 2) posit that Atf1, Nqo1, Nfkbib, Prdx1, Srxn1,

Prnp, Sod2, Ppp1r15b, Als2, Idh1, and Nrf2 (Nfe2l2) are

transcriptionally Nrf2-regulated. Of these, Nqo1, Prdx1, and

Nrf2 are established targets of Nrf2 transcriptional regulation [3].

Tables 1, 2, and 4 summarize our results. Table 1 shows all gene

targets of possible direct Nrf2 regulation reported by either

ARACNE, CLR, or LibSVM, for a total of 21 genes. Table 2

presents what was previously known about these putative target

genes, based on our literature search.

Array experiments involving wild type (WT) and Nrf2 knockout

(NO) mouse lungs were then conducted to verify the regulatory

role of Nrf2 on the expression of the genes identified. The mice

were exposed to either air or cigarette smoke (CS). CS-induced

elevations of glutathione (GSH) and Thiobarbiturate reactive

Figure 1. CLR algorithm results showing connections to gene Nfe212 (protein Nrf2). Regulatory interactions involving Nrf2 as determined
using the CLR algorithm. Across 260 microarrays, profiles of genes categorized by the Gene Ontology as participating in the response to oxidative
stress were examined. Z-scores were calculated on the basis of the CLR mutual information based values. At a z-score cutoff of 2.0 (two standard
deviations above the mean score of all pair-wise CLR calculations), eighteen edges were reported that involved any of the Affymetrix probe sets
representing the Nfe2l2 gene. These edges are shown in Figure 1. Thirteen of the eighteen putative edges had z-scores of 2.45 or higher. Some of
these edges had the same gene at the other end (duplicate edges from the different Nfe2l2 probe sets), resulting in a total of twelve genes shown
connected to Nfe2l2 in Figure 1 and twelve entries reported for CLR in Table 1. The nodes represent genes and the lines (edges) between them
represent transcriptional regulatory relationships. Interactions involving Nrf2 (Gene Symbol: Nfe2l2) are depicted in this diagram. Multiple edges
between two nodes indicate multiple array probe-sets on the arrays referencing the same gene.
doi:10.1371/journal.pcbi.1000166.g001

Algorithms Elucidate Nrf2
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substances (TBARS) levels depicted in Figure 3 illustrate the

capacity of CS to induce oxidative stress. GSH levels rise in

response to oxidative stress, as a protective measure [1]. In the

absence of Nrf2, the CS-induced rise in GSH levels is abolished

(Figure 3A). This suggests a requirement for Nrf2 for the rise in

GSH levels, and underscores the protective role of Nrf2. Increases

in TBARS indicate increased decomposition of lipid peroxidation

products and signal the presence of oxidative stress [15]. However

in the absence of Nrf2, the CS-induced rise in lipid peroxidation as

indexed by elevated TBARS levels is enhanced (Figure 3B). This

emphasizes a protective role of Nrf2 against CS-induced lipid

peroxidation.

Thus, microarray data generated from CS-exposed mouse lungs

can elucidate the regulation of gene expression in response to

oxidative stress. In Figure 4, microarray data for a cross-section of

three stated Nrf2 targets are summarized. Nqo1 and Sod1 have

previously been identified as transcription regulatory targets of

Nrf2 [3]. Als2 is a novel target arising out of the computational

analysis being reported here. We performed a set of measurements

showing upregulation of all three genes only in the presence of the

Nrf2 gene (wild type; no knockout) and CS-induced oxidative

stress (Figure 4). This is additional evidence for a regulatory role

for Nrf2 in the expression of Nqo1, Sod1 and Als2. Furthermore,

quantitative RT-PCR experiments were conducted on a gene set

found to be differentially expressed in these CS exposure

microarrays as well as identified by ARACNE or CLR as Nrf2

targets. The results affirm the regulatory role of Nrf2 for many of

the gene targets predicted by our combined analysis of microarray

and sequence data (Figure 5). Nqo1, Sod1, Ercc6, Prdx6, Als2,

Txnrd2, Park7, Srxn1, and Epas1 all undergo enhanced

upregulation after CS exposure only in the presence of the Nrf2

gene. Thus, we have good evidence from quantitative RT-PCR

that Nrf2 positively regulates the expression of these genes. In the

case of Sod2, Ppp1r15b and Fos, CS-induced upregulation is

modestly enhanced in the absence of Nrf2. It is inferred that Nrf2

exerts a negative regulatory influence on the expression of these

genes.

Figure 2. ARACNE algorithm results showing connections to gene Nfe212 (Nrf2). Regulatory interactions involving Nrf2 as determined
using the ARACNE algorithm. Across 260 microarrays, profiles of genes categorized by the Gene Ontology as participating in the response to oxidative
stress were examined. The DPI tolerance was set at 0.15; p = 1e-7. The nodes represent genes and the lines (edges) between them represent
transcription regulation relationships. Interactions involving Nrf2 (Gene Symbol: Nfe2l2) are depicted in this diagram. Multiple edges between two
nodes indicate multiple array probe-sets on the arrays referencing the same gene.
doi:10.1371/journal.pcbi.1000166.g002

Table 2. Previous biochemical links of several identified
genes to Nrf2 or ARE.

ARACNE and
LIBSVM

ARACNE and
CLR only

ARACNE
only Previous evidence

Idh1 No previous evidence

Ercc6 No previous evidence

Fos Jaiswal, 2004

Txnrd2 Evidence for Txnrd1

Crebbp Katoh et al., 2001

Epas1 Scortegagna et al., 2003

Hif1a Gong et al., 2001

Park7 Clements et al., 2006

Sod1 Park and Rho, 2002a

aNrf2 transcription regulation target.
doi:10.1371/journal.pcbi.1000166.t002

Algorithms Elucidate Nrf2
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Discussion

Rangasamy et al. list 45 genes whose expression increase in

Nrf2+/+ mice but not Nrf22/2 mice in response to CS exposure

[16]. All but four of these Nrf2-dependent genes have the

consensus Anti-oxidant Response Element (ARE) within 10

kilobases upstream of the transcription start site. Thirteen of the

45 are antioxidant, 14 are detoxifying enzymes, seven are

protective proteins, two are transcription factors (TFs), three are

transporters, two are phosphatases and one is a receptor [16]. The

experiments did not distinguish between the direct regulatory gene

targets of Nrf2 and those genes that are only indirectly dependent

on Nrf2. Moreover the presence of the ARE is itself insufficient

proof of Nrf2 regulation, the ARE being a composite site where

several TFs interact [17].

The involvement of the ARE and Nrf2 in the regulation of the

expression of genes involved in the response to oxidative stress has

been noted [3]. We identified a total of nine genes as potential

Nrf2 regulatory targets by all three computational methods—

ARACNE, CLR, and LibSVM. Two of the nine (Nqo1 and

Prdx1) have been previously found as Nrf2 targets, as reported

above and in Table 2. This leaves a list of seven novel targets for

Nrf2 regulation, reported across all three computational algo-

rithms: Als2, Atf1, Nfkbib, Ppp1r5b, Prnp, Sod2, and Srxn1 Both

manual and automated literature searches yielded no previous

reports of these genes being direct targets of Nrf2 regulation.

(Although Idh1 could be numbered among the targets based on

the output of the ARACNE and LibSVM runs, it is not listed in

Table 4 because the CLR runs did not establish a dependency

between Idh1 and Nrf2 at the cut-off used for the other gene

targets.) Also, while Park7 was identified only by ARACNE, and

not by CLR and LibSVM, its gene expression measurements

showed it as positively regulated by Nfr2 in our separate

quantitative RT-PCR experiments, and hence is included in our

discussion below.

Table 3. LibSVM performance.

Correctly classified TP ratea FP ratea Precisiona Recalla F-measurea ROC areaa

10-fold 69.39% 0.7 0.3 0.7 0.7 0.69 0.7

Leave-one-out 71.43% 0.72 0.28 0.72 0.72 0.71 0.72

Train set only 79.59% 0.79 0.21 0.8 0.79 0.79 0.79

This scheme was used for Nrf2 regulation predictions.
Leave-one-out = N-fold cross-validation; 10-fold = 10-fold cross-validation.
LibSVM Details: Used nu-SVC, n = 0.36, c = 2213, C = 1; train set size = 49.
TP = true positive; FP = false positive.
aRepresents mean value for ‘‘Nrf2-regulated’’ and ‘‘Not-Nrf2-regulated’’ classes.
doi:10.1371/journal.pcbi.1000166.t003

Table 4. Potential novel transcription regulatory targets of
Nrf2 in mouse lunga.

Official
symbol Name

Als2 Amyotrophic lateral sclerosis 2 (juvenile) homolog (human)

Atf1 Activating transcription factor 1

Nfkbib Nuclear factor of kappa light chain gene enhancer in B-cells
inhibitor, beta

Ppp1r15b Protein phosphatase 1, regulatory (inhibitor) subunit 15b

Prnp Prion protein

Sod2 Superoxide dismutase 2, mitochondrial

Srxn1 Sulfiredoxin 1 homolog (S. cerevisiae)

aPrediction based on concurring ARACNE, CLR, and LibSVM characterization of
data. Additionally, these gene products did not show up directly interacting
with Nrf2 on the networks generated by our automated literature searches.

doi:10.1371/journal.pcbi.1000166.t004

Figure 3. Oxidative stress markers in Nrf2+/+ and Nrf22/2

cigarette smoke (CS)-exposed or air-exposed lungs. Figure 3A -
lower induction values of total GSH were observed after CS exposure in
Nrf22/2 (NO) lungs after CS as compared to Nrf2+/+ (WT) CS exposed
lungs. Figure 3B - levels of TBARS (marker of lipid peroxidation) were
elevated in NOCS lungs as compared to WTCS lungs. The data is shown
as Mean6SD based on three replicates (n = 3) in each of the four
conditions.
doi:10.1371/journal.pcbi.1000166.g003

Algorithms Elucidate Nrf2
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Genes Associated with Neurodegenerative Disorders
Several of the genes that were identified in our work as potential

targets of Nrf2 transcriptional regulation in the mouse lung have

been implicated in certain neurodegenerative disorders. Of the set

of 46 genes of interest (see Methods), six are annotated in the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [18] with

Figure 4. Oxidative stress-mediated induction in Sod1, Nqo1 and Als2 mRNA. Increases in expression of Sod, Nqo1, and Als2 mRNA only in
Nrf2+/+ (WT) CD-1 mice but not Nrf22/2 (NO) mice following cigarette smoke (CS) exposure. This figure depicts mean (n = 3) mRNA expression from
the microarrays on Nrf2+/+ air-exposed (WTAir), Nrf2+/+ CS-exposed (WTCS), Nrf22/2 air-exposed (NOAir) and Nrf22/2 CS-exposed (NOCS). Results
shown suggest regulation of these genes by Nrf2.
doi:10.1371/journal.pcbi.1000166.g004

Figure 5. Oxidative stress-mediated induction of numerous predicted Nrf2 associated genes. Nqo1, Sod1, Ercc6, Prdx6, Als2, Txnrd2,
Park7, Srxn1 and Epas1 mRNA were induced selectively more in Nrf2+/+ mouse lungs after CS exposure. Some of the Nrf2-associated predicted genes
as Sod2, Ppp1r15b, Fos and Jun either show no differential induction or an inverse relation with Nrf2 gene. Nrf2 apparently exerts a negative
regulatory influence on the expression of Sod2, Ppp1r15b and Fos. The results are plotted as relative fold changes (RFC) with WT air (WTAir) as the
baseline for three replicates (n = 3).
doi:10.1371/journal.pcbi.1000166.g005

Algorithms Elucidate Nrf2
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the ‘‘Neurodegenerative Disorders’’ classification. (Table S2 lists

Gene Ontology (GO) [19] and KEGG annotation on these 46

genes.) These six are Crebbp, Apoe, Als2, Sod1, Park7, and Prnp.

Five of these six, all except Apoe, were placed by our analysis in

the list of 21 potential targets of direct Nrf2 regulation shown in

Table 1. In addition, Nfe2l2 is annotated in KEGG as associated

with prion disease. Using the LibSVM algorithm, we found that

Nfe2l2 regulates itself (see Conclusions) and therefore is included

in our set of 21 targets. Thus, of the seven genes marked in KEGG

as associated with neurodegenerative disorders, six appear in our

set of Nrf2 targets, roughly a two-fold enrichment of what we

would expect to see by chance (7621/46 = 3.2 genes).

Death of motor neurons induced by an Amyotrophic Lateral

Sclerosis (ALS)-linked Sod1 mutant is prevented by the Als2 gene

product, alsin [20]. Alsin acts as a guanine nucleotide exchange

factor for Rac1 and Rab5, both GTPases [21,22]. A number of

protein function-altering Als2 mutations have been identified as

causing ALS [23].

Human diseases associated with S-glutathionylation, a common

post-translation modification, include PD, diabetes, hyperlipid-

emia, Friedreich’s ataxia, renal cell carcinoma and HIV/AIDS

[24,25]. The oxidoreductase, Srxn1, plays a role in signaling by

catalyzing reduction following S-glutathionylation [26]. Srxn1 is

involved in reversing NO-induced protein glutathionylation;

Srxn1 protein deglutathionylation results in the restoration of

phosphatase activity of non-receptor-type protein tyrosine phos-

phatase [25]. Srxn1 also catalyzes the reduction of cysteine sulfinic

acids [27].

Park7, also known as DJ-1, has been linked to a number of

Parkinson’s Disease (PD) pathways [28]. When oxidized, Park7

acts as a chaperone protein that prevents the characteristic

aggregation of certain proteins in PD [29]. Indeed, oxidized forms

of this protein accumulate in the brains of some PD and

Alzheimer’s disease patients [30]. Its functional integrity is so

important that up to 1% of PD cases are associated with Park7

mutations [31].

The four traditional classes of prion diseases (Creutzfeldt–Jakob

disease, kuru, fatal familial insomnia, and Gerstmann–Straussler–

Scheinker syndrome) all involve mutations of Prnp and multiple

abnormal conformations of its protein product Prp [32]. This set

of neurodegenerative diseases has become intensely epidemiolog-

ically interesting following the transmission of bovine spongiform

encephalopathy to humans and the apparent concomitant

emergence of the variant Creutzfeldt–Jakob disease [33]. The

ARACNE, CLR, and LibSVM runs in these studies all indicate a

regulatory role of Nrf2 on the expression of the Prnp gene in the

mouse lung (Tables 1 and 2).

Using the two algorithms (ARACNE and CLR), we establish

direct statistical dependencies between the expressions of genes

such as Sod1, Als2, Srxn1, and Park7, and the expression of

Nfe2l2 (the Nrf2 gene) in the mouse lung. The LibSVM studies

affirm that in the case of Als2 and Srxn1, the direct statistical

dependencies indicate transcriptional regulation by Nrf2. Further-

more, our quantitative RT-PCR experiments show that CS-

induced oxidative stress of the mouse lung increases the mRNA

expression of several of these genes, and that these increases

require the presence of Nrf2. Experimental evidence (Figures 4

and 5) confirms, for instance, that Als2 is indeed a novel Nrf2

target. Cigarette smoke (CS) exposure induces oxidative stress

(Figure 3A and 3B) and acts as an inducer of Nrf2-mediated

transcription. In wild type mice (but not Nrf2 knockout mice),

increases in Sod1, Nqo1, and Als2 mRNA expressions are

observed after CS exposure. These data point to a transcriptional

regulatory role for Nrf2 on these genes in the mouse lung.

Nqo1, also known as DT-diaphorase or NAD(P)H:quinone

oxidoreductase, was found to be a target of direct regulation by

Nrf2 under both the CLR algorithm runs (Figure 1) and the

ARACNE runs (Figure 2). In addition, the LibSVM prediction

that Nqo1 is trans- criptionally Nrf2-regulated has biochemical

proof [34]. Thus, Nqo1 was predicted to be a direct target of Nrf2

by all three methods, and has been confirmed in the literature as

such. We therefore considered it suitable for expanding our study

of the oxidative stress response beyond Nrf2. All direct

dependencies (all edges) involving Nqo1 as determined by the

ARACNE runs are shown in Figures 6 and 7. Although the

current literature does not capture all the relationships being

identified here, the edges represent a number of plausible

regulatory or functional relationships, involving Nqo1. For

instance, there is no previous finding of the direct relationship

between Gpx3 (glutathione peroxidase 3) and Nqo1. However,

Gpx3 is distributed in the same fashion as Nqo1 and Sod1 (Cu/Zn

superoxide dismutase) [35,36]. The relationship between Nqo1

and certain other connected nodes, such as Sod1, have been

identified [37].

The Algorithms Used and the Biological Significance of
Mutual Information

Both CLR and ARACNE use the concept of mutual

information (MI). Why not use Euclidean distance or Pearson

correlation for pair-wise calculations, as is done in standard

microarray-based gene clustering? Why use MI? Unlike Euclidean

distance and Pearson correlation, MI does not assume that the

relationship between the genes is linear. A major advantage of this

information theoretic calculation is its nonparametric nature, and

the entropy calculations performed in calculating the MI value do

not require any assumptions about the distribution of variables.

MI provides a general measurement for dependencies in the data:

negative as well as positive, nonlinear as well as linear [38,39].

The higher the MI score between two genes, the greater the

information we derive on the states of the first gene from the

pattern of states in the other, and the greater the likelihood that

one of the genes is directly regulating the other. While both

ARACNE and CLR are mutual information based algorithms,

and while both were applied here to the same microarray datasets,

we believe that there is a legitimate reason to conclude that a

regulatory connection found by both algorithms is of higher

probability of being a true regulatory relationship than if only one

of the two algorithms scored such a connection highly. ARACNE

and CLR impose a superstructure on the basic MI calculation that

differs in important ways. ARACNE also post-processes the results

in a different manner. Also, the binning (discretization) methods

used are different—which can be highly important. Therefore

when a gene-to-gene relationship is scored highly by both

algorithms, the algorithms have arrived at that conclusion using

different calculations. An analogy can be made here to the Oak

Ridge National Laboratory GRAIL gene finder tool which uses

several algorithms—operating on the same sequence data—and

combines their results for improved gene calling. For our resource-

limited, time-limited exploratory analysis, we focused on the

inferred regulatory connections we believed had the highest

probability of proving to be biologically valid and the most robust,

that is, on the connections inferred by ARACNE and CLR

together.

As with the standard clustering metrics, MI calculations are

symmetric, yielding identical scores from gene A to gene B and

from gene B to gene A. Therefore the directionality (which of the

two genes regulates the other) cannot be inferred from the MI

score alone. More information is needed: is one gene known or
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suspected to be a transcription factor? Does one of the two appear

to connect (regulate, as a ‘‘hub’’) many other putative targets?

Does one gene connect (have a high MI score) to two or more

putative target genes in the same operon? Additional information

must be sought, with the regulatory edge in question looked at in

the wider context of the entire inferred network.

Each edge connecting the nodes in Figures 1 and 2 is subject to

one of at least two interpretations. First, we can interpret the edge as

a direct dependency between the expression of a transcription factor

producing gene and a target non-transcription factor gene, that is, as

an indicator of direct transcriptional regulation of the target by the

transcription factor via DNA binding of the transcription factor. For

instance, in Figure 2 the edge between Nrf2 (gene Nfe2l2) and Sod1

depicts the fact that the expression of Cu/Zn superoxide dismutase

(Sod1) is transcriptionally regulated by Nrf2 [40]. Second, if such an

edge is one of two or more connections going into a common target,

the source gene for one of those edges may be producing a protein

necessary for the action of the primary transcription factor also

connecting to the common target. For example, this would hold true

for Nfe2l2 (Nrf2) and Park7 (Parkinson disease (autosomal recessive,

early onset) genes as joint regulators of a common target gene. Park7

has no direct effect on Nfe2l2 mRNA levels. However, it does

stabilize the Nrf2 protein produced by Nfe2l2, and is required for

the transcriptional activity of Nrf2 [41], and thus, through binding

to Nrf2 (rather than directly to DNA near the target), Park7 also

regulates each of Nrf2’s direct targets, with such regulation being

reflected in the correlation between Park7 expression levels and that

of the target of Nrf2.

Figure 7. Alternate view of the ARACNE algorithm results, here
focused on the subset of connections that directly involve
Nqo1.
doi:10.1371/journal.pcbi.1000166.g007

Figure 6. ARACNE algorithm results showing connections to genes Nqo1 and Nfe212 (Nrf2). Results of ARACNE runs on microarray data
showing extension of the Nfe212 (Nrf2) network from Nqo1, one of its targets. Transcriptional regulatory interactions involving Nrf2 and Nqo1 as
determined using the ARACNE algorithm. Across 260 microarrays, profiles of genes categorized by the Gene Ontology as participating in the response
to oxidative stress were examined. The DPI tolerance was set at 0.15; p = 1e-7. The nodes represent genes and the lines (edges) between them
represent transcription regulation relationships. Interactions involving Nrf2 (Gene Symbol: Nfe2l2) and Nqo1 (one of its regulatory targets) are
depicted. Multiple edges between two nodes indicate multiple array probe-sets on the arrays referencing the same gene.
doi:10.1371/journal.pcbi.1000166.g006
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In Figure 2, the edge between Nfe2l2 and Park 7 shows that

Nrf2 also exerts regulatory control on the mRNA expression of

Park7 itself. Microarray and quantitative RT-PCR data generated

from Nrf2 knockout mice (Figures 4 and 5) show CS-induced

enhanced mRNA expression of Nqo1, Sod1, Ercc6, Prdx6, Als2,

Txnrd2, Park7, Srxn1, and Epas1 in wild-type but not Nrf2-

knockout mice. In the knockout mice, where Nrf2 is absent,

mRNA expression for these genes is dramatically decreased in

response to CS (state of Nrf2 knockout CS-exposed ‘‘NOCS’’ in

Figures 4 and 5) as compared to wild type with Nrf2 present and

active. Thus we infer that Nrf2 is required for the CS-induced

increase in Park7 mRNA expression. This assertion holds also for

Nqo1, Sod1, Ercc6, Prdx6, Als2, Txnrd2, Srxn1, and Epas1, as

can be seen in the figures.

As noted above, some of the genes reported (Park 7, Jun, and

Crebbp) have been investigated and have been found to work with

Nrf2, though they have not previously been identified as genes

directly activated by Nrf2. They remain possible targets of Nrf2

regulation, with a possible fit into the category of feed-forward

loops discussed below. Indeed we show that in the absence of Nrf2,

CS elicits a suppression of Park7 and Jun mRNA expression (see

state ‘‘NOCS’’ in Figure 5). Thus the significant mutual

information content reported by ARACNE and CLR between

each of these genes and Nfe2l2 has biological significance.

Edges between the genes producing two transcription factors

are subject to similar interpretations as outlined above. In the first

case, one of the two transcription factors is a transcriptional

regulator of the gene producing the other. In the second case, such

an edge can be an indication that the two transcription factors act

as coregulators of the expression of other genes, with both proteins

working closely together for properly modulated expression of the

gene target(s), causing a very tight correlation in their gene

expression patterns. These are not mutually exclusive categories.

For example, Nrf2 and the transcription factor Atf1 can jointly

regulate the target gene ferritin H, and, as our data indicate, Nrf2

can also be a transcriptional activator of Atf1. In fact, this is

common triangular regulatory motif, called a feed-forward loop [42],

between three genes in a transcriptional regulatory network.

Feed-Forward Loops
Such connected subsets of three genes can often form what are

known as feed-forward loop (FFL) transcriptional regulatory

network motifs. These FFL motifs appear in hundreds of gene

systems. In this context, gene Nfe212 (Nrf2) would be one of the

three genes in an FFL subgraph, having an edge to Nqo1 as an

activating regulator of that gene. The direction of the edges from

Nqo1 to X, and from X to Nfe2l2 remain to be determined, as

well as type of regulation for those two edges–activation or

repression.

Other examples of possible feed-forward loops are as follows: (1)

The gene product Jun (whose gene is shown in Figure 2 as

connected to the Nrf2-producing Nfe212 gene by a high

ARACNE score), is part of the activator protein 1 (AP1)

transcription factor and is known to serve as a coregulator with

Nrf2 in some promoter regions [6]. (2) The Fos gene product was

found to be connected to Nrf2 by high scores using both the CLR

algorithm (Figure 1) and the ARACNE algorithm (Figure 2). Fos

can be a component of AP1 and has been shown to negatively

regulate ARE-mediated transcription regulation [43]. (3) Another

example is activating transcription factor 1 (Atf1), shown

connected to Nrf2 in both Figures 1 and 2. Also, there is a recent

report by Iwasaki et al. [44] indicating Atf1 is a transcriptional

repressor at an anti-oxidant response element, thus modulating

target response to Nrf2, which is the principal transcriptional

activator of the antioxidant response element.

The regulatory network shown in Figure 6 has inherent within it

a number of three-party relations of the kind characterized in

Figure 8, where the edge between Nrf2 and Nqo1 represents

transcriptional regulation by Nrf2. However the edge between

Nrf2 and gene X in Figure 8 (with X representing any of the

following: Sod1, Srxn1, Txnrd2, Prdx1, Prdx2, Prdx6, Atf1,

Park7, or Als2) and the edge between X and Nqo1 represent a

number of possible transcriptional regulatory relationships, with

one gene serving as a final target, and the other two genes

functioning as activators or repressors of mRNA expression.

Uri Alon [45] has classified the possible feed-forward loops

within such a three-node, three-edge relationship into eight types.

In the specific case of Nrf2-Nqo1-Sod1, the transcriptional

regulatory influence of Nrf2 on both Nqo1 and Sod1 has been

established. Hence we have activation edges from gene Nfe212

(Nrf2) to both Nqo1 and Sod1. The remaining, less characterized

edge represents the Nqo1–Sod1 regulatory relationship. Does

Nqo1 directly regulate Sod1—or vice versa? Watanabe et al. [37]

report that inhibition of Nqo1 in lung epithelial (A549-S) cells

results in inhibition of H2O2 generation by quinones. Exogenous

Sod1 also inhibits H2O2 generation by low levels of quinones.

Thus inhibition of Nqo1 has the same effect as raising the level of

Sod1. Based on this, we infer that Nqo1 exerts an inhibitory effect

on Sod1. Hence, if Nqo1 is increased, Sod1 should be repressed,

and H2O2 generation will not be inhibited. And, therefore, if

Nqo1 is inhibited, then H2O2 generation will be inhibited,

agreeing with experimental observation. This inferred relation-

ship, resolving the character of the remaining edge, is illustrated in

Figure 9. The subgraph shows an connection from Nqo1 to Sod1,

with Nqo1 acting as an inhibitor. This matches the type 1

incoherent feed-forward loop, which is one of the two most

frequent occurring of the eight types of FFLs. (The other common

Figure 8. A subset view of three-party direct dependencies
involving Nrf2 (Nfe2l2), Nqo1 and gene ‘‘X’’ from the ARACNE
algorithm results. Gene X is a placeholder for any of these genes:
Sod1, Srxn1, Txnrd2, Prdx1, Prdx2, Prdx6, Atf1, Park7 and Als2. Nrf2
transcriptionally regulates Nqo1 expression; this defines one of the
three edges.
doi:10.1371/journal.pcbi.1000166.g008
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type is the type 1 coherent feed-forward loop, where all three edges

represent transcriptional activation.)

Four possible Nrf2-Nqo1-X feed-forward loops are shown in

Figure 10. The third gene, gene ‘‘X’’, can be any one of Srxn1,

Prdx1, Atf1, or Als2. All four putative loops have two defined edges,

both of which represent transcriptional activation by Nrf2.

However, the third edge, corresponding to a direct regulatory

relationship between Nqo1 and gene X, remains to be established.

All of these genes are involved in the response to oxidative stress,

however. For example, Als2 knockout mice are more susceptible to

oxidative stress, and Als2 protects against oxidative stress [46,47].

On the basis of the results of our computational analysis, we believe

that additional work to confirm direct regulatory relationships

between Nqo1 and Srxn1, Prdx1, Atf1, or Als2 would be warranted.

Noise
As explained in the Data Sources sub-section under Methods,

data samples, all from mouse lung, were run on two platforms: the

Affymetrix GeneChip Mouse Genome 430 2.0 array and the

Affymetrix Mouse Expression Set 430 (MOE430A). The latter is a

subset of the former. However, for each of our network inference

runs data from only a single platform was used, not both. While

this limited the number of data points on each gene to something

less than if we had combined the two platforms, we thus avoided

the problem of comparing gene expression across platforms. The

remaining task was that of combining data from multiple

laboratories that employ the same microarray platform. (Table

S1 lists the data sources.) We performed RMA analysis using the

affy package in BioConductor, as stated in Data Sources section of

Methods. We acknowledge that noise will be introduced when

combining array sets from different sources and that this could be

a confounding factor. However, we stress that we were functioning

in the framework of relatively low-cost, relatively simple

exploratory analysis, mining the growing collection of public

microarray datasets for identification of candidate regulatory

relationships to be later confirmed via LibSVM, quantitative RT-

PCR, and literature search. And, hopefully, we are serving as an

example of what can be done, with relatively modest cost, in

analysis of such datasets, with our work having general application

for other researchers analyzing transcriptional regulatory net-

works. Our working assumption was that multiple-source

introduced noise/bias, while hiding regulatory edges whose

correlations in gene expression could not rise above such noise,

would not prevent at least some true regulatory connections—the

strongest ones—from being found by the CLR and ARACNE

algorithms. We believe that our assumption bore fruit.

Conclusions
In the set of 21 genes reported out by one or more of our three

algorithms (CLR, ARACNE, and LibSVM) with empirically

determined high confidence thresholds, shown in Table 1, four

have been verified in the literature as Nrf2 activation targets: Nqo1,

Prdx1, Sod1, and Nfe2l2 itself (postive autoregulation). Two of these

four, Nqo1 and Prdx1, were reported by all three algorithms. Sod1

was reported out by ARACNE, and Nfe2l2 (Nrf2) was reported out

by LibSVM (such autoregulation being undetectable by the other

methods). Ten more possible gene targets were found by one or

more of the algorithms where the literature shows that the product

of the gene interacts with Nrf2 as coactivators or coregulators

(Table 2). These ten genes remain as possible Nrf2 targets in the

context of the formation of feed-forward loops. Lastly, seven of the

21 were reported out by all three algorithms, but with no literature

evidence linking them to Nrf2 (Table 4). Hence this is the first report

of these seven genes (Als2, Atf1, Nfkbib, Ppp1r15b, Prnp, Sod2, and

Srxn1) as being strong candidates for direct targets of Nrf2

activation in the mouse lung.

Separate RT-PCR experiments indicate that Nrf2 positively

regulates the expression of the Nqo1, Sod1, Ercc6, Prdx6, Als2,

Txnrd2, Park7, Srxn1, and Epas1 genes in the mouse lung (Figure 5).

In addition, these experiments indicate that Nrf2 may negatively

regulate the expression of the Sod2, Ppp1r15b, and Fos genes. Thus

these pieces of experimental evidence affirm several inferences made

using the CLR, ARACNE, and LibSVM algorithms.

We believe our work shows the usefulness of network inference

algorithms such as CLR and ARACNE on the growing body of

microarray data. Using such algorithms and datasets, exploratory

analysis is now possible that can usefully guide laboratory work

with a relatively modest effort.

Figure 10. Predicted feedforward loops involving Nrf2, Nqo1, Srxn1, Prdx1, Atf1, and Als2. On the basis of LibSVM predictions (Tables 1
and 3), Nrf2, Nqo1, Srxn1, Prdx1, Atf1 and Als2 are all regulatory targets of Nrf2 transcriptional activity. ARACNE runs on 260 microarray data indicate
direct dependencies between Nqo1 and Srxn1, Prdx1, Atf1, Als2 and Nrf2. In addition, there is evidence Atf1 acts as a transcriptional repressor on the
anti-oxidant response element of another promoter [44]. This figure captures these relationships. Transcriptional regulatory relationships are depicted
by arrows and less well defined relationships are depicted with hidden detail (dotted lines).
doi:10.1371/journal.pcbi.1000166.g010

Figure 9. ARACNE algorithm results and a possible feed-
forward loop. A depiction of a possible feed-forward loop involving
Nrf2, Sod1 and Nqo1 captured in the networks generated using
ARACNE on microarray data. In order to assign directionality to the
edges of the generated subgraph, there is a need for biological context:
Nrf2 transcriptionally regulates both Sod1 and Nqo1. In lung epithelial
cells (A549-S), inhibition of Nqo1 gives the same effect on the
generation of hydrogen peroxide by low dose quinones as the
introduction of exogenous Sod1 [37]. Inference: Nqo1 is a repressor
of Sod1.
doi:10.1371/journal.pcbi.1000166.g009
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Finally, in addition to identifying putative targets of Nrf2, we

extended our analysis of the network downstream of Nrf2 by

identifying probable feed-forward loops involving Nqo1, one of the

Nrf2 regulatory targets. We believe further extension of our

analysis downstream of Nrf2 is possible, and hope to continue

work in this area.

Methods

Quantitative RT-PCR
Total RNA was extracted using RNAeasy kit from Qiagen

according to the manufacturer’s instructions, and 2 mg of total

RNA was used for cDNA synthesis. Quantitative PCR analyses

were performed by using assay on demand probe sets commer-

cially available from Applied Biosystems. Assays were performed

by using the ABI 7000 Taqman system (Applied Biosystems).

GAPDH was used for normalization. The cycle threshold (CT)

value indicates the number of PCR cycles that are necessary for

the detection of a fluorescence signal exceeding a fixed threshold.

The fold change (FC) was calculated by using the following

formulas: DCT = CT(GAPDH)2CT(target gene) and FC~

2{ DCT2{DCT1ð Þ, in which DCT1 represents the highest CT value

among all the samples and DCT2 represents the value of a

particular sample. Results are expressed as mean values of relative

fold changes (RFC) for n = 3 with WT Air as the baseline.

Total Glutathione Assay
Total glutathione was determined using a modified Tietze

method by measuring reduction of 5,59-dithiobis-2-nitrobenzoic

acid in a GSR-couple assay [48].

TBARS Assay
Thiobarbituric acid reactive substances (TBARS) as a measure

lipid peroxidation was assessed by the method of Ohkawa et al.

[15].

Information-Theoric Network Inference Algorithms
CLR. The first algorithm we employed is the Context

Likelihood of Relatedness (CLR) algorithm [8] from the

Gardner group at Boston University. CLR uses a novel method

for estimating the likelihood of the MI score between two genes

that is dependent upon the selected gene pair (and, hence, yields a

‘‘context likelihood’’ value). As with our second algorithm,

described below, CLR starts by calculating a matrix of MI

values between all the Affymetrix probe sets. However, it then

estimates the likelihood of the MI score between genes A and B by

comparing the MI score to a background distribution of MI

values. This background distribution is created anew for each pair

of genes from their two sets of MI values against all other genes in

the set. The Gardner group believes that the sparseness of

biological regulatory networks, with most MI scores representing

random background from indirect network relationships, allows us

to approximate the MI scores as independent variables, and thus

use a joint normal distribution as an estimate of the true

background distribution for the combined set of MI values for

genes A and B. If Az is the z-score of the MI score between gene A

and gene B in gene A’s MI score distribution, and Bz is the z-score

of the MI score between gene A and gene B in gene B’s MI score

distribution, then the CLR value (likelihood estimate) produced

between genes A and B is set to:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Az2zBz2

p

Thus, the CLR score between any pair of genes is set in a local

context, where the background distribution arises from the mutual

information of all the possible incoming and outgoing edges for each

gene of the pair. One other item of note: each of two MI algorithms

we employed requires discretization (binning) of the gene expression

values. CLR uses B-spline functions for such binning, a recent

innovation in this context reported in Daub et al. [49].

ARACNE. The second algorithm used is the Algorithm for the

Reconstruction of Accurate Cellular Networks (ARACNE), and

comes from the Califano group at Columbia University [9–11].

The two most important customizable parameters for the MI

calculation in ARACNE are (1) the kernel width of the Gaussian

estimator (used in ARACNE’s ‘‘accurate’’ mode, as compared to

its ‘‘fast’’ mode, which uses a simpler binning method), and (2) the

MI threshold or p-value that is used to assess whether a MI value is

statistically significant enough for its score and associated gene pair

to be reported in the output. A default value is calculated by

ARACNE for the kernel width parameter, depending upon the

size and statistics of the dataset. ARACNE follows its set of MI

calculations with an optional postprocessing step that is used to

eliminate interactions that are likely to be indirect. This additional

processing step uses an information-theoretic property to remove

indirect regulatory influences that are incorrectly appearing due to

having high enough MI scores to be recorded as direct edges, that

is, as directly interacting genes. This information-theoretic

property is called the data processing inequality (DPI) [12].

Calculations for the DPI require an accurate estimation of MI

ranks, which in turns requires an additional ARACNE parameter

called the ‘‘DPI tolerance’’. The DPI is used by ARACNE to

compensate for errors in the estimate that might affect these ranks.

ARACNE’s developers have found that a tolerance of between 0%

and 20% (0 to 0.20) yields the best results; higher values tend to

cause high false-positive rates. (Setting the tolerance to 100%

would mean that the DPI post-processing is not used, and all

regulatory edges found would be accepted.)

Support Vector Machine Classification Algorithm
Support Vector Machines (SVMs) are a set of supervised

machine learning techniques that lie in the family of generalized

linear classifiers. They employ a training set, with the SVM

classification results scored against the known data classification

values, and with the SVM parameters iteratively refined against

that metric [50]. SVMs are trained to separate the given binary

labeled training data with a hyperplane that is maximally distant

from them. After training, the SVM is used to classify new data.

SVMs are relatively new, but have already been used extensively

in bioinformatics due to their robust performance in classification

on sparse and noisy datasets. For our analysis, we used our

(trained) SVM to identify genes belonging to the set of gene targets

directly regulated by Nrf2. The binary labeled training data was

the set of upstream promoter regions from a set of gene targets

known to be directly regulated by Nrf2, combined with the set of

promoter regions from a set of genes known not to be directly

controlled by Nrf2. The binary classification to be learned was:

target/not target. Thus, the object was to train the SVM to detect

those genes that are candidates for targets of direct regulation by

Nrf2, based on the classification the SVM makes from its analysis

of the base composition in the upstream promoter region of the

candidate. The SVM implementation we used is the LibSVM

from Chang and Chih-Jen [13].

Data Sources
Publicly available mouse lung microarray data from seven

disparate laboratories were employed, as well as data from the
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Biswal lab. In all, 260 Affymetrix CEL files from two platforms,

Affymetrix GeneChip Mouse Genome 430 2.0 array and the

Affymetrix Mouse Expression Set 430 (MOE430A), were

collected. Of these, 224 arrays were obtained from the publicly

available Gene Expression Omnibus Datasets (Table S1). These

mouse lung arrays represent a variety of perturbations of the lung

protein-protein interaction network, including gene knockout and

ligand treatment. From an R command line (http://cran.r-project.

org/), the affy package of BioConductor (http://www.bioconductor.

org/) was used to perform Robust Multi-array Average (RMA)

analyses on the datasets [51]. The process consisted of the microarray

data being normalized and log-transformed, following background

correction, according to the method of Irizarry et al. [51]. The RMA

analyses were performed on four subsets of the array samples

gathered:

(a) the 71 publicly available GeneChip Mouse Genome 430 2.0

arrays (Table S1, in Microsoft Excel spreadsheet format)

(b) the 36 Biswal Lab GeneChip Mouse Genome 430 2.0 arrays

[52]

(c) a pooled dataset consisting of the 36 Biswal Lab arrays and

the 71 public arrays

(d) the 153 publicly available MOE430A arrays (Table S1)

From the tables generated, data for probe sets representing

genes classified under ‘‘response to oxidative stress’’ from the Gene

Ontology [19] were then selected. The contents of this class of

thirty six genes identified under the GO identifier GO:0006979

are: Aass, Als2, Apoe, Cat, Cln8, Ctsb, Cygb, Epas1, Ercc2,

Ercc6, Gab1, Gclm, Gpx1, Gpx3, Hif1a, Idh1, Mtf1, Nme5,

Nqo1, Nudt15, Oxsr1, Park7, Ppp1r15b, Prdx1, Prdx2, Prdx6,

Prnp, Psmb5, Sod1, Sod2, Srxn1, Tcf1, Txnip, Txnrd2, Xpa, and

Ucp3. In addition, the following relevant possible transcription

regulators were added: Nfe2l2, Ap1gbp1, Atf1, Creb1, Crebbp,

Fos, Hsf1, Jun, Rela, and Nfkbib. The selection was facilitated by a

parser we wrote in Lisp [53] for this purpose.

All further analyses were confined to these oxidative stress

response gene subsets, using four different methods to find direct

regulatory targets of Nrf2. The CLR and ARACNE algorithms

were used to examine gene expression patterns in the subsets, and

to establish direct dependencies between the expressions of the

specified genes and transcription factors such as Nrf2. The

LibSVM utility in the Weka workbench [54,55] was used to

independently identify, using separate sequence-level data, tran-

scriptional regulatory targets of Nrf2 among the putative Nrf2

target genes returned by the CLR and ARACNE algorithms. This

identification was based on a comparison of the promoter regions

of the genes to those of known Nrf2 targets. For our fourth analysis

method, we matched results from the first three algorithms against

Nrf2 gene targets in networks generated using automated

literature searches by way of the Agilent Literature Search plug-

in [56] of the Cytoscape network visualization platform [57].

CLR Runs
We used an implementation of the CLR algorithm within the

Software Environment for BIological Network Inference (SEBINI)

workbench [58,59]. The CLR binning parameters were set to use

10 bins, with a spline degree of 3. The CLR values were converted

to z-scores within the SEBINI platform, and a z-score cut-off of 2.0

was then employed to select the highest scoring potential

regulatory edges. The putative regulatory edges were outputted

from SEBINI in Cytoscape Simple Interaction Format (SIF) and

viewed and analyzed in Cytoscape and CABIN (as was done with

the ARACNE output).

ARACNE Runs
The p-value for establishing that the mutual information

between gene pairs was significant enough to report out was set

at 1027. The percentage of MI estimates considered as sampling

error (the DPI tolerance) was set at 0.15. A parser was written in

Lisp to convert the outputs into the SIF file format. Each set of

edges was thus represented as a network within Cytoscape and

CABIN for further analysis. Interactions involving the transcrip-

tion factor Nrf2 were selected out and entered into Cytoscape and

CABIN as smaller-sized networks, for simpler visualization of our

Nrf2-based analysis.

LibSVM Runs
As detailed in Table S3, a set of 26 known Nrf2 targets [3] were

used for the generation of the true positive part of the LibSVM

training set. A set of 23 genes determined to be not Nrf2-regulated

[60] formed the true negative part of the training set. The

LibSVM Support Vector Machine implementation in the Weka

workbench was used for these studies [54,55] The results (Table 3)

were obtained with normalized data on the nu-SVC classifier, the

Radial Basis Function: exp(2c*|u2v|2) kernel type, with n = 0.36,

c = 2213, cost = 1. and training set size = 49.

Details on the structure of the LibSVM datasets used are

described in Text S1. Promoter sequences consisting of 1,000

nucleotides upstream to 100 nucleotides downstream for each

gene were obtained from the Gene Sorter (http://www.genome.

ucsc.edu). For each promoter sequence, a vector of size 308, with

elements characterizing features of the sequence, was generated

using Common Lisp code. The elements of the vector included a

Boolean value indicating whether or not the Antioxidant Response

Element (ARE) to which Nrf2 binds to activate gene transcription

was present. The vector also included numbers characterizing the

base pairs stretching between the ARE and the Transcription Start

Site (TSS), the ARE and the TFIID bind site, the ARE and the

Maf bind site, the ARE and the ATF4 bind site, the ARE and the

cAMP Response Element (CRE), and the ARE and the TPA

Response Element (TRE). For these characterizations, the three

kinds of features used were Composition, Transition and Distribution.

Composition is a reference to the proportions of nucleotide base

types contributing to the promoter sequence make up. Transitions

represent the frequency with which specific nucleotide base types

are followed or preceded, within the sequence, by other nucleotide

base types. Distribution is a statement concerning the dissemination

of specific nucleotide base types within portions of the sequence (or

the entire sequence). The data generated was formatted for use

within the Weka Workbench software toolkit of machine learning

packages in Java [54].

Inference Based on Scientific Literature
We used the Agilent literature search tool to conduct literature

searches [56]. This tool is available as a plug-in for the open source

network visualization and analysis tool Cytoscape. It is used to

create an inferred network based on published scientific literature

for the proteins of interest. The Agilent Literature Search tool

takes a protein list and searches for abstracts in several text

engines. These search engines include those of the U.S. Patent

Office and the National Center for Biotechnology Information

(PubMed). The tool parses the search engine output to extract

interactions and displays the resulting protein-protein interaction

network as a graph within Cytoscape. Literature based evidence is

a well recognized way of corroborating interactions detected by

other computational prediction methods. Networks found via

ARACNE, CLR, and LibSVM were compared to networks
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identified via this method in order to identify previously identified

interactors with Nrf2 and separate out novel Nrf2 targets.

Collective Analysis of Biological Interaction Networks
(CABIN)

As indicated under ‘‘Data Sources’’ above, four sets of RMA-

analyzed microarray data constituted the source of four networks

for each of the algorithms used. These networks were inputs into

the CABIN tool [14], which is also available as a plug-in for

Cytoscape. CABIN was thus used to analyze, compare and merge

the inferred networks obtained using ARACNE, CLR, LibSVM

and Agilent literature search. CABIN provides the ability to assign

weights or confidence to an inferred network, choosing cutoffs by

applying dynamic filters. It also provides multiple viewers

depicting different abstractions of the data. In this study, the

multiple coordinated viewers within CABIN fostered comparison

of inferred networks obtained using the algorithms ARACNE,

CLR and LibSVM. These networks were further corroborated by

combining literature based evidence obtained using the Agilent

Literature search tool. Such combined network analysis within

CABIN is demonstrated in the screen snapshot shown in Figure 11.

Microarray Experiments
Microarray experiments were conducted with CD-1 Nrf2 wild

type (WT) and Nrf2 knockout (NO) mice exposed to either five

continuous hours of cigarette smoke (CS) or twenty four hours of

air. For the purpose of such studies, approximately 5 hours of

continuous CS exposure is about equivalent to one day of cigarette

smoking [16]. In the CS-exposed group, there was immediate

sacrifice and lung collection after cessation of smoke exposure. In

the other group, age-matched air-exposed mice were killed with

immediate lung collection following sacrifice. Total RNA was

isolated using the Qiagen protocol (Qiagen Inc.). The cDNA was

synthesized and Affymetrix microarray (Mouse genome 430A 2.0

array) was conducted as previously shown [16]. Scanned output

files were analyzed by using Affymetrix GeneChip Operating

Software version 1.3 and were independently normalized to an

average intensity of 500. Further analyses were done as described

previously [52]. In addition, the Mann-Whitney pairwise com-

parison test was performed to rank the results by concordance as

an indication of the significance (P#0.05) of each identified change

in gene expression. The results for Sod1, Nqo1 and Als2 indicating

mean (three replicates; n = 3) mRNA expression data from the

microarrays are shown in Figure 4. (WT air exposed (WTAir), WT

Figure 11. A depiction of analyses across networks. Use of the CABIN tool to conduct exploratory analysis for comparison and integration of
interactions evidence obtained from the ARACNE and CLR algorithms along with the promoter region analysis using LibSVM and interaction evidence
obtained using the Agilent Literature Search tools. The interactions involving Nrf2 are selected and highlighted in blue.
doi:10.1371/journal.pcbi.1000166.g011
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CS-exposed (WTCS), Nrf2 knockout air-exposed (NOAir) and

Nrf2 knockout CS-exposed (NOCS)).

Supporting Information

Text S1 Components of instance vectors used for machine

learning.

Found at: doi:10.1371/journal.pcbi.1000166.s001 (0.04 MB

DOC)

Table S1 Listing of microarray data sources.

Found at: doi:10.1371/journal.pcbi.1000166.s002 (0.03 MB XLS)

Table S2 Gene symbols, Entrez IDs, and functions.

Found at: doi:10.1371/journal.pcbi.1000166.s003 (0.03 MB XLS)

Table S3 Genes used For machine learning.

Found at: doi:10.1371/journal.pcbi.1000166.s004 (0.03 MB

DOC)
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