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This paper proposes and analyses a mathematical model for the problem of distribution of a finite number of irradiation
sources during radiotherapy in continuous environments to maximize the minimal cumulative effects. A new algorithm based
on nondifferentiable optimization techniques has been developed to solve this problem.

1. Introduction

The present work is devoted to the mathematical modelling
of optimization problems arising in the planning of radiation
therapy. Radiation therapy is a local-regional treatment of
malignant tumors, with the main advantage being the pos-
sibility of wider local antitumor effects before surgery. Up
to 70% of cancer patients undergo radiation treatment as
an independent method or as a component of combination
treatment (combination with surgery, chemotherapy) [1, 2].

In modern radiotherapy, many different types of ionizing
radiation, which differ in biological effect, penetrability, and
distribution of energy in radiation beam, are used as antitu-
mor agents. Ionizing radiation must be supplied to the tumor
strictly in certain doses, fractions, and time intervals and in
certain places. The extent of exposure is required to include
not only the primary tumor but also zones of subclinical
spread of the tumor into the surrounding normal tissues,
including lymph nodes.Themain objective of radiation ther-
apy is to bring a full dose to the tumor in an optimal way with
more than 90% of patients with tumors of this localization
and histological structure to be cured. In addition, normal
tissue should not be damaged in more than in 5% of patients.

One of the possible methods of radiation therapy dose
distribution in time is a continuous mode of exposure for
several days. An example of this method is the brachytherapy
whereby radioactive sources are implanted into the tumor
or superimposed on the tumor of the skin or mucosa by
means of special devices, applicators. The main advantage
of this method is a sharp gradient of dose with increasing
distance from the source, which allows sparing of normal
tissues at adequate radiation of the tumor. The proximity of
the radiation source to the object exposure is assumed here.

Some mathematical aspects of radiation therapy opti-
mization problems are discussed in [3–10]. As noted in [7, 8],
a mathematical formulation of the radiation therapy problem
consists of a pair of forward and inverse problems. The
inverse problem is to determine the external radiation beams,
along with their locations, profiles, and intensities, which will
provide a given dose distributionwithin the irradiated object.
A significant number of mathematical models were devel-
oped for the analysis of changes in tumor volume [3–5], the
calculation of optimal radiation doses [6–10], and so forth.

In contrast to the above papers, which deal with issues
related to the radiation intensity optimization, we con-
sider the geometric aspect of the inverse problem, namely,
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the optimal placement of radiation sources in the affected
area of skin.

In this paper, like in [11], the problem of optimal planning
of contact radiation therapy for cancer is considered to be
a problem of optimal placing and radiation field of a finite
number of sources in a continuous environment. For this
task, it is necessary to place a given number of radiation
sources in the affected tissue in order to provide the most
homogeneous cumulative effect of sources’ performance.

A mathematical model of the problem of placing of
radiation sources in the affected area is proposed here, and
this model is a modification of the model proposed in [11].
For the numerical solution of the problem there has been
proposed and implemented a nondifferentiable optimization
method, namely, the method of generalized gradient descent
with space stretching towards the difference of two sequential
values of gradient, Shor’s r-algorithm [12, 13].

2. Materials and Methods

2.1. Some Aspects of Optimal Contact Radiation Therapy
Planning. We will consider the problem of optimal location
in the context of optimal planning of radiation therapy for
malignant tumors. This has already been proposed in [11],
where it was needed to place a given number of radiation
sources in the affected tissue.

In brachytherapy, the radiation source in the tumor
should be placed in such a way to provide the most homo-
geneous dose field, which enables the full therapeutic effect
(disease-free cure tumor) to be achieved.The problem arising
during radiotherapy is that in low levels exposure fields (in
region of local minima field action) there could be a relapse,
while in the case of high-dose radiation there could occur the
necrosis, which is hard to cure.

Each cell type has its own parameters of radiosensitivity;
that is, changes in the cells begin at a certain ratio of the
frequency type, intensity, and duration of the radiation. In
principle, any tumor can be destroyed by the influence of
radiation, but healthy cells may also get damaged in this case
[6, 11]. Since its inception, radiation oncology has focused
on minimizing side effects. The main objective of radiation
oncology is to select the optimal balance between beneficial
effect of radiation and minimizing the risk of complications.

Let us consider basic techniques that are used by profes-
sionals to reduce the risk of healthy tissue damage. Firstly,
the properties of healthy and cancerous cells covered by the
impactmust be determined as accurately as possible and, sec-
ondly, differences in radiosensitivity must also be identified.
The intensity and type of radiation are selected individually
for each case allowing optimizing the effectiveness of the
therapy.

As many important practical optimization problems the
sources locating problem, arising at the radiotherapy plan-
ning, is reduced to the problem of placing a certain number
of objects in continuous environment. These objects are
combined to create territorial “service fields” for “customers”
that are located in this region, to minimize (or maximize)
some quality criterion for the placement. Many models and
approaches for solving such problems are presented in [14].

So, the considered problem may be interpreted in the
following context: an affected part of the body appears as a
“service field”; all cells of the affected part of the body are
“customers”; and “service points” are sources of radiation that
are placed inside the affected area and provide a therapeutic
radiation field which inhibits destruction centers. Moreover,
we assume that lesions in different parts of the body may be
different. The task is to place a given number of radiation
sources so that the dose field (cumulative effect of sources’
performance) would be as much homogeneous as possible.

2.2. Constructing Mathematical Models. Let Ω be a limited
set in Euclidean space 𝐸𝑛. Although the mathematical model
of the problem of placing presented below is formulated for
arbitrary finite 𝑛, for best interpretation we will consider the
case when 𝑛 = 2.

In contrast to [11], where the set Ω is homogeneous, that
is, it is believed that all cells are equally affected, we will
assume that there are “centers of damage,” which are points
of the area in which the disease originates and is expressed in
the severest way. Let us denote these centers in the following
way: 𝜃

𝑖
= (𝜃
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𝑖
, . . . , 𝜃

𝑛

𝑖
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disease is spread from each center to neighboring cells, and
the further a cell is situated from the center, the less affected
it will be.

Let the influence of each center on “damage” in a point
𝑥 ∈ Ω be characterized by function:
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where𝐵
𝑖
is the damage degree of the 𝑖th center,𝛽

𝑖
is a function

parameter that shows how “wide” the ability of the 𝑖th center
to sprawl and spread the destruction to neighboring cells is,
and ‖ ⋅ ‖ is Euclidean norm.

Then the total degree of destruction 𝑃(𝜃, 𝑥) in a point 𝑥 ∈

Ω depends on all the centers of lesions that are available in
the area and is expressed by

𝑃 (𝜃, 𝑥) =

𝑀

∑

𝑖=1
𝜌
𝑖
(
𝑥 − 𝜃

𝑖

) . (2)

From this moment, during the solving of placement
problem, we will take into account the degree of destruction
in each point of the region.

Figures 1 and 2 show examples of lesions features surface
(2) for a given number of centers located in the two-
dimensional field Ω = {−2.5 ≤ 𝑥 ≤ 2.5; −1.5 ≤ 𝑦 ≤ 1.5}
with such input data: 𝑁 = 2; 𝐵1 = 20, 𝛽1 = 0.2; 𝐵2 = 18,
𝛽2 = 0.18 (Figure 1) and 𝑁 = 3; 𝐵1 = 20, 𝛽1 = 0.2; 𝐵2 = 18,
𝛽2 = 0.08; 𝐵3 = 18, 𝛽3 = 0.16 (Figure 2).

Let us denote the sources of influence on the environ-
ment, which have to be placed, as 𝜏

𝑖
= (𝜏

1
𝑖
, 𝜏

2
𝑖
, . . . , 𝜏

𝑛

𝑖
) ∈ Ω,

𝑖 = 1, 𝑁. Let the influence of each source in a point 𝑥 ∈ Ω be
characterized by the function:

𝑑
𝑖
(𝑟
𝑖
) = 𝑑
𝑖
(
𝑥 − 𝜏

𝑖

) , 𝑖 = 1, 𝑁. (3)
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Figure 1: The total extent of lesions with 2 centers of damage.
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Figure 2: The total extent of lesions with 3 centers of damage.

The cumulative effect of all sources 𝜏
𝑖
, 𝑖 = 1, 𝑁, in a point

𝑥 ∈ Ω forms service field𝐷(𝜏, 𝑥) that is given by

𝐷 (𝜏, 𝑥) =

𝑁

∑

𝑖=1
𝑑
𝑖
(
𝑥 − 𝜏

𝑖

) , (4)

where ‖ ⋅ ‖ is Euclidean norm.
We assume that the higher the damage in the point is, the

closer the sources of influence should be located to this point,
and hence a larger dose field in its neighborhood is needed.

The effect of all sources on a point of the affected area Ω
may be described as follows:

𝐷𝑃 (𝜏, 𝑥) =
1

𝑃 (𝜃, 𝑥)

𝑁

∑

𝑖=1
𝑑
𝑖
(
𝑥 − 𝜏

𝑖

) . (5)

The problem is to place the sources 𝜏
𝑖
, 𝑖 = 1, 𝑁, in Ω in

such way, in order to maximize the minimum level of field
action 𝐷𝑃(𝜏, 𝑥) in a region under consideration (assuming
that sources “clumping” is unacceptable).This problem could
be mathematically formalized as follows:

min
𝑥∈Ω

𝐷𝑃 (𝜏, 𝑥) → max
𝜏∈Ω
𝑁

. (6)

Note that the objective function of location optimization
problem and action field of sources in continuous medium,
that was considered in [11], is a special case of problem (6)
when 𝑃(𝜃, 𝑥) = 1 ∀𝑥 ∈ Ω.

Also, unlike the mathematical model proposed in [11],
where the influence of the source was described with a power
function 𝑑

𝑖
(‖𝑥 − 𝜏

𝑖
‖) = 1/‖𝑥 − 𝜏

𝑖
‖
𝛾 (𝛾 = 2), here we consider

functions like
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where 𝑄 is maximum source’s intensity and 𝛼 is function
parameter that shows how “wide” the impact source is. In
this paper, it is suggested that these values are the same for all
sources, although it is not an essential assumption. Figures 3
and 4 show surfaces of common effects functions (4) for given
number of sources located in the two-dimensional region
Ω = {−2.5 ≤ 𝑥 ≤ 2.5; −1.5 ≤ 𝑦 ≤ 1.5}, with condition that
the impact of a single source is described by formula (7).

The choice of influence functions is based on the follow-
ing reasoning. Power functions like 𝑑

𝑖
(‖𝑥−𝜏

𝑖
‖) = 1/‖𝑥−𝜏

𝑖
‖
𝛾,

𝛾 > 0, satisfying 𝑑
𝑖
(+0) = ∞, have a “nasty” (in computer

terms) feature, causing the need to “puncture” points 𝑥 =

𝜏
𝑖
while calculating the value of the function (4) during

the implementation of numerical algorithms for solving
the problem. This choice of functions makes it difficult, or
even impossible, to use numerical methods of maximizing
which worked fine in solving nondifferentiable optimization
problems and whose convergence has been theoretically
proven. Function (7) does not have such deficiencies. Similar
arguments were made during choosing the form of lesions
functions (1). It is assumed that the parameters of influence
functions and lesions functions can be determined experi-
mentally.

Arguments in favour of the choice of the influence
functions in the form of (7) are given in [15–17]. In [17], for
example, the following was noted:

“. . . the analysis results of narrow beams pho-
tometry as well as a good agreement between the
experimental data and the results of dose field
calculation in a wide range of irradiation condi-
tions have shown that the transverse component
of the dosage function of point monodirectional
source can be represented as a Gauss’ function.”

2.3. Method and Algorithm for Solving. To solve this problem
two methods were used: an approximate algorithm proposed
in [11] and nondifferentiable optimizationmethod,method of
generalized gradient descent with stretching the space in the
direction of the difference between two sequential values of
the gradient (Shor’s r-algorithm).

An idea of the approximate algorithm is based on the
assumption that the optimal placement of sources is achieved
then, and only then, when all local minima of the total
action field are equal. For the numerical solution of the
problem, we will organize an iterative process making, firstly,
a discretization of the area. The following heuristics lies on
the basis of Klepper’s iterative algorithm [11]: if for some
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Figure 3: Dose field created by 2 sources: 𝑄 = 100, 𝛼 = 5.
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Figure 4: Dose field created by 3 sources: 𝑄 = 100, 𝛼 = 5.

placement of sources 𝜏 = (𝜏1, . . . , 𝜏𝑁) function (4) reaches
its global minimum in the point 𝑥 = 𝑧 and 𝜏

𝑗
is the nearest

(or one of nearest) to point 𝑧 source, then shifting 𝜏
𝑗
in the

direction of point 𝑧 (in the radial direction 𝜏
𝑗
𝑧) by a certain

fairly small amount (distance) 𝑙 allows increasing the value of
the minimum of the function (4).

For each step of the algorithm we will shift each source
with a certain step 𝑙 > 0 to the next global level of function
(4), gradually decreasing the shifting step by a certain rule
(𝑙 := 𝑞𝑙, 0 < 𝑞 < 1). Iterative process is completed if either
all local minimum nets are global with some precision 𝜀 > 0
or the step of shifting becomes less than the given minimum
step.

Clearly, the objective function of problem (6) is not
differentiated in the entire area Ω. Therefore, for solving
problem (6), themethod of generalized gradient descent with
stretching space in the direction of the difference between
two sequential values of the gradient is proposed. The effec-
tiveness of all subgradient methods strongly depends on the
conditioning of optimized functions. Therefore, to increase

the speed of convergence we can try to make a coordinate
transformation (change metrics) to improve conditioning.
This idea is the basis of r-algorithm that combines principles
of subgradient methods and variable metric methods [13].
The numerical algorithm of the method is given below.

Algorithm

Initialization. We will specify the number of sources 𝑁 and
the initial placement 𝜏(0) ∈ Ω. Region Ω is covered with a
rectangular grid. Further discretized region will be denoted
by Ω.

We calculate the value of the objective function 𝐼(𝜏
(0)
) =

min
𝑥∈Ω

𝐷𝑃(𝜏
(0)
, 𝑥) according to given initial placing sources

by formula (4). Using the finite difference formulas we
calculate all components of subgradient vector 𝑔(𝜏(0)) for the
objective function 𝐼 in the point 𝜏(0).

The initial test step of the r-algorithm is chosen (ℎ0 > 0).

The First Step. Calculate 𝜏(1) with the formula

𝜏
(1)

= 𝜏
(0)

+ ℎ0𝑔 (𝜏
(0)
) . (8)

The Second Step. After 𝑚 = 1, 2, 3, . . . steps we got some
placement 𝜏(𝑚) = (𝜏

(𝑚)

1 , . . . , 𝜏
(𝑚)

𝑁
) as a result of the algorithm.

Let us describe the (𝑚 + 1)th step of the algorithm.

The (𝑚+ 1)th Step. (1) For a set 𝜏(𝑚) = (𝜏
(𝑚)

1 , . . . , 𝜏
(𝑚)

𝑁
) we find

a value 𝐼(𝜏(𝑚)) = min
𝑥∈Ω

𝐷𝑃(𝜏
(𝑚)

, 𝑥) from formula (4).
(2) Calculate approximate values of all components of the

subgradient vector 𝑔(𝜏(𝑚)) for objective function 𝐼 when 𝜏 =

𝜏
(𝑚).

(3) Perform the (𝑚 + 1)th step of the r-algorithm in 𝐻-
form; iterative formula is as follows:

𝜏
(𝑚+1)

= 𝜏
(𝑚)

+ ℎ
𝑚

𝐻
𝑚+1𝑔 (𝜏

(𝑚)

)

√𝐻
𝑚+1𝑔 (𝜏

(𝑚)) , 𝑔 (𝜏(𝑚))

, (9)

where 𝐻
𝑚+1 is a matrix of space tension with coefficient 𝜎

(it is advisable to choose it equal to 3) in the direction of the
difference between two sequential gradient values, calculated
using the formula

𝐻
𝑚+1 = 𝐻

𝑚
+(

1
𝜎2 − 1)

𝐻
𝑚
𝜉
𝑚
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𝑚
𝐻
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(𝐻
𝑚
𝜉
𝑚
, 𝜉
𝑚
)
, (10)

where𝐻0 = 𝐸 and 𝜉
𝑚
= 𝑔(𝜏

(𝑚)

) − 𝑔(𝜏
(𝑚−1)

).
If due to rounding in the calculations matrix𝐻

𝑚+1 is not
positively determined we replace it with the identity matrix.

Step ℎ
𝑚
is chosen according to the condition

max
ℎ>0

𝐷𝑃(𝜏
(𝑚)

+ ℎ

𝐻
𝑚+1𝑔 (𝜏
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√𝐻
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(𝑚)) , 𝑔 (𝜏(𝑚))

) . (11)

(4) If a condition

𝜏
(𝑚+1)

− 𝜏
(𝑚)


≤ 𝜀, 𝜀 > 0, (12)
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is not satisfied, we proceed to (𝑚+ 2)th step of the algorithm;
otherwise, go to step 5.

(5) Consider the completion of the iterative process: the
best placement is 𝜏∗ = 𝜏

(𝑘), where 𝑘—iteration number at
which condition (8) is performed.

This ends the algorithm.

Note 1 (somewords on the correctness of subgradientmethod
application). As is well known, the notion of subgradient is
introduced for convex functions. The objective function of
problem (7) belongs to the class of so-called quasidifferen-
tiable functions.

Definition 1 (see [13]). The function 𝑓(𝑥), defined on the
𝑛-dimensional Euclidean space 𝐸

𝑛
, is called almost dif-

ferentiable if it satisfies the following conditions: (a) any
restricted area is Lipschitz (locally Lipschitz); (b) it is almost
everywhere differentiable; (c) its gradient is continuous on
the set𝑀, where it exists.

Definition 2. A vector that is a limit point of a sequence
of gradients 𝑔(𝑥

1
), 𝑔(𝑥
2
), . . . , 𝑔(𝑥

𝑘
), . . ., where {𝑥

𝑘
}
∞

𝑘=0 is a
sequence of points converging to a point 𝑥0 and such that at
all points of the sequence function 𝑓(𝑥) are differentiable, is
called quasigradient of function 𝑓(𝑥) in point 𝑥0.

The following theorems are accepted as true [13].

Theorem3. Suppose that the real function𝑓(𝑥), defined on an
open set𝑀 ⊂ 𝐸

𝑛
, has finite partial derivatives in all directions:

lim
𝑡→ 0|(𝑓(𝑥+𝑡V)−𝑓(𝑥))/𝑡| < +∞ for any 𝑥 ∈ 𝑀 and V ∈ 𝐸

𝑛
.

Then, 𝑓(𝑥) is differentiable almost everywhere on𝑀.

Theorem 4. Set 𝐺(𝑥) of quasigradients of the quasidifferen-
tiable function 𝑓(𝑥) is nonempty, is bounded, and is closed in
any point 𝑥 ∈ 𝐸

𝑛
.

Theorem 5. An arbitrary convex function 𝑓(𝑥) is quasidiffer-
entiable on the 𝑛-dimensional Euclidean space 𝐸

𝑛
and in point

𝑥0 any of its quasigradients coincide with some subgradient.

Note 2. It should be noted that the problem in its mathemat-
ical formulation is related to a continuous task of the ball
covering.Different optimal design algorithms of ball covering
a limited area presented in [18] could be applied to solving the
above problem. Some of them are based on certain heuristics,
and others are used as the mathematical apparatus of the
Voronoi regions. Applications of the theory of continuous
problems of optimal set partitioning to the problems of the
single covering of bounded area of plane are described in [19].

3. The Results of the Computational
Experiments

Let us consider the results of the computational experiments
for the two-dimensional lesion field in the shape of an ellipse
example (Figures 5–7). For convenience, we take the case
of a homogeneous “demand” for impact dose in area of
damage, that is, when the degree of damage is the same and
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Figure 5: Optimal placement of 3 sources in a region with homoge-
neous “demand.”
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Figure 6: Optimal placement of 4 sources in a region with
homogeneous “demand.”
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Figure 7: Optimal placement of 6 sources in a region with
homogeneous “demand.”

equal to one for every cell. Figures 5, 6, and 7 represent
the optimum location of 3, 4, and 6 sources in the elliptic
region, respectively. Coordinates (𝑥, 𝑦) of radiation sources
that make up the optimal solution of the problem found by
r-algorithm are marked with blue squares while the optimal
placement of sources obtained by approximate Klepper’s
algorithm [11] is marked with red squares. It should be noted
that both here and in the following examples initial centers’
approximation (green points on the Figure 5 and further) is
the same for both algorithms.
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Figure 8: Optimal placement of 5 sources: (a) in area with homogeneous “demand”; (b) in area with inhomogeneous “demand.”

In these, and in the following test examples, it is assumed
that the radiation sources are identical and their influence
function is given by formula (7), where 𝑄

𝑖
= 100, 𝜎

𝑖
= 2,

𝑖 = 1, 𝑁. Parameters of Klepper’s iterative algorithm are
𝑙 = 0.8, 𝑞 = 0.9, 𝑙min = 0.015, 𝜀 = 0.01, and ℎ

𝑥
= ℎ
𝑦
= 0.05.

Parameters of r-algorithm are ℎ0 = 1, 𝜎 = 3, 𝜀 = 0.001, and
ℎ
𝑥
= ℎ
𝑦
= 0.05.

Table 1 shows the comparison of the best objective func-
tions values for the problem with homogeneity throughout
the region “demand” on the degree of sources’ influence
obtained by the two algorithms.

As can be seen in Figures 5–7, by virtue of the fact that
the area, in which sources are accommodated, is symmetric
and “homogeneous” (in the sense that the “demand” on the
radiation dose is the same for all points of region), the optimal
placement of radiation sources is often symmetrical (as noted
in [11]). However, as shown in Figures 6 and 7, the r-algorithm
allows us to find an optimal solution that does not possess the
symmetry property but, instead, delivers the best total dose
field (see Table 1).

By comparing the results, we can conclude that in the
region with homogeneous “demand” both algorithms give
nearly the same results, but, increasing the number of sources,
the nondifferentiable optimization algorithm gives the loca-
tion with the higher objective function value. Furthermore,
the r-algorithm is much faster than the Klepper’s one.

Figures 8(b), 9, and 10 show locations found by both
algorithms for 5, 4, and 5 sources, respectively, in case of inho-
mogeneous “demand” in the nonconvex regions. The darker
the color of the point, the greater the extent of tissue damage
in it and, correspondingly, the higher the “demand” on
the radiation dose. For comparison, the optimum radiation
sources’ location for the same as in Figures 8(b) and 9 area
but with unit “demand” for the entire region is represented
in Figure 8(a).

Best objective functions for inhomogeneous “demand”
are presented in a comparative table (Table 2).

Table 1: The results of the algorithm for a field with homogeneous
“demand.”

Number of
sources

The optimal objective
function value
obtained by
r-algorithm

The optimal objective
function value

obtained by using
Klepper’s algorithm

2 21.03 21.05
3 51.52 49.871
4 91.269 89.023
5 123.245 97.055
6 171.46 157.63

Note 3. Table 2 lists the minimum weighted maximum total
dose of radiation, the magnitude of the dose field divided
by the level of the affected tissues at a point. This explains
the difference in the values of hundreds of pieces of test case
number 1 from the rest.

Computational experiments have allowed us to make few
observations and conclusions: (1) the grinding spatial grid
significantly increases the time during which the optimal
(local) solution of the problem of sources’ placement may be
found for both algorithms; (2) both algorithms are sensitive to
the choice of the initial approximation of coordinates sources
to be placed and can only lead to a local problem solution;
(3) if the area in which springs are accommodated has the
property of symmetry and homogeneity, then the optimal
arrangement of the sources will also have the symmetry
property.

As one could see from the computational experiments,
the results heavily depend on the initial data and the algo-
rithm parameters, the initial approximation coordinates of
centers, the step size of the spatial grid, and the step size for
numerical differentiation in the evaluation of the component
of the generalized gradient. In order to remove the last
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Table 2: The results of the algorithm for a field with inhomogeneous “demand.”

Test number Figure with optimal sources’
placement

The value of the objective function
(r-algorithm)

The value of the objective
function (heuristic algorithm)

1 Figure 8(a) 119.262 111.786
2 Figure 8(b) 1.056 0.851
3 Figure 9 0.638 0.562
4 Figure 10 1.167 0.988
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−1.95 −0.95 0.05 1.05 2.05

Figure 9: Optimal placement of 4 sources in area with inhomoge-
neous “demand.”
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0.5

0
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−1.91 −0.91 0.09 1.09

Figure 10: Optimal placement of 5 sources in area with the
inhomogeneous “demand.”

shortcoming, we propose to create a version of the algorithm
with the elements of the theory of continuous problems
of optimal set partitioning [18], namely, in calculating the
components of the generalized gradient of the objective
function (4) to use the Voronoi diagram constructed using
the methods of OSP [19].

4. Conclusions

In this paper, we have proposed and analyzed a mathematical
model of optimizing location and action fields of a finite
number of irradiation sources in the context of radiotherapy.
We have shown that, similarly to other important practical
optimization problems, this problem can be reduced to
the problem of placing a certain number of objects in a
continuous environment. These objects are then combined
to create a territorial “service field” for “customers” that
are located in this region, and the problem is to minimize
(or maximize) some criterion for placement. The model
developed in this paper is accounting for “demand” on the
value of radiation in each point of a given region, as well as a
requirement of the greatest possible action field homogeneity
of distributed sources.

To solve the problem of optimal distribution of irra-
diation sources, two different algorithms have been used:
approximate Klepper’s algorithm and Shor’s r-algorithm.The
results of the numerical experiments have shown that the
use of nondifferentiable optimization techniques to solve the
formulated problem is more appropriate when the demand is
not homogeneous in the region under consideration.

In the future, the present model can be generalized to the
case where one needs to identify not only the locations of
radiation sources but also some other parameters, such as the
duration, shape, and intensity of radiation. It is also envisaged
to apply the theory of continuous problems of optimal set
partitioning to solve problems similar to the one analyzed
in this paper. The present model could be also generalized
to the case of the dynamics of the irradiation process by
adding the differential equation describing the change in the
volume of the tumor (cancer cells) during radiotherapy. In
this case, methods of solving dynamic problems of optimal
sets partitioning may be found useful [20].
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