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Limiting dilution assays are widely used in infectious disease research. These assays are crucial for current
human immunodeficiency virus (HIV)-1 cure research in particular. In this study, we offer new tools to help
investigators design and analyze dilution assays based on their specific research needs. Limiting dilution assays
are commonly used to measure the extent of infection, and in the context of HIV they represent an essential tool
for studying latency and potential curative strategies. Yet standard assay designs may not discern whether an
intervention reduces an already miniscule latent infection. This review addresses challenges arising in this set-
ting and in the general use of dilution assays. We illustrate the major statistical method for estimating frequency
of infectious units from assay results, and we offer an online tool for computing this estimate. We recommend a
procedure for customizing assay design to achieve desired sensitivity and precision goals, subject to experimen-
tal constraints. We consider experiments in which no viral outgrowth is observed and explain how using alter-
natives to viral outgrowth may make measurement of HIV latency more efficient. Finally, we discuss how
biological complications, such as probabilistic growth of small infections, alter interpretations of experimental
results.
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Human immunodeficiency virus (HIV)-1 infection
persists in patients despite decades of effective antire-
troviral therapy (ART), necessitating lifelong treatment.
Limiting dilution viral outgrowth assays provide an
essential tool for studying this residual infection.
These assays detect latently infected resting CD4+

T cells by probing their ability to produce virus that
infects other cells in culture following cellular activation

[1, 2]. This latent reservoir of infected cells harbors

stably integrated HIV-1 DNA coding for replication-

competent virus and, as such, is believed to be the

major barrier to curing HIV infection. Because replica-

tion-competent proviruses cannot be distinguished by

polymerase chain reaction methods from the much

more common defective proviruses (coding for virus

that fails to replicate) [3–5], viral outgrowth remains

the gold-standard marker of latent infection. Dilution

assay statistics are used to estimate the frequency of la-

tently infected cells from binary results of outgrowth ex-

periments [6]. Likelihood-based dilution assay statistics

have been part of the microbiologist’s basic toolkit for

nearly a century [7], and today they are indispensable

to HIV-1 cure research.
Recent reports of interventions that may reduce the

latent reservoir [8–14] have renewed optimism for
achieving HIV-1 cure or long-term antiretroviral-free
remission. Potential curative strategies are now being
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evaluated by how much they reduce reservoir size. Therefore, it
is essential to improve understanding of statistics used in out-
growth assays and to establish a consistent approach for report-
ing the precision of the resulting measurements. Towards this
goal, we present principles for the design and interpretation
of dilution assays, discuss these principles in the context of
HIV-1 latency, and offer a simple computational tool for esti-
mating the frequency of latently infected cells in a sample (“in-
fectious units per million” or “IUPM”) from assay results. The
same statistical approach—and same program—can be used for
a broad range of dilution assays designed to quantify viral
reservoirs.
In a dilution assay, wells of a tissue culture plate are seeded

with varying amounts of material from a presumed-infectious
source, together with infectable reporter cells. In the viral out-
growth assay for latent HIV-1 [1, 2, 6], the infectious material
is a known quantity of purified resting CD4+ T cells obtained
from an HIV-1-infected donor. A very small fraction of these
cells carries a latent HIV-1 genome that can cause replication-
competent virus after cellular activation. A larger fraction of
the cells carry defective viral genomes and are ignored in this
analysis. Thus, throughout this paper, we refer to latently infect-
ed cells that are stimulated to release replication-competent
virus in the assay simply as “infected cells.”
The input cell number in each well is typically varied in geo-

metric series of successive dilutions. Sufficient dilutions are car-
ried out so that some wells contain no infected cells. Uninfected
lymphocytes (either from a MOLT-4/CCR5 T-cell line or phy-
tohemagglutinin-stimulated, CD8-depleted lymphoblasts from
uninfected donors [15]) are added to each well to serve as the
reporter system, so that virus released from a single cell can
spread through the culture and produce a detectable level of in-
fection. The frequency of infected cells in the original popula-
tion of resting CD4+ T cells, as well as a confidence interval (CI)
around this frequency, are then estimated based on the pattern
of wells in which viral outgrowth was observed. If desired, this
fraction can be scaled by an appropriate number (approximately
1011 to 1012 total resting CD4+ T cells in a human body [16]) to
estimate total latent reservoir size.
Before discussing details of assay design and statistical meth-

ods to estimate infected cell frequency, we note two issues in-
herent in this type of assay. First, the sensitivity—or lower
limit of detection (LLD)—of the assay depends on the total
number of cells sampled. If C resting CD4+ T cells are distrib-
uted among all the wells, then it is impossible to distinguish be-
tween infected cell frequencies near or less than 1/C. Precisely at
this frequency, assuming perfect experimental conditions, at
least one well will show outgrowth approximately 63% of the
time, whereas the remaining 37% of the time no wells will
turn positive. Therefore, to reliably distinguish a frequency of
0.1 IUPM from a nonexistent infection, one would need to
assay a minimum of 10 million cells, and ideally several times

that number. The section, Dealing with all-negative data, fur-
ther discusses lower limits of detection.
Second, the distribution of cells into wells determines the pre-

cision of the assay, that is, its ability to distinguish between dif-
ferent infected cell frequencies. Precision can be described by
CIs: more precise assays have smaller intervals, allowing for
finer-grained comparisons between experimental conditions.
Figure 1 illustrates how increasing the number of wells in an
assay can improve its precision. Confidence intervals are
discussed more generally in the next section.
Sensitivity requires many cells, and precision requires

distribution into multiple wells. Meeting both goals presents
experimental challenges. Finally, we present likelihood statis-
tics to estimate infected cell frequency, and we recommend an
approach for optimizing experimental design to achieve any
desired set of sensitivity and precision goals. Although our
discussion focuses on HIV-1 infection, the same approach
applies to any setting where frequency of infected cells is
measured.

LIKELIHOOD STATISTICS PROVIDE A
FLEXIBLE APPROACH FOR ESTIMATING
INFECTED CELL FREQUENCIES

The most common method for analyzing limiting dilution as-
says involves maximum likelihood estimation of infected cell
frequencies. This general method can be used for any experi-
ment in which the observed outcome depends on one or
more unknown parameters in a probabilistic way. Here, the
only unknown parameter is the infected cell frequency, and
the maximum likelihood method provides both a central esti-
mate and CI for this frequency. If the infected cell frequency
lies within the assay’s limits of detection, then the maximum
likelihood estimate is expected to be quantitatively meaningful,
falling between but not equal to the extreme values 0 IUPM and
1 000 000 IUPM. Furthermore, this estimate will be precise —
with CIs smaller than a specified size — for frequencies within
the assay’s (smaller or coinciding) limits of quantification.
These concepts are further explained in Figure 2. In general,
the size of the CI varies even for frequencies between these lim-
its, and so CIs must be reported explicitly to allow comparison
of infected cell frequency over time or among patients.
The basic principles of maximum likelihood analysis for di-

lution assays have been well understood since the work of Fisher
[7] (see also [17]). These principles have also been extended to a
Bayesian framework, which explicitly accounts for how prior
knowledge alters interpretation of experimental results [18]. A
study by Meyers et al [6] presented a complete analysis of max-
imum likelihood estimates and CIs resulting from all possible
experimental outcomes of a particular 5-fold limiting dilution
assay design with two replicates per dilution. This limiting di-
lution scheme was used in early studies of HIV-1 latency [1] for
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a particular reason. The low frequency of latently infected cells
necessitates sampling a large number of cells, but blood volume
concerns limit the number of replicate wells that can be done
with higher input cell numbers. This assay design is widely
used in standard assays of the latent reservoir [19], but it may
not be optimal for all experimental situations. In particular, in-
fected cell frequencies may lie outside this assay’s limits of de-
tection or quantification, and CIs may be too large to address
particular research questions. Fortunately, custom assays can
be designed to satisfy any desired limits and CI sizes; in Box 1,
we present a simple procedure for doing so. Table 1 shows sev-
eral recommended designs resulting from this procedure, and
Box 2 gives the step-by-step calculation for deriving one of
these designs.
Formally, maximum likelihood estimation of infected cell

frequency relies on four assumptions justifying the use of Pois-
son distributions to approximate the number of infected cells in
each well. First, cells in the sample are drawn from a much larg-
er total population (eg, 50 million cells sampled from approxi-
mately 1011 to 1012 total resting CD4+ T cells in the body).

Second, the infected cell frequency is small (eg, frequency less
than 1 in 100 ensures approximation error less than 0.5%).
Third, infected cells are distributed randomly among all repli-
cate wells. Fourth, any well containing one or more infected
cells is guaranteed to test positive.
Together, these assumptions constitute the “single-hit Pois-

son model.” In this model, the probability that a well with c
cells tests positive, given an infected cell frequency θ, is
1� e�cu. The number of positive wells of a given input cell
number c follows the binomial distribution specified in Figure 3.
When wells of different input cell numbers c1; c2; c3; : : : are
used, the results from each are independent, and so the proba-
bility of an observed experimental result is simply the product
of individual binomial probabilities. The program IUPMStats
(http://silicianolab.johnshopkins.edu) uses this calculation to
estimate the infected cell frequency θ, as well as 95% CIs,
from user-specified assay results. Figure 3 shows the perfor-
mance of this method for two of the assay designs proposed
in Table 1. Additional software tools using related methods
are discussed by Hu and Smyth [20].

Figure 1. Precision of dilution assays increases with the number of wells into which a sample is divided. Consider two samples of the same size (total
number of cells) collected from different donors. Sample A contains 2 latently infected cells, whereas Sample B contains 8 (ovals at left). Five possible assay
setups are shown, distributing each sample into 1 to 5 equal wells (columns). Each assay results in a different pattern of possible outcomes for the samples,
with the probability of each outcome shown in rows. The final row shows the probability that each assay yields the correct trend, ie, that more wells turn
positive in Sample B than in Sample A. Positive wells (viral outgrowth) are shown in dark red. If all cells from a sample are deposited into a single well (first
column), then it is impossible to distinguish between the two samples using a binary readout: the extra infected cells in Sample B are “redundant,” and
each sample will show outgrowth. If the samples are divided among more wells (second through fifth columns), then the infected cells are less likely to
appear redundantly in the same well, meaning that the two samples are more likely to show different outgrowth patterns. In this particular case, each
sample must be divided into at least 4 equal wells to obtain the correct trend at least 95% of the time.
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DEALING WITH ALL-NEGATIVE DATA:
ABSENCE OF EVIDENCE IS NOT EVIDENCE OF
ABSENCE

If all wells in an assay test negative for viral growth, then the
maximum likelihood estimate of infected cell frequency is
zero. Yet this is not a useful estimate; it is possible for some
of a patient’s cells to be infected ðu . 0Þ, but for none of
these infected cells to be sampled. The probability of this all-
negative outcome follows from the equation in Figure 3D.
To avoid this outcome, the procedure in Box 1 prescribes an

assay design based on a specified LLD. The total number of cells
C is chosen so that the probability of finding an all-negative re-
sult is small (eg, α = 0.05) if θ = LLD. As θ falls below the LLD,
the probability of an all-negative result increases, making it

difficult to distinguish between infection frequencies below
this limit. For significance level α, the LLD equals ln(1=aÞ=C.
For example, if we want to be nearly certain (>95%) of detecting
infection at frequencies as low as 0.01 IUPM, then 300 million
cells are needed.
When an all-negative result does occur, however, some esti-

mate for infected cell frequency is needed. Under conservative
assumptions (uniform Bayesian prior on infected cell frequency
between 0 and 1 000 000 IUPM), and for sufficiently many total
cells C (>500), this result implies, with probability ð1� aÞ, that
the infected cell frequency falls below the LLD. The LLD, then,
is a conservative upper bound for the estimated frequency. If a
more central estimate is needed, then under the same assump-
tions, there is a 50% chance that infected cell frequency is less
than ln(2)=C; this value is called the “posterior median” esti-
mate. For infected cell frequencies near this value, longitudinal
samples may switch between testing all-negative and having
some wells positive, even if the true frequency remains constant
over time.
It is important not to overinterpret these statements: the LLD

is not a “hard cutoff” below which the assay is useless. Further-
more, it is possible for the maximum likelihood estimate û to be
below the LLD even if some wells are positive. One should
therefore take care (1) when drawing conclusions from negative
results or (2) when comparing negative results to other experi-
ments where û is near the LLD. In general, formal hypothesis
testing is required when comparing estimates near limits of de-
tection. The online tool, ELDA, provides a method for compar-
ing estimates between two or more assays [20].
It is likewise important to stress that the absence of evidence

is not evidence of absence: the most sobering recent demonstra-
tion of this principle is the case of the “Mississippi Child,” who
underwent combination ART for the first 18 months of life after
being infected with HIV-1 in utero. Despite subsequent inter-
ruption of therapy, viral rebound did not occur immediately
and repeated outgrowth assays found no replication-competent
virus, raising tentative hopes that early aggressive treatment suc-
ceeded in preventing establishment of the latent reservoir [11].
These hopes were dashed when the virus rebounded after 28
months off therapy [14]. Four separate viral outgrowth assays
were done throughout the interruption, with a total of 66 mil-
lion resting CD4+ T cells analyzed. Because the latent reser-
voir decays very slowly [2, 21], it is reasonable to combine
negative assay results and estimate that, with 95% probability,
there were fewer than ln(1=0:05Þ=66 ¼ 0:045 infectious units
per million cells [14]. Consistent with the observed viral re-
bound, mathematical modeling of infection dynamics sug-
gests that even this low frequency is insufficient to make
cure likely [22].
Further complicating interpretation of all-negative results,

not every resting CD4+ T cell that harbors replication-
competent virus necessarily produces outgrowth in an assay.

Figure 2. Schematic for describing quality of maximum-likelihood esti-
mates of infected cell frequency. The thick blue line plots the typical value
(median or geometric mean) of the measured infected cell frequency û (y-
axis) vs true frequency θ (x-axis), for an idealized experimental setup; this
line is dashed outside the limits of detection for the assay. These limits are
defined for a significance level α (eg, 0.05). Below the lower limit of de-
tection (LLD), at least α of experiments result in all wells being negative.
Above the upper limit of detection (ULD), at least α of experiments result in
all wells being positive. In an accurate assay, the estimate tracks the di-
agonal line û ¼ u (light gray dashed line) between the limits of detection.
The blue shaded region plots the confidence interval (CI), within which the
middle (1 – α) of estimates fall. Between the lower and upper limits of
quantification (LLQ, ULQ), the CI is smaller than a specified size, and a frac-
tion less than α of experiments result in all-positive or all-negative wells.
Note that it is possible for LLD = LLQ and/or ULD = ULQ.
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By one estimate based on study of adults undergoing long-term
ART, for each latently infected cell detected via outgrowth, up to
60 more cells may go undetected [3]. It is not yet known wheth-
er this “invisible reservoir” generally exists in early-treated chil-
dren, and the analysis in the preceding paragraph suggests that
it is not necessary to invoke this additional infection source to
explain the Mississippi Child’s rebound viremia. This complica-
tion of viral outgrowth assays implies that an IUPM estimate
may not translate directly to a literal number of infected cells
but rather serves as statistical proxy for this quantity. We take
up this issue further in the section, When the assumptions fail.

NEW DILUTION ASSAYS TO MEASURE VIRAL
RESERVOIR: BETTER SENSITIVITY FOR EQUAL
CELL INPUT?

Given the time, labor, and large cell input required for sensitive
measurement of latent HIV infection, there is great interest in
the development of assays to quantify HIV reservoirs more
efficiently. One recent innovation is the Tat/Rev Induced

Limiting Dilution Assay (TILDA), which measures cell-associ-
ated multiply-spliced HIV-1 RNA (msRNA) transcription in
serial dilutions of maximally stimulated CD4+ T cells [23].
As with outgrowth assays, TILDA uses dilutions of a known
number of cells distributed across replicate wells and gives a bi-
nary readout. Consequently, the same maximum likelihood
approach— and the IUPMStats program— can be used. Unlike
outgrowth assays, however, the use of msRNA measurement in
TILDA eliminates the need for infectable reporter cells and per-
mits a rapid turnaround time (days, versus weeks for outgrowth
assays). Because TILDA measures an upstream process that is
necessary [24–26], but not sufficient for assembly of replica-
tion-competent virus, it is not surprising that the number of
msRNA-producing units per million (“msRUPM”) exceeds
outgrowth-based IUPM in individuals receiving ART [23]. As
a result, TILDA (and other assays of upstream processes) will
appear more sensitive than outgrowth, in the sense that fewer
total input cells are needed to detect at least one positive well.
Yet it remains to be shown whether msRUPM or related mea-
surements are clinically useful proxies for the size of the

Box 1. Procedure for designing a limiting dilution assay.

In designing an assay, the experimenter must choose a range of input cell numbers and the number of replicate wells to set up at each input cell
number. This choice determines the lower and upper limits of detection (LLD, ULD), lower and upper limits of quantification (LLQ, ULQ), and
confidence interval (CI) size ε (expressed as a number of base-10 logs). The limits of detection determine the range in which the assay rarely
produces all-positive or all-negative results. Between the limits of quantification, the assay furthermore can distinguish infected cell frequencies
up to a range of ε logs. Figure 2 further explains these concepts. Below, zα refers to the critical normal distribution value corresponding to signi-
ficance level α (eg, z0:05 ¼ 1:96, z0:01 ¼ 2:58).

The following procedure is guaranteed to produce an assay designwith specified limits LLD � LLQ , ULQ � ULD andmaximumCI size ε, for a
significance level α, aiming to use the fewest wells necessary (derivation in Supplementary Information). Box 2 provides a step-by-step appli-
cation of this procedure to obtain one of the assay designs described in Table 1.

1. Select desired limits and maximum CI size. Experimental requirements may constrain feasible values:
(A) If C cells are available to distribute across all wells, then the lower limit of detection is constrained: LLD≥ ln(1/α)/C.
(B) If the experimenter wishes to perform at most n replicate wells per input cell number, then the CI size is constrained: 1 � 1:08 za=

ffiffiffi

n
p

.
(C) If C cells are available and the experimenter wishes to perform at most n replicate wells per input cell number, then in addition to the

above constraints on LLD and 1, we have LLQ � 1:99 n=C.
(D) If C cells are available and the experimenter wishes to guarantee a CI size of at most ɛ, then in addition to the above constraint on LLD,

we have LLQ � ð2:31 z2aÞ=ðC12Þ.
(E) If the experimenter wishes to use only d distinct input cell numbers, that constrains the width of the region between the limits of quan-

tification: ULQ=LLQ � 5d�1.
2. To guarantee that the CI is at most ε logs for infected cell frequencies within the limits of quantification, choose a limiting dilution series in

which
(A) Maximum input cell number cmax is at least 1:59=LLQ cells,
(B) Minimum input cell number cmin is at most 1:59=ULQ cells,
(C) Each input cell number differs by no more than a factor of 5 from the previous one, and
(D) Each input cell number has at least 1:16 � ðza=1Þ2 replicates.

3. To guarantee the desired limits of detection, further require
(A) The total number of cells across all wells is at least ln(1=aÞ=LLD, and
(B) The smallest input cell number is at most lnð1=ð1� a1=nÞÞ=ULD, where n is the number of replicate wells of that cell number.

Often, the dilution series provided by Step 2 will also satisfy the conditions in Step 3 and may provide limits of detection even farther apart than
required. In this case, nothing needs to be changed. However, if the dilution series does not meet condition 3A, wells of any input cell number
can be added to make up the difference in total cells. To meet condition 3B, either the number of replicates for the smallest well may be in-
creased or wells of a smaller input cell number may be added. It is possible for this condition to require a few additional wells beyond that
specified in the experimental constraints in Step 1.

This procedure may yield input cell numbers that are impractically large for loading into wells. From the standpoint of ensuring the required limits
and CI sizes, it is always acceptable to replace a well containing many input cells by multiple wells containing fewer input cells each, keeping
the same total number of cells. For instance, replacing 2 wells of 10 million cells apiece by 10 wells of 2 million cells apiece can only serve to
increase precision of the maximum likelihood estimate. If it is experimentally convenient to have all wells with the same input cell number,
then this principle can likewise be used to do so.

Designing and Interpreting Limiting Dilution Assays • OFID • 5

http://ofid.oxfordjournals.org/lookup/suppl/doi:10.1093/ofid/ofv123/-/DC1


Table 1. Recommended Dilution Assay Designs Satisfying a Range of Experimental Requirements as Provided in Box 1a

Experimental Requirements Resulting Assay Design

Limits of Detection,
Quantification (IUPM)

CI Size
(Log10)

No. of Different Cell Input
Numbers (Obtained by 5-Fold

Dilution)
Largest Well
(Input Cells)

Smallest Well
(Input Cells)

No. of Replicates
(Largest to Smallest)

Total Cells
(Millions)LLD LLQ ULQ=ULD

1.2 1.6 800 <1.5 6 1 × 106 320 2 each 2.5
0.48 1.6 800 <1.0 6 1 × 106 320 5 each 6.2

0.14 1.6 800 <0.5 5 1 × 106 1600 18 each 22

0.21 0.50 12.5 <1.5 4 3.2 × 106 2.56 × 104 (4, 2, 2, 3) 14

0.15 0.50 12.5 <1.0 4 3.2 × 106 2.56 × 104 5 each 20

0.04 0.50 12.5 <0.5 3 3.2 × 106 1.28 × 105 18 each 71

0.04 0.10 12.5 <1.5 5 1.6 × 107 2.56 × 104 (4, 2, 2, 2, 3) 72
0.03 0.10 12.5 <1.0 5 1.6 × 107 2.56 × 104 5 each 100

0.008 0.10 12.5 <0.5 4 1.6 × 107 1.28 × 105 18 each 360

0.008 0.02 12.5 <1.5 6 8 × 107 2.56 × 104 (4, 2, 2, 2, 2, 3) 360

0.006 0.02 12.5 <1.0 6 8 × 107 2.56 × 104 5 each 500

0.002 0.02 12.5 <0.5 5 8 × 107 1.28 × 105 18 each 1800

Abbreviations: CI, confidence interval; IUPM, infectious units per million; LLD, lower limit of detection; LLQ, lower limit of quantification; ULD, upper limit of
detection; ULQ, upper limit of quantification.
a Assay designs use a significance level α = 0.05, corresponding to 95% CIs. The dilution series commonly used in HIV-1 latency studies [1, 6, 19] is shown on the
first row. Simulated performance of the two rows in bold is shown in Figure 3. Because decreasing the LLD and CI size each involves using more cells according to
the procedure in Box 1, these two requirements are decreased together in this table.

Box 2. Designing a limiting dilution assay: case study

Here, we show how the procedure in Box 1 can be used to create the assay design on line 11 of Table 1. Suppose that 500million purified resting
CD4+ T cells are available from each HIV-infected individual, we wish to distinguish 10-fold differences in infected cell frequency with 95%
confidence, and we expect never to encounter infected cell frequencies above 12.5 infectious units per million (IUPM) in the experiment. We
follow the three steps in Box 1:

1. Select desired limits and maximum confidence interval (CI) size. The cell constraint is C= 500 million cells. To distinguish 10-fold differences,
the desired CI size is 1 ¼ log1010 ¼ 1. The significance level is α= 0.05 (95% confidence), and za ¼ 1:96 is the associated critical normal dis-
tribution value. These values imply the following:
• Constraint 1A applies: the minimum feasible lower limit of detection (LLD) is ln(1/α)/C= ln(1/0.05)/(5 × 108) = 6 × 10−9 per cell, or 0.006

IUPM,
• Constraint 1D applies: the minimum feasible lower limit of quantification (LLQ) is ð2:31 z2aÞ=ðC12Þ ¼ ð2:31� 1:962Þ=ð5� 108 � 12Þ ¼

2� 10�8 per cell, or 0.02 IUPM.

To use the available cells fully, we set the lower limits to their minimum feasible values. Based on our belief in the maximum possible infected
cell frequency, we set both upper limits to 1:25� 10�5 per cell, or 12.5 IUPM.

2. To guarantee the limits of quantification:
(A) Maximum input cell number cmax is at least 1:59=LLQ ¼ 1:59=ð2� 10�8Þ ¼ 8� 107 cells,
(B) Minimum input cell number cmin is at most 1:59=ULQ ¼ 1:59=ð1:25� 10�5Þ ¼ 1:3� 105 cells,
(C) At least four 5-fold dilutions are needed to span the input cell numbers (the ratio cmax/cmin is at least 625, or 54),
(D) Each input cell number has at least 1:16 � ðza=1Þ2 ¼ 1:16 � ð1:96=1Þ2 ¼ 4:5 replicates.

These requirements can generally be satisfied by setting cmax equal to its minimum required value and performing the minimum required number
of dilutions. Doing so yields a provisional assay design with input cell numbers ½8� 107; 1:6� 107; 3:2� 106; 6:4� 105; 1:28� 105� and
n=5 replicates for each input cell number.

3. To guarantee the desired limits of detection:
(A) The total number of cells across all wells is ln(1=aÞ=LLD ¼ ln(1=0:05Þ=ð6� 10�9Þ ¼ 500million cells, which is satisfied by the provisional

assay design,
(B) The smallest input cell number is at most ln(1=ð1� a1=nÞÞ=ULD ¼ ln(1=ð1� 0:051=5ÞÞ=ð1:25� 10�5Þ ¼ 6:4� 104 cells, which is not sat-

isfied by the provisional assay design.

To meet the requirement in Step 3B, we must perform one additional 5-fold dilution beyond that specified in the provisional design. The final
assay design has input cell numbers ½8� 107; 1:6� 107; 3:2� 106; 6:4� 105; 1:28� 105; 2:56� 104�, with 5 replicates for each input
cell number. Because the final dilution results in an input cell number smaller than the required 6:4� 104, the assay has somewhat more power
at the upper end than originally required (ULQ=ULD= 31 IUPM, instead of 12.5 IUPM). In this case, one could reduce the number of replicates
for the smallest input cell number to 3 and still meet the original requirement.
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replication-competent latent reservoir, given that this assay
may detect mRNA production from cells with defective
proviruses [3].

WHEN THE ASSUMPTIONS FAIL

As described in the above section on maximum likelihood sta-
tistics, the statistical framework for estimating infected cell

frequency relies on several assumptions. One way in which
these assumptions may fail is for each infected cell to cause a
positive result with probability less than one. There are several
ways that a latently infected cell, capable of releasing replication-
competent virus upon stimulation, may nonetheless fail to
trigger outgrowth. For instance, variation in host gene expres-
sion may stall initiation of HIV transcription [3, 27]. Fur-
thermore, even if transcription starts, noisy transactivation

Figure 3. Performance of the maximum likelihood estimator in simulations, using the two assay designs highlighted in Table 1. Left column: assay on row
4 (confidence interval [CI] < 1.5 logs); right column: assay on row 9 (CI < .5 logs). (A) Maximum likelihood estimate û and 95% CI plotted in blue; the
diagonal line shows the case of a perfect unbiased estimator. Asymptotic CIs are reported, using likelihood of log-transformed θ. (B) Bias û=u plotted
in blue; the horizontal line at 1 shows the case of a perfect unbiased estimator. (C) Size of the estimated 95% CI plotted in black (note different y-axis
scales). (D) Binomial probability expression used to estimate infection frequency, assuming n replicate wells of c cells apiece. According to this expression,
the probability that all wells are negative equals e−Cθ, where C is the total number of cells across all replicate wells. A–C plot the actual infection frequency
u used in simulations on the x-axis. Each point on the curves is the geometric mean (A and B) or arithmetic mean (C) of 20 000 replicate simulations using
the same u (step size 0.025 logs). Curves are solid where <5% of simulated assays yield all-negative or all-positive results, dashed at 5%–50%, and not
shown at >50%. Blue (A and B) or gray (C) shaded regions show the middle 95% of simulations; jaggedness results from the discrete nature of the dilution
assay. Left to right in each panel, the thin vertical lines show the LLD, the LLQ, and the ULQ = ULD. Note that the assay shown at right is more sensitive (20-
fold lower LLD), more precise (narrower shaded regions in A and B, smaller CI in C), and more accurate (curve in A better tracks the diagonal; curve in B
better tracks the horizontal).
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feedback circuits may fail to cause elongation of viral transcripts
[3, 28–30]. Some stimuli increase HIV-1 gene expression but do
not result in packaging and export of virus particles [13, 31]. Fi-
nally, the virions produced may fail to establish an exponential-
ly growing infection [22]. However, these types of failure do not
change the basic statistical framework of the assay, only its in-
terpretation. In each scenario described, functionally intact pro-
virus escapes detection in the outgrowth assay. In this light, the
quantity being estimated in the assay is a weighted sum of out-
growth probabilities, considering all cells carrying potentially
inducible replication-competent proviruses. For example, a
measured frequency û ¼ 2 IUPM is consistent with a popula-
tion where 1 per million cells have 100% chance of outgrowth,
while an additional 10 per million have 10% chance of out-
growth. Therefore, the “infectious unit” of IUPM refers to a stat-
istical quantity causing viral outgrowth under laboratory
conditions that may consist of many infected cells. This inter-
pretation of IUPM follows common usage in the study of infec-
tious diseases, which treats an infectious unit as the quantity of
pathogen causing a single infection in expectation [32], in con-
trast to the less frequent usage treating it as the minimum quan-
tity capable of causing infection [33]. Sensitivity of IUPM
measurements to assay design further attests to the chance na-
ture of outgrowth. Although rarely discussed, this sensitivity is
tacitly documented in the literature by experimental protocols
that recommend longer periods of monitoring for outgrowth
if surprisingly few wells turn positive [19].
A second type of failure arises if infected cells are not distrib-

uted randomly among wells, which may occur, for instance, if
tissue from an infected donor is not fully dissociated. In this
case, infected cells may cluster in the same well, causing under-
estimates in infected cell frequency. Poor mixing may also lead
to counterintuitive assay results—eg, positive results at small
input cell numbers but not at large numbers. Tests for goodness
of fit to the single-hit Poisson model can flag such outcomes
[6]; an approximate χ2 test is included for this purpose in
IUPMStats. Standard experimental procedures are designed to
ensure random mixing of cells and avoid these outcomes.
Third and most troubling is the possibility that outgrowth de-

pends on the number of infected cells in a nonindependent way.
There are several mechanisms by which multiple infected cells
occupying the same well may interact synergistically to increase
the probability of detectable outgrowth. Human immuno-
deficiency virus, like both simian and murine retroviruses,
can saturate host restriction factors at high viral concentrations,
increasing the probability that a cell is successfully infected [34].
In addition, sustained viral production depends on intracellular
concentration of the viral protein Tat [28, 29], which may be
able to cross cell membranes and reach critical concentrations
more readily when multiple infected cells are present [35]. If
these concentration-dependent mechanisms occur under ex-
perimental conditions, then estimated infected frequency û

may increase if input cells are plated at higher concentrations.
In this case, a more complex “multi-hit” model would be need-
ed to estimate the size of the latent reservoir.
Accurate measurement of the latent infection in HIV contin-

ues to be a major challenge. As the field continues to develop
therapies to reduce latency, principled design and interpretation
of dilution assays will become increasingly important in prior-
itizing these therapies for clinical trial. We hope that our online
tool (http://silicianolab.johnshopkins.edu) can assist the field in
this task.

Definitions
All-positive (all-negative) results occur if all wells in an assay
test positive (negative). These results are the least informative
for estimating the infected cell frequency. Assays generally
should be designed to avoid these results.
Limits of detection are defined for a particular assay design

and a desired significance level α (typically 0.05). If the true in-
fected cell frequency lies between the limits of detection, then
with probability at least (1–α), the assay produces neither an
all-positive nor an all-negative result.
The confidence interval (CI) for a given significance level α

is a range that is computed from the results of an assay. If the
assays were repeated many times on samples with the same true
infected cell frequency, then the CI would include the true value
(1–α) of the time.
Limits of quantification are defined for a particular assay de-

sign, a desired significance level α, and a desired CI size (ex-
pressed as a number of base-10 logs). If the true infected cell
frequency lies between the limits of quantification, then with
probability at least (1–α), the assay produces neither an all-
positive nor an all-negative result, and the CI is smaller than
the desired size.
Sensitivity is an assay’s ability to detect very low infected cell

frequencies. It is measured by the lower limit of detection.
Precision is an assay’s ability to distinguish between similar

infected cell frequencies. It is measured by the CI size. Outside
the limits of quantification, an assay tends to be less precise
(larger CI size).
Bias is the tendency of an assay to report estimated infected

cell frequencies higher or lower than the true value. A perfectly
unbiased (or accurate) assay produces estimates that are sym-
metrically distributed around the true value. Figure 3B mea-
sures bias as the estimated frequency divided by the true
frequency; a value near 1 indicates lack of bias.
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