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Abstract

Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of

knee osteoarthritis (KOA) from medical image data. However, these methods lack interpret-

ability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies’

shapes. In this study we assess the informative value of quantitative features derived from

segmentations in order to assess their potential as an alternative or extension to CNN-

based approaches regarding multiple aspects of KOA. Six anatomical structures around the

knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) are seg-

mented in 46,996 MRI scans. Based on these segmentations, quantitative features are

computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial cov-

erage, as well as geometric features based on a statistical shape encoding of the anato-

mies. The feature quality is assessed by investigating their association to the Kellgren-

Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replace-

ment (TKR). Using gold standard labels from the Osteoarthritis Initiative database the bal-

anced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC),

and weighted kappa statistics are evaluated. Features based on shape encodings of femur,

tibia, and menisci plus the performed measurements showed most potential as KOA bio-

markers. Differentiation between non-arthritic and severely arthritic knees yielded BAs of up

to 99%, 84% were achieved for diagnosis of early KOA. Weighted kappa values of 0.73,

0.72, and 0.78 were achieved for classification of the grade of medial JSN, lateral JSN, and

KLG, respectively. The AUC was 0.61 and 0.76 for prediction of incident KOA and TKR

within one year, respectively. Quantitative features from automated segmentations provide

novel biomarkers for KLG and JSN classification and show potential for incident KOA and

TKR prediction. The validity of these features should be further evaluated, especially as

extensions of CNN-based approaches. To foster such developments we make all segmen-

tations publicly available together with this publication.
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Introduction

Medical imaging has become the standard diagnostic means for assessing osteoarthritis. Sub-

stantial efforts have been made in the past decades to identify image-based biomarkers and to

develop methods for image-based assessment of knee osteoarthritis (KOA) from conventional

radiographs and tomographic image data. To rate KOA from X-Rays with the knee being in a

load-bearing situation, the current gold standard is the Kellgren-Lawrence grading (KLG) [1],

where e.g. radiographic joint narrowing (JSN) is measured. To three-dimensionally (3-D)

assess an arthritic anatomy, 3-D imaging methods are compulsory [2] (or at least reliable 3-D

reconstruction methods from 2-D images [3]). Compared to computed tomography, magnetic

resonance imaging (MRI) offers the advantages of no radiation exposure and significantly bet-

ter differentiation of soft tissues. Various procedures have been proposed for KOA diagnostics

from MRI data, such as manual image reading based on semi-quantitative scoring systems [4,

5], computerized quantitative analysis based on manual definitions of regions of interest

(ROI) [6–10], up to fully automated methods based on machine learning [11, 12].

In order to gain more insight into the pathogenesis of osteoarthritis and the underlying

phenotypes, a big amount of data needs to be studied. Time efficient processing of thousands

of MRI scans, however, seems to be feasible only by employing automated methods, which

additionally could give rise to a more objective and holistic support of KOA scoring by incor-

porating multiple data sources. Promising results in view of automated processing were

achieved recently using deep learning. However, most of these approaches were designed to

perform a single task only, e.g. diagnosis of cartilage degeneration [13, 14] or meniscal lesions

[15–17] in MRI data. Methods of deep learning are complex to design, their decision process is

hardly explainable, and huge burdens need to be overcome with respect to a generalizability

for different imaging modalities [18].

In this study, we evaluate various KOA aspects using different quantitative characteristics

of individual structures of the knee in order to investigate their potential as biomarkers. There-

fore, we apply an automated segmentation approach for six anatomical structures (femoral

and tibial bones, femoral and tibial cartilages, and both menisci) to almost all subjects con-

tained in the Osteoarthritis Initiative (OAI) database (https://nda.nih.gov/oai) and perform

thorough quality assurance of our segmentation results. We investigate which features show

highest potential for a holistic assessment of KOA by classification of KLG and JSN as well as

by predicting a possible occurrence of incident KOA or the need for a total knee replacement

(TKR) within a time frame of up to five years. With this work we aim to set a basis for future

developments within KOA research and diagnosis by supplementing the OAI database with

the segmented structures (https://pubdata.zib.de).

Materials and methods

Study population

This study is based on 3D sagittal Double Echo Steady-State (DESS) MRI data acquired by the

OAI using Siemens Trio 3.0 Tesla scanners [19]. A total of 48,073 datasets are available (see

Table 1), which split up into 7 time points: baseline visit (v00, MRI data of 9,494 knees), 1 year

follow-up (v12, 8,187 scans), 2 year follow-up (v24, 7,534 scans), 3 year follow-up (v36, 5,604

scans), 4 year follow-up (v48, 6,743 scans), 6 year follow-up (v72, 5,508 scans), and 8 year fol-

low-up (v96, 5,003 scans).

All datasets of the retrospective OAI database study are fully anonymized. Ethics approval

for the OAI database was obtained by the OAI coordinating center and by each OAI clinical
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site. All patients provided written informed consent for participation in the OAI and to have

their data from their medical records used in research.

Automatic segmentation of MRI data

The anatomical structures most affected by KOA are the bones, cartilages and menisci of the

knee. To compute features that might be suitable for being used as biomarkers for any or each

of these structures individually we first employ methods of image segmentation to specify the

anatomical ROIs (see Fig 1). We utilize the method of Ambellan et al. 2019 [20], to segment

the distal femoral bone (FB) and the proximal tibial bone (TB) as well as the femoral and tibial

cartilage (FC, TC). In addition, the method of Tack et al. 2018 [21], is utilized to segment the

medial and lateral meniscus (mM, lM).

Our fully automatic segmentation method has a run time of approx. 10 minutes per MRI

dataset on a common workstation. This means the segmentation would almost take a year for

all 48,073 datasets on a single machine without any parallelization. To carry out this massive

segmentation effort, we employed a combination of high performance computing (HLRN

https://www.hlrn.de/supercomputer-e/hlrn-iv-system/?lang=en) and GPU-based application

Table 1. Demographics of data used in this study summarized for all considered time points of the OAI database.

Visit # Images Side (left, right) Sex (male, female) Age [years] BMI [kg/m2] KLG (0, 1, 2, 3, 4, NA) mJSN (0, 1, 2, 3, NA) lJSN (0, 1, 2, 3, NA)

v00 9345 4639, 4706 3847, 5498 61.09 ± 9.18 28.59 ± 4.83 3404, 1565, 2329, 1203, 284, 560 5699, 1909, 978, 199, 560 8089, 361, 248, 87, 560

v12 8025 4006, 4019 3347, 4678 62.13 ± 9.13 28.44 ± 4.79 2954, 1371, 2103, 1130, 328, 139 5054, 1699, 905, 228, 139 7232, 306, 247, 101, 139

v24 7338 3660, 3678 3114, 4224 62.93 ± 9.09 28.39 ± 4.84 2681, 1246, 1914, 1054, 331, 112 4611, 1545, 835, 234, 113 6611, 279, 238, 97, 113

v36 5500 2033, 3467 2356, 3144 63.64 ± 9.06 28.38 ± 4.80 1973, 910, 1429, 835, 260, 93 3414, 1149, 658, 186, 93 4932, 207, 192, 76, 93

v48 6616 3276, 3340 2819, 3797 64.68 ± 9.06 28.45 ± 4.88 2357, 1072, 1690, 924, 332, 241 4094, 1313, 732, 236, 241 5824, 240, 214, 97, 241

v72 5413 2692, 2721 2317, 3096 66.07 ± 8.82 28.25 ± 4.94 1692, 886, 421, 176, 23, 2215 2544, 499, 139, 16, 2215 3034, 113, 43, 8, 2215

v96 4759 2305, 2454 2055, 2704 67.56 ± 8.64 28.38 ± 5.02 1595, 807, 407, 208, 38, 1704 2406, 455, 166, 28, 1704 2887, 115, 44, 10, 1703

NA: ‘Not available’; no measurement was performed within the OAI study for these knees.

https://doi.org/10.1371/journal.pone.0258855.t001

Fig 1. Anatomical regions of interest resulting from the automated segmentation methods. Our automated

segmentation methods yield segmentation masks for the femoral bone, tibial bone, femoral and tibial cartilage, and

both menisci.

https://doi.org/10.1371/journal.pone.0258855.g001

PLOS ONE Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative

PLOS ONE | https://doi.org/10.1371/journal.pone.0258855 October 21, 2021 3 / 17

https://www.hlrn.de/supercomputer-e/hlrn-iv-system/?lang=en
https://doi.org/10.1371/journal.pone.0258855.t001
https://doi.org/10.1371/journal.pone.0258855.g001
https://doi.org/10.1371/journal.pone.0258855


of machine learning (NVIDIA DGX-1 system (NVIDIA Corporation, California, United

States), provided by the Max Delbrück Center for Molecular Medicine in Berlin, Germany

(https://www.mdc-berlin.de/), which allowed us to segment 48,073 MRI datasets in about 5

weeks.

Data: Inclusion and exclusion criteria

The employed methods allowed us to segment several thousand datasets in a fully automated

fashion. Our motivation is to include only datasets having a plausible segmentation in the anal-

ysis of features to test their possible suitability as KOA biomarkers. To ensure a sufficient qual-

ity for such an analysis, we visually inspected each segmented dataset—a process that took

roughly 90 person hours. We empirically found coronal slice number 190 (± 5) to typically

show all structures of interest since the field of view of the MRI data from the OAI database is

well standardized (Fig 2). For an efficient verification of the segmentation results, we first lim-

ited ourselves to inspect the aforementioned 11 slices, in which all relevant structures can be

seen. Only if there were inconsistencies in the expected segmentation, the whole MRI data set

was checked. If any anatomical structure has not been properly segmented or any part of the

segmentation looked suspicious in the respective slices, the complete 3D segmentation was

again inspected (Fig 2). Out of 48,073 scans 2,927 (6.1%) were selected for additional 3D

inspection and 1,077 datasets (2.2%) were excluded from this study due to bad image quality

or segmentation failures (S1 Fig). In total 97.8% of all MR images were successfully segmented

and included in this study resulting in 46,966 datasets.

Computation of features

Our segmentation yields a disjoint set of labeled voxels for all relevant structures that have

been identified in a given MR image. To compute features for KOA assessment of anatomical

structures, we use different methods to describe their representation. The amount of voxels,

Fig 2. Quality assurance of automated segmentations. Step 1: Segmentation results (outlines) are shown for coronal slices of the

MRI. Plausible results (A) are included in this study. For suspicious results (B) the complete 3D MRI is inspected (Step 2). Examples

for discarded cases are (from left to right): MRI can not be loaded, wrong MRI orientation, doubtful MRI appearance, MRI artifacts,

incorrect menisci segmentation, incorrect bone segmentation, incorrect overall segmentation (incorrect segmentations indicated by

white arrows). 1,850 cases which appeared suspicious in Step 1 were identified as false positives in Step 2 and remained included in this

study.

https://doi.org/10.1371/journal.pone.0258855.g002
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for instance, is proportional to both, the MRI resolution as well as the size of the respective

structure. Hence, features related to the volume of an anatomical structure can be directly

computed from the segmentations. For more sophisticated features describing the shape of a

structure the complexity of the data is reduced by considering only the boundaries of the seg-

mented regions. To achieve this, we represent the respective bounding surfaces as triangulated

meshes, which well approximate complexly shaped objects [22]. Based on the surface represen-

tations, we compute the surface areas and we statistically analyze the variation in shape for a

population of surfaces. In our study, we divide all considered features into two groups: (A)

Measurements of volumes, areas and distances which are in the following called “MEAS” fea-

tures, and (B) Features based on a low-dimensional shape encoding “LDSE” (Fig 3). In detail,

the following features are investigated:

MEAS features. Volume. Swelling of knee soft tissues can lead to an increase of volume

whereas severe degeneration may lead to a complete loss. Hence, six MEAS features are chosen

as the volumes V of mM, lM, FC, total TC, medial TC (mTC), and lateral TC (lTC), which are

all computed directly from the labeled voxels. Since volumes of anatomical structures of the

Fig 3. Computation of KOA features. KOA features are exemplarily shown for the medial meniscus (purple), tibial bone (blue) and

tibial cartilage (yellow). MEAS features are computed based on segmented voxels and surfaces generated thereof. For MEAS, (I)

volumes are computed for femoral cartilage, medial/lateral/total tibial cartilage, and both menisci, (II) surface areas are computed for

both menisci, (III) ratio of volume and surface area is computed for both menisci, and (IV) meniscal extrusion is computed for both

menisci. (V) Tibial coverage is computed for both tibial plateaus. (VI) LDSE features are computed for femoral bone, tibial bone, and

medial/lateral meniscus representing individual shapes relative to the mean shape of the analyzed population.

https://doi.org/10.1371/journal.pone.0258855.g003
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knee are known to be correlated with the body size of the subjects [23], all volumes are normal-

ized by the subject’s height.

Surface area and ratio of surface area to volume. Especially for the menisci the volume may

remain unchanged even if the shape changes, i.e., arthritic menisci may become flat while pre-

serving their volume. To analyze this kind of variation, we selected additional four MEAS fea-

tures as the surface area A for mM and lM, as well as the ratio of surface area to volume RA,V

for mM and lM, respectively.

Meniscal extrusion and tibial coverage. In addition to changes of volume and shape, ana-

tomical structures (such as the menisci) may also show changes of relative positions to other

structures within the knee joint. Meniscal extrusion, for example, is highly correlated with tib-

ial coverage, i.e., the more the meniscus is located outside of the joint, the less tibial cartilage is

covered [24]. Thus, additional four MEAS features are chosen as the extrusions of mM and lM

in medio-lateral direction measured in mm as well as coverages of mTC and lTC by the

menisci measured as a percentage (see Tack et al. 2018) [21].

LDSE features. Arthritic bones commonly develop osteophytes as well as deformations of

the articular surfaces. The shape of the menisci might also change in a more complex manner

(e.g. local deformations of the surface), which can not be fully captured by the simple surface

area and volume features as contained in MEAS. Therefore, in addition to MEAS, we compute

geometrical features assessing the shape of distal femurs, proximal tibias, and the menisci

based on a statistical LDSE for all 46,996 datasets, which are divided into seven time points of

the OAI database. Using methods from Riemannian shape statistics [25, 26], the mean shape

of each anatomy is computed for all subjects segmented in every time point. This mean shape

is represented by a common parametrization (i.e., a triangulation).

The variation of all training shapes to the mean is analyzed employing Principal Geodesic

Analysis [27]. This analysis yields feature vectors that form a compact encoding for every

input shape. In our study the length of the feature vector is proportional to the number of sub-

jects analyzed (see S1 Table) and independent of the geometry’s spatial sampling (i.e., the

number of sample points of the parametrization).

The feature vectors are ordered by the magnitude of explained variation in shape [28]. We

decided to consider only the 300 most significant features per anatomical structure for our

analysis since additional features would contribute only with very little variation in shape [29].

The LDSE features in the following investigation are denoted with LDSE-FB for femoral bone,

LDSE-TB for tibial bone, LDSE-mM for medial meniscus, and LDSE-lM for lateral meniscus.

Additionally, we analyzed combined encodings LDSE-COMB consisting of the first 75 features

of each anatomical structure, again resulting in 300 features. An overview of MEAS and LDSE

features is shown in S2 Table.

Suitability of the features as potential KOA biomarkers

We investigate the potential MEAS and LDSE features (i) to classify the current disease state

and (ii) to predict a disease state which might develop in the future (Table 2). Annotations

from image reading studies of the OAI database are used as the gold standard. The entire pro-

cedure from the determination of features, their appropriate selection, up to the assessment of

their suitability as KOA biomarkers is depicted in Fig 4.

Evaluation of features for classification purposes. We employed features for classifica-
tion of non-arthritic subjects vs. early KOA and for classification of non-arthritic vs. subjects

with severe KOA. Non-arthritic subjects were defined as KLG� 1, early KOA as KLG 2, and

severe KOA as KLG� 3. In addition, we employed features for the classification of medial JSN

(mJSN) and lateral JSN (lJSN) (Table 2).
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Evaluation of features for prediction purposes. We evaluated if the analyzed features can

predict which subjects may develop incident KOA (KLG� 2, with joint space narrowing) as

well as which subjects may receive a TKR. Both analyses considered a time frame of up to five

years (Table 2).

Supervised learning via support vector machines

We trained fast and efficient linear support vector machines (SVMs) [30] to classify as well as

to predict the aspects of KOA described in the previous section. Standard SVM parameters

were chosen (scikit learn: LinearSVC) as well as a squared L2 penalty [30]. The SVM was uti-

lized in a Monte-Carlo cross-validation framework: For each investigation, data were ran-

domly split into 90% for training and 10% for testing. The data for training and testing were

drawn in a balanced fashion limiting all classes to the one with the least subjects. To obtain

results which are representative for the complete cohort, this procedure was repeated 1,000

times. Each respective feature x was min-max normalized over all training datasets:

z ¼ x� minðxÞ
xmax� xmin

.

For each classification setting those cases were discarded that have a missing label (e.g.

missing KLG information) or any missing feature.

Balanced accuracy BA ¼ SensitivityþSpecificity
2

was used to evaluate the classification of KLG and

JSN grades since it can be computed for both, binary and multi-class classification approaches.

Additionally, the agreement of our classifications and predictions to the gold standard annota-

tions was assessed employing weighted kappa [31]. The quality of the employed features

was evaluated for prediction of incident KOA as well as for prediction of TKR in terms of

sensitivity and specificity using the area under the Receiver Operating Characteristic curve

(AUC) [32].

Logistic regression to assess feature importance for prediction of knee

arthroplasty

TKR poses an important outcome. For this reason, we perform logistic regression employing

MEAS features as independent variables for the prediction of knee arthroplasty. This evalua-

tion is performed for a time frame of one year. The odds ratios (ORs) are provided for each

MEAS feature to assess the influence of the respective feature for TKR prediction.

Table 2. Analyses performed to investigate the suitability of features to describe different aspects of KOA. Features

are employed to classify between KLGs, grades of joint space narrowing (JSN), as well as to predict incident KOA and

total knee replacement (TKR).

Classification Prediction

KLG JSN incident KOA TKR

0 vs. 1 vs. 2 vs. 3 vs. 4 mJSN: 0 vs. 1 vs. 2 vs. 3 within 1 year within 1 year

[0;1] vs. 2 vs. [3;4] lJSN: 0 vs. 1 vs. 2 vs. 3 within 2 years within 2 years

[0;1] vs. [2;3;4] within 3 years within 3 years

0 vs. 2 within 4 years within 4 years

0 vs. 4 within 5 years within 5 years

https://doi.org/10.1371/journal.pone.0258855.t002
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Results

Evaluation of features for classification purposes

All results for classification of different grades of KLG (see Table 3) as well as JSN (see Table 4)

are averaged over all time points of the OAI study. Detailed information on the results per sin-

gle time point can be found in the supplementary material.

Classification of Kellgren-Lawrence grades. We conducted 4 classification studies in

which different grades of KLG were differentiated.

1. Non-arthritic knees were classified against severely arthritic ones, i.e., KLG 0 vs. KLG 4.

The resulting BA ranged from 88% ± 5% using LDSE-lM features up to 99% ± 1% using

LDSE-COMB features plus MEAS features.

2. Since KLG 2 is regarded as the first grade at which safe indicators are visible to reliably con-

firm KOA, whereas KLG 0 (no abnormalities) is without any doubt considered as a non-

arthritic knee, non-arthritic knees were classified against early KOA, i.e., KLG 0 vs. KLG 2.

Here, MEAS yielded the lowest BA (67% ± 3%). LDSE-COMB features plus MEAS features

performed best, resulting in a BA of 84% ± 2%.

3. The classification of non-arthritic knees (KLG [0;1]) against diseased ones (KLG [2;3;4])

confirmed our previous finding: MEAS features yielded the lowest BA (71% ± 2%) and

Fig 4. Selection of KOA features and performed analysis. Top: Computation and determination of suitable features.

Middle: Selection of features for further analyses. Chosen are either all features of MEAS, or LDSE-FB/LDSE-TB/

LDSE-mM/LDSE-lM features encoding one anatomy, LDSE-COMB features encoding all anatomies, or MEAS

combined with one kind of LDSE features. Bottom: Quantitative analysis of the suitability of selected features as KOA

biomarkers by training of support vector machines for classification and prediction purposes.

https://doi.org/10.1371/journal.pone.0258855.g004
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Table 3. Classification of KLG (average over all time points weighted by number of cases).

Balanced Accuracy

5-class 3-class binary classification

Features 0 vs 1 vs 2 vs 3 vs 4 [0;1] vs 2 vs [3;4] [0;1] vs [2;3;4] 0 vs 2 0 vs 4

N = 41,932 N = 41,932 N = 41,932 N = 26,949 N = 18,252

MEAS 0.44 ± 0.04 0.60 ± 0.02 0.71 ± 0.02 0.67 ± 0.03 0.94 ± 0.03

LDSE-FB 0.41 ± 0.04 0.64 ± 0.02 0.81 ± 0.02 0.79 ± 0.02 0.95 ± 0.03

LDSE-FB + MEAS 0.45 ± 0.04 0.68 ± 0.02 0.82 ± 0.02 0.80 ± 0.02 0.97 ± 0.02

LDSE-TB 0.40 ± 0.04 0.62 ± 0.03 0.79 ± 0.02 0.77 ± 0.02 0.92 ± 0.04

LDSE-TB + MEAS 0.43 ± 0.04 0.67 ± 0.02 0.80 ± 0.02 0.78 ± 0.02 0.96 ± 0.03

LDSE-mM 0.42 ± 0.04 0.63 ± 0.02 0.77 ± 0.02 0.75 ± 0.02 0.91 ± 0.04

LDSE-mM + MEAS 0.47 ± 0.04 0.67 ± 0.02 0.78 ± 0.02 0.76 ± 0.02 0.97 ± 0.02

LDSE-lM 0.37 ± 0.04 0.56 ± 0.02 0.72 ± 0.02 0.69 ± 0.02 0.88 ± 0.05

LDSE-lM + MEAS 0.44 ± 0.04 0.64 ± 0.02 0.76 ± 0.02 0.73 ± 0.03 0.96 ± 0.03

LDSE-COMB 0.50 ± 0.04 0.72 ± 0.02 0.84 ± 0.01 0.84 ± 0.02 0.99 ± 0.02

LDSE-COMB + MEAS 0.52 ± 0.04 0.73 ± 0.02 0.84 ± 0.01 0.84 ± 0.02 0.99 ± 0.01

Weighted Kappa

5-class 3-class binary classification

Features 0 vs 1 vs 2 vs 3 vs 4 [0;1] vs 2 vs [3;4] [0;1] vs [2;3;4] 0 vs 2 0 vs 4

N = 41,932 N = 41,932 N = 41,932 N = 26,949 N = 18,252

MEAS 0.68 ± 0.05 0.58 ± 0.04 0.41 ± 0.04 0.34 ± 0.05 0.88 ± 0.07

LDSE-FB 0.68 ± 0.05 0.65 ± 0.03 0.62 ± 0.03 0.58 ± 0.04 0.90 ± 0.06

LDSE-FB + MEAS 0.71 ± 0.04 0.70 ± 0.03 0.65 ± 0.03 0.60 ± 0.04 0.94 ± 0.05

LDSE-TB 0.63 ± 0.06 0.61 ± 0.04 0.58 ± 0.03 0.53 ± 0.05 0.85 ± 0.07

LDSE-TB + MEAS 0.68 ± 0.05 0.68 ± 0.04 0.61 ± 0.03 0.56 ± 0.05 0.92 ± 0.05

LDSE-mM 0.64 ± 0.05 0.63 ± 0.04 0.54 ± 0.03 0.50 ± 0.05 0.83 ± 0.08

LDSE-mM + MEAS 0.73 ± 0.05 0.68 ± 0.03 0.56 ± 0.04 0.51 ± 0.04 0.94 ± 0.05

LDSE-lM 0.56 ± 0.06 0.50 ± 0.04 0.44 ± 0.04 0.39 ± 0.05 0.76 ± 0.09

LDSE-lM + MEAS 0.69 ± 0.05 0.64 ± 0.03 0.52 ± 0.03 0.45 ± 0.05 0.91 ± 0.06

LDSE-COMB 0.78 ± 0.04 0.75 ± 0.03 0.68 ± 0.03 0.68 ± 0.04 0.97 ± 0.03

LDSE-COMB + MEAS 0.78 ± 0.04 0.75 ± 0.03 0.69 ± 0.03 0.68 ± 0.04 0.98 ± 0.03

https://doi.org/10.1371/journal.pone.0258855.t003

Table 4. Balanced accuracy and weighted kappa for classification of joint space narrowing (JSN) for medial and lateral femorotibial compartment averaged over all

time points weighted by number of cases per time point.

Balanced Accuracy Weighted Kappa

Medial Lateral Medial Lateral

Features N = 41,932 N = 41,932 Features N = 41,932 N = 41,932

MEAS 0.54 ± 0.07 0.57 ± 0.11 MEAS 0.72 ± 0.08 0.72 ± 0.14

LDSE-FB 0.43 ± 0.08 0.40 ± 0.11 LDSE-FB 0.50 ± 0.13 0.42 ± 0.20

LDSE-FB + MEAS 0.48 ± 0.08 0.46 ± 0.12 LDSE-FB + MEAS 0.60 ± 0.12 0.57 ± 0.18

LDSE-TB 0.44 ± 0.08 0.40 ± 0.12 LDSE-TB 0.50 ± 0.13 0.42 ± 0.22

LDSE-TB + MEAS 0.49 ± 0.08 0.46 ± 0.12 LDSE-TB + MEAS 0.61 ± 0.12 0.58 ± 0.17

LDSE-mM 0.52 ± 0.08 0.33 ± 0.11 LDSE-mM 0.67 ± 0.11 0.24 ± 0.24

LDSE-mM + MEAS 0.56 ± 0.08 0.46 ± 0.12 LDSE-mM + MEAS 0.72 ± 0.08 0.53 ± 0.20

LDSE-lM 0.40 ± 0.08 0.49 ± 0.10 LDSE-lM 0.42 ± 0.14 0.57 ± 0.14

LDSE-lM + MEAS 0.48 ± 0.08 0.51 ± 0.11 LDSE-lM + MEAS 0.62 ± 0.12 0.59 ± 0.15

LDSE-COMB 0.56 ± 0.08 0.50 ± 0.12 LDSE-COMB 0.71 ± 0.10 0.64 ± 0.16

LDSE-COMB + MEAS 0.57 ± 0.09 0.52 ± 0.12 LDSE-COMB + MEAS 0.73 ± 0.09 0.67 ± 0.15

https://doi.org/10.1371/journal.pone.0258855.t004
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LDSE-COMB features plus MEAS features performed best resulting in a BA of 84% ± 1%.

For classification of KLG [0;1] vs. KLG 2 vs. KLG [3;4] in a 3-class setting the BA slightly

decreased to 60% ± 2% for MEAS features and 73% ± 2% for LDSE-COMB features plus
MEAS features.

4. Differentiation between all 5 grades of KOA is the most challenging task. The weakest dif-

ferentiation between these five grades was possible using LDSE-lM features (37% ± 4%).

Best results were achieved using LDSE-COMB (50% ± 4%) which was further improved

using LDSE-COMB features plus MEAS features (52% ± 4%).

In all classification studies, LDSE-FB features performed better than LDSE-TB features in

terms of BA with a margin of at least 1 and up to 3 percent. Also, the LDSE-mM features

always performed better than the LDSE-lM features with a margin of at least 3 and up to 7 per-

cent. LDSE-FB features usually scored better or at least similar good as LDSE-mM features.

MEAS features never scored better than the LDSE-COMB features, however, a combination of

both features mostly improved the classification results in the 3-class and the 5-class setting.

Employing LDSE-COMB features plus MEAS features, a moderate agreement was found as

measured with the weighted kappa coefficient of 0.75 ± 0.03 and 0.78 ± 0.04 for the 3-class and

the 5-class analysis, respectively.

Classification of joint space narrowing. We investigated the potential of the features for

differentiation of different grades of mJSN and lJSN, respectively.

1. For a classification of mJSN the LDSE-lM features yielded the lowest accuracy (BA of 40%

± 8%). Utilizing LDSE-FB resulted in similar results as LDSE-TB (BA of 43% ± 8% and 44%

± 8%). Among the LDSE features, LDSE-mM yielded best results (BA of 52% ± 8%), how-

ever, not as good as LDSE-COMB (BA of 56% ± 8%). MEAS features scored slightly lower

than LDSE-COMB (BA of 54% ± 7%). LDSE-COMB plus MEAS led to the best results, i.e.,

a BA of 57% ± 9%.

2. For a classification of lJSN the LDSE-mM features yielded the lowest accuracy (BA of 33%

± 11%). LDSE-FB performed comparable to LDSE-TB (BA of 40% ± 11% and 40% ± 12%,

respectively). Among the individual LDSE features, LDSE-lM yielded best results (BA of

49% ± 10%), which was close to LDSE-COMB (BA of 50% ± 12%). The combination with

MEAS features improved the results for all individual LDSE features as well as for LDSE--

COMB. However, MEAS features alone yielded the best results for classification of lJSN

(57% ± 11%).

In terms of kappa statistics the best results were achieved using LDSE-COMB plus MEAS

for mJSN and MEAS for lJSN yielding moderate agreement in both cases (average weighted

kappa of 0.73 ± 0.09 and 0.72 ± 0.14, respectively).

Evaluation of features for prediction purposes

Results for a prediction of incident KOA and TKR within different periods of time (see

Table 5) are summarized in this section.

Prediction of incident knee osteoarthritis. Utilization of individual LDSE features for

prediction of incident KOA yielded AUCs in a range from 0.52 to 0.56. Adding MEAS features

to the individual LDSE features either led to an increase of the AUC or at least to a similar

value, ranging between 0.53 to 0.57.

Both, MEAS features and LDSE-COMB features performed better than the individual fea-

tures alone. Over all investigated periods of time the prediction of KOA within one year was

best. For prediction within one year, the AUC was 0.60 ± 0.11 using LDSE-COMB features or

PLOS ONE Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative

PLOS ONE | https://doi.org/10.1371/journal.pone.0258855 October 21, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0258855


MEAS features, and 0.61 ± 0.12 using LDSE-COMB features plus MEAS features. However, a

prediction of incident KOA within 5 years also led to reasonable results, i.e., an AUC of

0.59 ± 0.07 when utilizing LDSE-COMB features plus MEAS features.

Across all considered time periods, all individual LDSE features consistently yielded a lower

AUC than the MEAS features and the LDSE-COMB features, respectively. A combination of

LDSE-COMB and MEAS features, however, either improved the results or at least yielded to

equal results for every period of time that has been analysed.

Prediction of total knee replacement. LDSE features led to a prediction of TKR with

AUCs ranging from 0.65 to 0.71. MEAS features as well as LDSE-COMB features yielded

slightly higher AUC values ranging from 0.72 to 0.74 and from 0.73 to 0.74, respectively. In

tendency, the best results were achieved for prediction of TKR within one year. The AUC was

0.74 ± 0.12 using LDSE-COMB features, 0.74 ± 0.12 using MEAS features, and 0.76 ± 0.12

using LDSE-COMB features plus MEAS features. However, the prediction of receiving TKR

within the next 5 years also led to comparable results, i.e., an AUC of 0.74 ± 0.06 when utilizing

LDSE-COMB features plus MEAS features.

Table 5. Prediction of incident KOA (KLG>= 2 with JSN) and TKR surgery within a years. In both investigations the AUC is evaluated utilizing the respective true

positive rate as well as the false positive rate.

Incident KOA—AUC

a = 1 year a = 2 years a = 3 years a = 4 years a = 5 years

#No_INC = 26,302 #No_INC = 25,890 #No_INC = 25,647 #No_INC = 25,395 #No_INC = 25,225

Features #INC = 372 #INC = 784 #INC = 1,027 #INC = 1,279 #INC = 1,449

MEAS 0.60 ± 0.11 0.60 ± 0.09 0.59 ± 0.08 0.59 ± 0.07 0.59 ± 0.07

LDSE-FB 0.55 ± 0.12 0.56 ± 0.09 0.56 ± 0.08 0.56 ± 0.07 0.56 ± 0.07

LDSE-FB + MEAS 0.55 ± 0.12 0.57 ± 0.09 0.57 ± 0.08 0.57 ± 0.07 0.57 ± 0.07

LDSE-TB 0.54 ± 0.11 0.52 ± 0.10 0.53 ± 0.08 0.54 ± 0.07 0.53 ± 0.07

LDSE-TB + MEAS 0.56 ± 0.12 0.55 ± 0.10 0.54 ± 0.08 0.55 ± 0.07 0.55 ± 0.07

LDSE-mM 0.55 ± 0.11 0.56 ± 0.09 0.56 ± 0.08 0.56 ± 0.07 0.56 ± 0.07

LDSE-mM + MEAS 0.57 ± 0.11 0.56 ± 0.09 0.56 ± 0.09 0.56 ± 0.07 0.57 ± 0.07

LDSE-lM 0.54 ± 0.10 0.55 ± 0.09 0.55 ± 0.08 0.55 ± 0.07 0.55 ± 0.07

LDSE-lM + MEAS 0.55 ± 0.11 0.56 ± 0.09 0.56 ± 0.09 0.57 ± 0.08 0.57 ± 0.07

LDSE-COMB 0.59 ± 0.11 0.59 ± 0.09 0.59 ± 0.08 0.59 ± 0.07 0.59 ± 0.07

LDSE-COMB + MEAS 0.61 ± 0.12 0.59 ± 0.09 0.60 ± 0.08 0.59 ± 0.07 0.59 ± 0.07

TKR—AUC

a = 1 year a = 2 years a = 3 years a = 4 years a = 5 years

#No_TKR = 46,575 #No_TKR = 46,281 #No_TKR = 45,992 #No_TKR = 45,726 #No_TKR = 45,481

Features #TKR = 421 #TKR = 715 #TKR = 1,004 #TKR = 1,270 #TKR = 1,515

MEAS 0.74 ± 0.12 0.73 ± 0.10 0.73 ± 0.08 0.72 ± 0.07 0.72 ± 0.06

LDSE-FB 0.69 ± 0.13 0.71 ± 0.10 0.71 ± 0.08 0.70 ± 0.07 0.70 ± 0.07

LDSE-FB + MEAS 0.72 ± 0.13 0.73 ± 0.09 0.72 ± 0.08 0.72 ± 0.07 0.72 ± 0.06

LDSE-TB 0.65 ± 0.14 0.67 ± 0.10 0.68 ± 0.08 0.67 ± 0.08 0.67 ± 0.07

LDSE-TB + MEAS 0.68 ± 0.13 0.69 ± 0.10 0.70 ± 0.08 0.70 ± 0.07 0.69 ± 0.06

LDSE-mM 0.65 ± 0.14 0.69 ± 0.10 0.69 ± 0.08 0.70 ± 0.08 0.70 ± 0.06

LDSE-mM + MEAS 0.70 ± 0.13 0.72 ± 0.10 0.72 ± 0.08 0.72 ± 0.07 0.73 ± 0.06

LDSE-lM 0.67 ± 0.13 0.68 ± 0.11 0.69 ± 0.09 0.69 ± 0.08 0.69 ± 0.07

LDSE-lM + MEAS 0.70 ± 0.13 0.71 ± 0.10 0.73 ± 0.08 0.73 ± 0.07 0.72 ± 0.06

LDSE-COMB 0.74 ± 0.12 0.74 ± 0.09 0.74 ± 0.08 0.74 ± 0.07 0.73 ± 0.07

LDSE-COMB + MEAS 0.76 ± 0.12 0.75 ± 0.10 0.75 ± 0.08 0.75 ± 0.07 0.74 ± 0.06

https://doi.org/10.1371/journal.pone.0258855.t005

PLOS ONE Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative

PLOS ONE | https://doi.org/10.1371/journal.pone.0258855 October 21, 2021 11 / 17

https://doi.org/10.1371/journal.pone.0258855.t005
https://doi.org/10.1371/journal.pone.0258855


Logistic regression for prediction of total knee replacement. The highest odds ratios

were achieved by features related to the MM, such as medial tibial coverage (OR: 7.04, 95%

confidence interval (CI): 6.70–7.42) and medial meniscal extrusion (OR: 2.97, 95% CI: 2.79–

3.15) as summarized in Table 6. Additionally, also lateral tibial coverage yielded one of the

highest ORs (OR: 2.64, 95% CI: 2.52–2.77). The lowest ORs were achieved for MEAS features

related to medial tibial cartilage volume (OR: 1.23, 95% CI: 1.20–1.26), LM volume (OR: 1.19,

95% CI: 1.18–1.19), and MM volume (OR: 1.13, 95% CI: 1.11–1.15).

Discussion

Based on our segmentations we analyzed the potential of a set of features for FB, TB, mM, and

lM as biomarkers for classification of KLG and JSN and for prediction incident KOA and

TKR. Compared to the related work, our classification of KOA aspects yielded similar BA as

the method of Nasser et al. [33] for a determination of early KOA (classification of KLG 0 vs.

KLG 2—theirs: 82.52%, ours: 84%). However, our kappa was lower than the ones of Tiulpin

et al. [34] (5-class classification KLG—theirs: 0.83, ours: 0.78) and Ngyuen et al. [35] (5-class

classification KLG—theirs: 0.88, ours: 0.78). For prediction of TKR, a slightly higher AUC was

achieved than Eckstein et al. [36] (prediction of TKR—theirs: 0.66, ours: 0.74), but a lower

AUC than Tolpadi et al. [37] (prediction of TKR—theirs: 0.83, ours: 0.74). Judging the results

achieved by the features investigated in this study, one should consider that (i) the features

were computed solely based on our segmentations, i.e., without taking any gray-value intensity

information into account, and (ii) the features were computed from MRI data which are (in

contrast to X-Ray) not acquired with the knee being in a load-bearing condition. The evalua-

tion of KLG and JSN from X-Rays is highly depending on the rater [38] which can result in

kappa statistics between 0.56 and 0.67 [39, 40]. MRI offers additional potential to investigate

3-D features, e.g. of the anatomies’ shapes, and should thus be preferred for investigation of

novel biomarkers.

Considering the potential of shape encodings of the individual anatomies as biomarkers,

the tibial bone showed in tendency the lowest descriptiveness for all analyzed aspects of KOA.

This confirms the findings of Neogi et al. [41] who also found that shape variations of the tibial

bone are either hard to capture with a low-dimensional encoding or are not as prominent and

Table 6. TKR prediction via logistic regression using MEAS features. The odds ratios are provided for each feature.

MEAS feature Odds ratio 95% confidence interval

TCmTC 7.04 6.70 to 7.42

EmM 2.97 2.79 to 3.15

TClTC 2.64 2.52 to 2.77

AmM 2.16 2.05 to 2.26

VFC 2.09 2.02 to 2.18

VlTC 2.08 1.98 to 2.18

VTC 1.74 1.68 to 1.79

RmM
A;V 1.64 1.57 to 1.71

ElM 1.60 1.54 to 1.66

AlM 1.46 1.39 to 1.50

RlM
A;V 1.45 1.39 to 1.50

VmTC 1.23 1.20 to 1.26

VlM 1.19 1.18 to 1.19

VmM 1.13 1.11 to 1.15

https://doi.org/10.1371/journal.pone.0258855.t006
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clear as features of the femoral bone. The representation of the femoral bone showed best

results among all individual anatomies for differentiation of KLG. LDSE-mM performed best

among the individual structures’ representations for a classification of medial JSN and LDSE-

lM for a classification of lateral JSN confirming the importance of the menisci in the context of

JSN [42]. In summary, the combined encoding LDSE-COMB consisting of features of femoral

bone, tibial bone and meniscus yielded better results than any individual encoding of the struc-

tures of interest. This highlights the need for a holistic assessment of the entire knee. In future,

further analysis of the shape of bones and menisci should be performed, i.e., analyzing the

shape of sub-groups of the population in comparison to the mean shape [10]. Such an analysis

may form the basis to detect clusters of similar shapes and to identify patterns within the pro-

gression of the disease [43].

In all cases (except the classification of lateral JSN) we observed that the results of LDSE--

COMB can be further improved by adding MEAS features. Especially the position of the

menisci can not be directly explained by a shape encoding and thus the importance of this fea-

ture is confirmed. For prediction of TKR, the potential of the MEAS features was further

shown. The position of the menisci reflected in the tibial coverage and meniscal extrusion

yielded the highest ORs. Volume measurements were less important with respect to TKR

prediction.

As far as it concerns the detection of patterns within medical image data, we have great con-

viction that deep learning is the most promising approach. However, CNNs are relatively

agnostic to shape information and focus mainly on the texture of images [44]. Moreover, the

decision process of CNNs can be influenced by subtle changes in image information which

can be hardly noticed by humans [45]. Thus, the application of deep learning for diagnostics

in clinical practice remains a challenge, since results need to be explainable [46]. Furthermore,

to demonstrate generalizability, deep-learning based algorithms have to be evaluated in pro-

spective studies using large datasets acquired at different institutions with different imaging

parameters and different imaging hardware [11]. Deep learning frameworks often already fuse

image data with meta information using concepts e.g. of input level information fusion to add

additional knowledge and improve the classification accuracy [37, 47, 48]. The features we

investigated could be merged into deep learning frameworks similar as in [37, 47, 48] to pro-

vide additional insights wrt. the shape of an anatomical structure. Moreover, in contrast to

pure machine learning-based approaches, the features we evaluated in this study are explain-

able: The semantic segmentations which are the basis of our features can be inspected in 3-D.

Additionally, the measurements MEAS can be visualized in the image data and the mean

shapes required for LDSE features as well as the modes of variation can be visually explored

[28].

With this publication we will make our segmentations publicly available (https://pubdata.

zib.de). By using our results, developments in image-based KOA biomarkers for different

structures of the knee can be fostered. Our segmentation masks have been created in a fully

automated manner. Quality assurance has been employed in order to omit suspicious segmen-

tations. However, there might be still some potential for improvement e.g. in regions of high

morphological variability or inhomogeneous image appearance which could be corrected

manually or by novel, automated methods. Other researchers are invited to use the provided

segmentations as well as to report errors or correct them and transfer the corrected data back

in order to update the collection of segmentations. We envisage a platform that enables other

researchers to utilize all data contained in the OAI database and to make it easily accessible for

future research.
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