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A B S T R A C T   

Land resources are an essential foundation for socioeconomic development. Island land resources 
are limited, the type changes are particularly frequent, and the environment is fragile. Therefore, 
large-scale, long-term, and high-accuracy land-use classification and spatiotemporal character-
istic analysis are of great significance for the sustainable development of islands. Based on the 
advantages of remote sensing indices and principal component analysis in accurate classification, 
and taking Zhoushan Archipelago, China, as the study area, in this work long-term satellite 
remote sensing data were used to perform land-use classification and spatiotemporal character-
istic analysis. The classification results showed that the land-use types could be exactly classified, 
with the overall accuracy and Kappa coefficient greater than 94% and 0.93, respectively. The 
results of the spatiotemporal characteristic analysis showed that the built-up land and forest land 
areas increased by 90.00 km2 and 36.83 km2, respectively, while the area of the cropland/ 
grassland decreased by 69.77 km2. The areas of the water bodies, tidal flats, and bare land 
exhibited slight change trends. The spatial coverage of Zhoushan Island continuously expanded 
toward the coast, encroaching on nearby sea areas and tidal flats. The cropland/grassland was the 
most transferred-out area, at up to 108.94 km2, and built-up land was the most transferred-in 
areas, at up to 73.31 km2. This study provides a data basis and technical support for the scien-
tific management of land resources.   

1. Introduction 

Land resources are necessary for human survival and development, and it is crucial to improve sustainable development and the 
cognition of human–land relationships. Land-use/cover changes are an important source of information for understanding the complex 
interactions between human activities and the environment [1–4]. Large-scale, long-term, and high-accuracy land-use data are of great 
significance to the study of long-term temporal and spatial land-use changes [4–8]. An island is a compound area that contains marine 
resources and environments, with a relatively simple geographic structure, a limited environmental capacity, poor stability, and a 
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comparatively fragile environment. Understanding land-use/cover change is a crucial precondition for conducting island ecological 
protection [9–11]. 

Land-use/cover change mapping based on traditional classifiers takes a long time and is less effective. These methods include the 
minimum distance classifier, maximum likelihood classifier, K-nearest neighbor classifier, K-means classifier, and ISODATA classifier, 
which has extremely high requirements for post-processing and other work [11–13]. In recent years, machine learning algorithms have 
been widely used in object recognition and remote sensing information extraction due to their powerful adaptive and self-learning 
parallel information processing capabilities [14–16]. Among them, the artificial neural network, decision tree, support vector ma-
chine, and random forest (RF) algorithm show good classification effect, and have received increasing attention from researchers 
[17–20]. 

Researchers in China and abroad have investigated machine learning classification algorithms in terms of research areas, data 
sources, and classification algorithms with the help of remote sensing technologies. The research areas have included provinces, river 
basins, and nations. For example, Shi et al. took Jiangsu Province as the research area and analyzed the historical evolution of land use 
in Jiangsu Province from 1990 to 2010 [21]. Yang et al. discussed the evolution characteristics of land-use/cover changes in the Yellow 
River Basin from 2000 to 2020 [22]. Alijani et al. studied the evolution characteristics of land-use/cover changes in Iran over 20 years, 
from 1996 to 2016 [23]. The data sources used in previous studies include hyperspectral, light detection and ranging (Lidar), moderate 
resolution imaging spectroradiometer (MOD)IS data, and Landsat data [24–27]. Classification algorithms include the 2-D convolu-
tional neural network, hybrid convolutional network, and RF [28–30]. Remote sensing indices can highlight a certain type of ground 
object, such as the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and normalized dif-
ference built-up index (NDBI). Therefore, many researchers have added indices to improve classification accuracy. 

Different from land areas, islands have the characteristics of limited land resources, frequent changes of land-use types, and high 
landscape fragmentation. Therefore, it is necessary to use multiple indicators to conduct the large-scale, long-term, high-accuracy 
analysis of the spatiotemporal characteristics of island land use. Considering the advantages of remote sensing indices and prin-
cipal component analysis in accurate classification, in this study an RF classification algorithm was developed based on remote sensing 
indices and principal component analysis. The spatiotemporal characteristics of the land-use/cover change on Zhoushan Island were 
analyzed based on long-term satellite remote sensing data. 

Fig. 1. Location of Zhoushan island.  
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2. Study area and data sources 

2.1. Study area 

Zhoushan City is the first provincial prefecture-level city organized as an archipelago in China. It is located in the northeastern part 
of Zhejiang Province and is bordered by the East China Sea to the east, Hangzhou Bay to the west, and Shanghai to the north. In the 
present study, Zhoushan Island, the largest island in Zhejiang Province, was selected as the research area. Zhoushan Island has an area 
of approximately 503 km2 [31]; its location is shown in Fig. 1. 

2.2. Data 

In this study, Landsat5, Landsat8, and Landsat9 satellite remote sensing images in nine time periods (1985, 1990, 1995, 2000, 
2005, 2010, 2015, 2020, and 2022) provided by the Google Earth Engine (GEE) cloud platform were used for land-use classification 
[32]. The Landsat satellites are among the optical remote sensing satellite series with the longest operating time in orbit for inves-
tigating land resources and drawing various thematic maps [33–35]. The details are presented in Table 1. 

Table 1 
Landsat satellite image data used.  

Imaging time Satellite Sensor Spatial resolution Bands 

1985/01/01–1985/12/31 Landsat5 Thematic mapper (TM) 30 m Band 1: blue (0.45–0.52 μm) 
Band 2: green (0.52–0.60 μm) 
Band 3: red (0.63–0.69 μm) 
Band 4: near-infrared (0.76–0.90 μm) 
Band 5: near-infrared (1.55–1.75 μm) 
Band 7: mid-infrared (2.08–2.35 μm) 

1990/01/01–1990/12/31 
1995/01/01–1995/12/31 
2000/01/01–2000/12/31 
2005/01/01–2005/12/31 
2010/01/01–2010/12/31 
2015/01/01–2015/12/31 Landsat8 Operational land imager (OLI) Band 1: coastal aerosol (0.43–0.45 μm) 

Band 2: blue (0.450–0.51 μm) 
Band 3: green (0.53–0.59 μm) 
Band 4: red (0.64–0.67 μm) 
Band 5: near-infrared (0.85–0.88 μm) 
Band 6: SWIR 1 (1.57–1.65 μm) 
Band 7: SWIR 2 (2.11–2.29 μm) 
Band 9: cirrus (1.36–1.38 μm) 

2020/01/01–2020/12/31 

2022/01/01–2022/12/31 Landsat9 OLI-2 Band 1: coastal aerosol (0.43–0.45 μm) 
Band 2: blue (0.450–0.51 μm) 
Band 3: green (0.53–0.59 μm) 
Band 4: red (0.64–0.67 μm) 
Band 5: near-infrared (0.85–0.88 μm) 
Band 6: SWIR 1 (1.57–1.65 μm) 
Band 7: SWIR 2 (2.11–2.29 μm) 
Band 9: cirrus (1.36–1.38 μm)  

Fig. 2. Flow chart of spatiotemporal pattern evolution analysis.  
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3. Research methods 

Based on the advantages of the remote sensing indices and principal component analysis for accurate classification, this study was 
based on the characteristics of the study area, the classification of the remote sensing images, and the spatiotemporal characteristic 
analysis of the land-use/cover changes from 1985 to 2022. A flowchart of this study is shown in Fig. 2. 

First, the Landsat satellite remote sensing images covering the study area were obtained from the GEE. Second, the image stacks 
were constructed based on the original remote sensing images, multi-feature indices, and principal components. Then, remote sensing 
image classification was implemented based on the RF algorithm. Finally, the spatiotemporal characteristics were explored from three 
perspectives: area changes, spatial variations, and land-use transfers. 

3.1. Data pre-processing 

The remote sensing data from the Landsat5, Landsat8, and Landsat9 satellites were preprocessed to remove the cloud pixels and clip 
the boundary in the image collection of each time phase in the study area [36–40]. The process was as follows. First, the products of the 
Landsat 5 (United States Geological Survey (USGS) Landsat 5 Surface Reflectance Tier 1), Landsat8 (USGS Landsat 8 Surface 
Reflectance Tier 1), and Landsat9 (USGS Landsat 9 Level 2, Collection 2, Tier 1) were input to the GEE, including all of the coverage 
areas in 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, and 2022, and the preprocessed surface reflectance data were obtained. 
Then, an initial dense time series image collection of the study area was established. Second, pixels with poor observation quality, such 
as clouds and shadows, were removed using the QA band in GEE, and then, inter-annual composite images were obtained using the 
median filter method. Finally, the codes were run in GEE to cut out the boundary of Zhoushan Island. 

3.2. Determination of land-use categories 

The ground objects in the study area were considered relatively discrete and limited by the spatial resolution [41]. Based on the 
land-use documents issued by relevant departments, the land-use types were integrated into six categories: built-up land, forest land, 
cropland/grassland, water bodies, tidal flats, and bare land. The details are presented in Table 2. 

Table 2 
Land-use types and performance characteristics.  

Classification Secondary feature categories Visual characteristics 

Built-up land Urban and rural residential land, industrial land, traffic land 

Forest land Woods, shrubs, and orchards 

Cropland/grassland Fields, grassland, and other agricultural land 

Water bodies Water land, breeding ponds, and water conservancy facilities 

Tidal flats Tidal flats, salt pans, and aquaculture land 

Bare land Bare soil, bare mountains, and other undeveloped land 
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3.3. Remote sensing image classification based on the RF algorithm 

The training samples were selected according to the principles of randomness and uniformity. Based on the traditional RF algo-
rithm, in this study, land-use classification via the integration of remote sensing indices (the NDVI, ratio vegetation index, enhanced 
vegetation index, difference vegetation index (DVI), NDWI, NDBI, regulated soil vegetation index (SAVI), and urban building index 
(UBI)) and the first, second, and third components was implemented. The remote sensing indices are described in Table 3. 

3.4. Accuracy evaluation 

The confusion matrix is used to judge whether the objects in each category are correctly classified by comparing the position and 
category of the measured pixels with the corresponding position and category in the classification results. The specific evaluation 
indicators incorporate the overall accuracy (OA) and the Kappa coefficient. The OA represents the ratio of the number of correctly 
classified pixels to the total number of pixels. The Kappa coefficient is an index that measures the degree of agreement between the 
classification results and the real data. Not only the correctly classified pixels, but also the missed and misclassified pixels are 
considered. The expressions of the OA and the Kappa coefficient are 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p =

∑n

i=1
xii

∑n

j=1

∑n

i=1
xij

K =

N
∑n

i=1
xii −

∑
(xi+ × x+i)

N2 −
∑

(xi+ × x+i)

(1)  

where xi+, x+i, xii describe the element in a certain row, column, and diagonal of the confusion matrix, respectively; and N is the total 
number of pixels. Therefore, the larger the OA and Kappa coefficient are, the higher the accuracy of the results is [49,50]. 

4. Results and analysis 

4.1. Land-use classification results 

The post-processing of the classification results mainly removed the spots caused by image noise and the classification algorithm, 
and mapping was conducted using the ArcGIS platform The maps of land-use and land-cover change of Zhoushan island from 1985 to 
2022 are shown in Fig. 3. 

It can be seen from Fig. 3 that the classification results of the RF algorithm, which integrates the remote sensing indices and the 
principal components, are accurate, and the boundaries between ground objects are clear. The built-up land, forest land, cropland/ 
grassland, water bodies, tidal flats, and bare land are distinguished, and misclassifications are rare. The OA and Kappa coefficient of the 
traditional RF classification algorithm using only the reflectance bands, support vector machine classification, and minimum distance 
classification [51–54] are shown in Table 4 and Table 5, respectively. 

It can be seen from Tables 4 and 5 that the OA and Kappa coefficient of the algorithm are greater than 94% and 0.93, respectively, 

Table 3 
Formulas for remote sensing indices.  

Indices Formula References 

Normalized difference vegetation index 
NDVI =

(NIR − R)
(NIR + R)

[37,40] 

Ratio vegetation index RVI =
NIR
R 

[41] 

Enhanced vegetation index EVI = 2.5 ∗
NIR − RED

(NIR + 6 ∗ RED − 7.5 ∗ BLUE + 1)
[38,42] 

Difference vegetation index DVI = NIR − R [39,43] 
Normalized difference water index 

NDWI =
(GREEN − NIR)
(GREEN + NIR)

[44,45] 

Normalized difference building vegetation index 
NDBI =

(SWIR − NIR)
(SWIR + NIR)

[45] 

Regulated soil vegetation index 
SAVI =

(NIR − RED) ∗ (1 + 0.5)
(NIR + RED + 0.5)

[46] 

Urban building index IBI A =
2 ∗ SWIR1

SWIR1 + NIR

IBI B =
NIR

(NIR + RED)
+

GREEN
(GREEN + SWIR1)

IBI =
IBI A − IBI B
IBI A + IBI B  

[47,48]  
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Fig. 3. Classification result maps.  
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with average values of 96.87% and 0.96, respectively. These values are significantly higher than those of the traditional RF classifi-
cation algorithm that uses only reflectance bands, support vector machine classification, and minimum distance classification. In 
conclusion, this algorithm had high classification accuracy and a better classification effect, and it was used for the subsequent 
analysis. 

Table 4 
List of OA values.   

RF of indices and PCA RF of reflectance alone Support vector machines Minimum distance 

1985 95.35% 93.00% 91.50% 84.00% 
1990 98.40% 96.17% 93.99% 92.90% 
1995 96.07% 94.22% 83.58% 84.39% 
2000 98.68% 96.45% 95.74% 90.07% 
2005 97.18% 96.34% 90.24% 93.29% 
2010 97.16% 95.68% 92.97% 84.86% 
2015 98.34% 93.29% 62.20% 90.24% 
2020 94.78% 93.48% 73.91% 84.35% 
2022 95.83% 94.38% 93.98% 91.57%  

Table 5 
List of Kappa coefficients.   

RF of indices and PCA RF of reflectance alone Support vector machine Minimum distance 

1985 0.94 0.91 0.89 0.80 
1990 0.98 0.95 0.93 0.91 
1995 0.95 0.93 0.80 0.81 
2000 0.98 0.96 0.95 0.88 
2005 0.96 0.95 0.88 0.92 
2010 0.97 0.95 0.92 0.82 
2015 0.98 0.92 0.53 0.88 
2020 0.93 0.92 0.67 0.81 
2022 0.95 0.93 0.92 0.90  

Table 6 
Area of each land-use type (km2).  

Year Built-up land Cropland/grassland Forest land Water bodies Tidal flats Bare land Total 

1985 19.89 211.22 199.11 20.14 11.56 24.39 486.31 
1990 26.50 163.15 220.72 18.34 18.43 40.54 487.69 
1995 28.41 170.99 249.83 10.88 20.44 10.96 491.52 
2000 44.99 119.22 280.53 17.76 17.00 15.00 494.50 
2005 51.01 148.72 250.77 16.63 15.04 14.59 496.76 
2010 61.00 140.78 248.99 13.28 9.32 31.55 504.91 
2015 100.98 108.85 244.80 15.59 10.52 42.05 522.79 
2020 105.63 139.37 231.58 13.04 10.75 23.70 524.07 
2022 109.89 141.45 235.94 12.18 14.57 13.63 527.65  

Fig. 4. Land-use category areas in different years.  
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4.2. Analysis of spatiotemporal characteristics 

4.2.1. Analysis of area change of land-use types 
The area change refers to changes in the areas of the land-use types over time, which can reflect the intensities of the land-use types 

[55–57]. The areas and area variations of each land-use type in different years were counted (Table 6 and Fig. 4). 
It can be seen from Table 6 and Fig. 4 that the total land area of Zhoushan Island changed from 486.31 km2 to 527.65 km2, 

Fig. 5. Spatial distribution maps of land-use type transfer.  
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increasing by 41.34 km2 due to the reclamation of marine areas, and the built-up land, forest land, and cropland/grassland exhibited 
obvious change trends. The built-up land area steadily increased from 19.89 km2 in 1985 to 109.89 km2 in 2022, with an average 
annual increase of 2.43 km2/a and an average rate of increase of 12.23%. The forest land area increased from 199.11 km2 in 1985 to 
235.94 km2 in 2022, an increase of 36.83 km2, with an average annual increase of 1.00 km2/a and an average rate of increase of 0.50%. 
The area of the cropland/grassland significantly decreased from 211.22 km2 in 1985 to 141.45 km2 in 2022, a decrease of 69.77 km2, 
with an average annual decrease of 1.89 km2/a and an average rate of decrease of 0.89%. The areas of the water bodies, tidal flats, and 
bare land exhibited slight change trends. The water body area decreased by 7.96 km2, the bare land area decreased by 10.76 km2, and 
the tidal flat area increased by 3.01 km2 over the past 37 years. 

4.2.2. Spatial variation analysis 
Spatial change refers to the transfer of land-use types, which is necessary for clarifying the characteristics and laws of the transitions 

between land-use types during various periods [58–60]. Transfer maps of the land-use types for different periods were created to 
visualize the spatial variation distributions, as shown in Figs. 5 and 6. 

Figs. 5 and 6 show that the changes in the spatial coverage of the built-up land, forest land, and cropland/grassland were the most 
obvious from 1985 to 2022. The spatial coverage of the built-up land increased, mainly through encroaching on cropland/grassland. 

Fig. 6. Land-use type transfer chord diagrams.  
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The main transfer areas were Baiquan Town, Dinghai District, Putuo District, Donggang, and Diaomen Port. The forest land and 
cropland/grassland were transformed into each other, but the area converted from cropland/grassland to forest land was much larger, 
resulting in the expansion of the spatial range of the forest land. Due to the double erosion through conversion to built-up land and 
forest land, the spatial coverage of the cropland/grassland was reduced. The main transfer areas were Shijiao Township, Qianlan 
Township, and Zhanmao Township. The changes in the spatial coverage of the water bodies, tidal flats, and bare land were small. 
Among them, the water bodies were mainly eroded by built-up land, and the bare land was mainly encroached upon by forest land, 
built-up land, and cropland/grassland. The tidal flats were mainly distributed near the boundary of Zhoushan Island, and although it 
was transferred out more, the overall spatial coverage of the tidal flats increased through expansion toward the coast. 

4.2.3. Transfer of land-use types 
The land-use transfer matrix can directly reflect changes in the land-use types and quantities [61–63]. The area transfer situations 

of the land-use types from 1985 to 2022 are recorded in Table 7. The rows express the transfer-out compositions of the land-use types in 
1985, and the columns denote the transfer-in compositions of land-use types in 2022. 

As shown in Table 7, the cropland/grassland was the most transferred-out area, with up to 108.94 km2 transferred out, and built-up 

Fig. 6. (continued). 

Table 7 
Land-use transfer matrix for 1985–2022 (km2).    

2022 Total area in 1985   

Built-up land Forest land Cropland/grassland Water bodies Tidal flats Bare land 

1985 Built-up land 15.06 0.16 3.34 0.41 0.33 0.55 19.85 
Forest land 3.82 177.96 15.90 0.53 0.10 0.79 199.10 
Bare land 7.96 4.95 9.93 0.18 0.02 1.35 24.39 
Cropland/grassland 46.03 51.60 102.27 3.20 0.40 7.71 211.21 
Water bodies 9.39 0.15 2.38 4.90 1.82 0.83 19.47 
Tidal flats 6.11 0.01 1.41 0.21 2.49 0.32 10.55 

Total area in 2022 88.37 234.83 135.23 9.43 5.16 11.55 484.57  
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land was the most transferred-in area, with up to 73.31 km2 transferred in. The main types of cropland/grassland transfers were forest 
land and built-up land, with areas of 51.60 km2 and 46.03 km2 transferred from 1985 to 2022, respectively. The main pattern of built- 
up land expansion was the occupation of cropland/grassland. From 1985 to 2020, a total 46.03 km2 of cropland/grassland was 
transferred to built-up land, accounting for 52.09% of all transferred areas. 

5. Discussion and conclusions 

Based on traditional RF classification, supervised classification, and machine learning classification algorithms, and considering the 
advantages of remote sensing indices and principal component analysis in accurate classification, an RF algorithm that integrates 
remote sensing indices and principal component analysis was developed. Then, the spatiotemporal characteristics of the land-use types 
were analyzed based on a long-term sequence of satellite remote sensing data. The main contributions of this study are as follows.  

(1) The classification algorithm can accurately classify land-use types, and the mean values of the OA and Kappa coefficients are 
96.87% and 0.96, respectively. This indicates that the proposed method can obtain more accurate land-use/cover change 
information.  

(2) The built-up land area continuously increased by 90 km2 over the past 37 years. The forest land and cropland/grassland areas 
changed significantly. The forest land area increased by 36.83 km2, and the cropland/grassland area decreased by 69.77 km2. 
The water body, tidal flat, and bare land areas exhibited slight increasing and decreasing trends.  

(3) The built-up land was mainly increased through encroachment on cropland/grassland, and these changes were concentrated in 
Baiquan Town, Dinghai District, Putuo District, Donggang, and Diaomen Port. The forest land and cropland/grassland were 
transferred into each other, and the spatial coverage of the forest land increased, while that of the cropland/grassland decreased 
due to its double erosion by built-up land and forest land. This mainly occurred in Shijiao Township, Qianlan Township, and 
Zhanmao Township.  

(4) The transfer-in and transfer-out areas of the built-up land, forest land, and cropland/grassland were relatively evident, and the 
cropland/grassland was mainly occupied by built-up land and forest land over the past 37 years. The transfer of the water body, 
tidal flat, and bare land areas was relatively small, and they were mainly occupied by built-up land, forest land, and cropland/ 
grassland. 

Future investigations will focus on: (1) high-resolution regional data, with the combination of high-precision algorithms to conduct 
land-use classification to obtain more accurate land-use type information; and (2) the establishment of evaluation patterns for 
spatiotemporal characteristics. 

Author contribution statement 

Chao Chen: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Wrote the 
paper. 

Xuebing Yang: Conceived and designed the experiments; Performed the experiments; Wrote the paper. 
Shenghui Jiang and Zhisong Liu: Analyzed and interpreted the data. 

Data availability statement 

Data will be made available on request. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

The authors would like to thank the editors and the anonymous reviewers for their outstanding comments and suggestions, which 
greatly helped improve the technical quality and presentation of this manuscript. We also thank the United States Geological Survey 
(www.usgs.gov), the National Aeronautics and Space Administration (www.nasa.gov), and the Chinese Academy of Science (www.ids. 
ceode.ac.cn) for the freely available Landsat remote sensing images. This work was supported by the National Natural Science 
Foundation of China (Grant No. 42171311). We thank LetPub (www.letpub.com) for linguistic assistance and pre-submission expert 
review. 

References 

[1] G. Sun, Z. Pan, A. Zhang, X. Jia, J. Ren, H. Fu, K. Yan, Large kernel spectral and spatial attention networks for hyperspectral image classification, IEEE Trans. 
Geosci. Rem. Sens. 61 (2023) 5519915 (Early Access). 

C. Chen et al.                                                                                                                                                                                                           

http://www.usgs.gov
http://www.nasa.gov
http://www.ids.ceode.ac.cn
http://www.ids.ceode.ac.cn
http://www.letpub.com
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref1
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref1


Heliyon 9 (2023) e19654

12

[2] M. Irannezhad, B. Ahmadi, J. Liu, D. Chen, J.H. Matthews, Global water security: a shining star in the dark sky of achieving the sustainable development goals, 
Sustainable Horizons 1 (2022), 100005. 

[3] C. Chen, J. Liang, G. Yang, W. Sun, Spatio-temporal distribution of harmful algal blooms and their correlations with marine hydrological elements in offshore 
areas, China, Ocean Coast Manag. 238 (2023), 106554. 

[4] C. Chen, J. Liang, F. Xie, Z. Hu, W. Sun, G. Yang, J. Yu, J. Chen, L.H. Wang, L.Y. Wang, H.X. Chen, X.Y. He, Z. Zhang, Temporal and spatial variation of coastline 
using remote sensing images for Zhoushan archipelago, China, Int. J. Appl. Earth Obs. Geoinf. 107 (2022), 102711. 

[5] P. Potapov, M.C. Hansen, I. Kommareddy, A. Kommareddy, S. Turubanova, A. Pickens, B. Adusei, A. Tyukavina, Q. Ying, Landsat analysis ready data for global 
land cover and land cover change mapping, #426, Rem. Sens. 12 (2020). 

[6] X. Hou, L. Feng, High-resolution satellite observations reveal extensive algal blooms in both small and large lakes in China, Sustainable Horizons 6 (2023), 
100054. 

[7] M. Carey, J. Boland, G. Keppel, Habitat diversity, resource availability and island age in the species-area relationship, J. Biogeogr. 50 (2023) 767–779. 
[8] M. Lancia, Y. Yao, C.B. Andrews, X. Wang, X. Kuang, J. Ni, S.M. Gorelick, B.R. Scanlon, Y. Wang, C. Zheng, The China groundwater crisis: a mechanistic analysis 

with implications for global sustainability, Sustainable Horizons 4 (2022), 100042. 
[9] J. Ding, C. Feng, G. Ye, G. Zhong, L.M. Chou, X. Chen, M. Liu, Incorporating ecological values into the valuation system of uninhabited islands in China, Int. J. 

Appl. Earth Obs. Geoinf. 110 (2022), 102819. 
[10] Z. Xie, X. Li, Y. Chi, D. Jiang, Y. Zhang, Y. Ma, S. Chen, Ecosystem service value decreases more rapidly under the dual pressures of land use change and 

ecological vulnerability: a case study in Zhujiajian Island, Ocean Coast Manag. 201 (2021), 105493. 
[11] C. Zhang, J. Cheng, Q. Tian, Unsupervised and semi-supervised image classification with weak semantic consistency, IEEE Trans. Multimed. 21 (2019) 

2482–2491. 
[12] J. Calvert, J.A. Strong, M. Service, C. McGonigle, R. Quinn, An evaluation of supervised and unsupervised classification techniques for marine benthic habitat 

mapping using multibeam echosounder data, ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 72 (2015) 1498–1513. 
[13] H.G. Kuma, F.E. Feyessa, T.A. Demissie, Land-use/land-cover changes and implications in Southern Ethiopia: evidence from remote sensing and informants, 

Heliyon 8 (2022), e09071. 
[14] F. Lv, M. Han, T. Qiu, Remote sensing image classification based on ensemble extreme learning machine with stacked autoencoder, IEEE Access 5 (2017) 

9021–9031. 
[15] J. Zuo, L. Zhang, B. Chen, J. Liao, M. Hashim, D. sutrisno, M.E. Hason, R. Mahmood, D.A. Sani, Assessment of coastal sustainable development along the 

maritime silk road using an integrated natural-economic-social (NES) ecosystem, Heliyon 9 (2023), e17440. 
[16] C. Chen, J. Fu, S. Zhang, X. Zhao, Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images, Estuarine, Coastal and 

Shelf Science 217 (2019) 281–291. 
[17] H. Fu, G. Sun, L. Zhang, A. Zhang, J. Ren, X. Jia, F. Li, Three-dimensional singular spectrum analysis for precise land cover classification from UAV-borne 

hyperspectral benchmark datasets, ISPRS J. Photogrammetry Remote Sens. 203 (2023) 115–134. 
[18] H. Zhang, Z. Wang, J. Chai, Land use\cover change and influencing factors inside the urban development boundary of different level cities: a case study in Hubei 

Province, China, Heliyon 8 (2022) (2022), e10408. 
[19] T. Belay, T. Melese, A. Senamaw, Impacts of land use and land cover change on ecosystem service values in the Afroalpine area of Guna Mountain, Northwest 

Ethiopia, Heliyon 8 (2022) (2022), e12246. 
[20] W. Sun, K. Liu, G. Ren, W. Liu, G. Yang, X. Meng, J. Peng, A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China 

ZY1-02D satellite hyperspectral images, #102572, Int. J. Appl. Earth Obs. Geoinf. 104 (2021). 
[21] G. Shi, P. Ye, L. Ding, A. Quinones, Y. Li, N. Jiang, Spatio-temporal patterns of land use and cover change from 1990 to 2010: a case study of Jiangsu province, 

China, Int. J. Environ. Res. Publ. Health 16 (2019) 907. 
[22] R. Yang, H. Chen, S. Chen, Y. Ye, Spatiotemporal evolution and prediction of land use/land cover changes and ecosystem service variation in the Yellow River 

Basin, China, Ecol. Indicat. 145 (2022), 109579. 
[23] Z. Alijani, F. Hosseinali, A. Biswas, Spatio-temporal evolution of agricultural land use change drivers: a case study from Chalous region, Iran, #110326, 

J. Environ. Manag. 262 (2020). 
[24] H. Fu, G. Sun, A. Zhang, B. Shao, J. Ren, X. Jia, Tensor singular spectrum analysis for 3-D feature extraction in hyperspectral images, IEEE Trans. Geosci. Rem. 

Sens. 61 (2023), 5403914. 
[25] K. Feng, T. Wang, S. Liu, W. Kang, X. Chen, Z. Guo, Y. Zhi, Monitoring desertification using machine-learning techniques with multiple indicators derived from 

MODIS images in Mu Us Sandy Land, China, Rem. Sens. 14 (2022) 2663. 
[26] H. Chen, C. Chen, Z. Zhang, C. Lu, L. Wang, X. He, Y. Chu, J. Chen, Changes of the spatial and temporal characteristics of land-use landscape patterns using 

multi-temporal Landsat satellite data: a case study of Zhoushan Island, China, Ocean Coast Manag. 213 (2021), 105842. 
[27] S. Jia, Z. Zhan, M. Xu, Shearlet-based structure-aware filtering for hyperspectral and LiDAR data classification, Journal of Remote Sensing 2021 (2021), 

9825415. 
[28] C. Wang, Y. Zhang, X. Wu, W. Yang, H. Qiang, B. Lu, J. Wang, R-Imnet, Spatial-temporal evolution analysis of resource-exhausted urban land based on residual- 

intelligent module network, Rem. Sens. 14 (2022) 2185. 
[29] O. Rozenstein, T. Paz-Kagan, C. Salbach, A. Karnieli, Comparing the effect of preprocessing transformations on methods of land-use classification derived from 

spectral soil measurements, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 8 (2014) 2393–2404. 
[30] S. Gxokwe, T. Dube, D. Mazvimavi, Leveraging Google Earth Engine platform to characterize and map small seasonal wetlands in the semi-arid environments of 

South Africa, Sci. Total Environ. 803 (2022), 150139. 
[31] Y. Wu, T. Zhang, H. Zhang, T. Pan, X. Ni, A. Grydehøj, J. Zhang, Factors influencing the ecological security of island cities: a neighborhood-scale study of 

Zhoushan Island, China, Sustain. Cities Soc. 55 (2020), 102029. 
[32] M. Amani, A. Ghorbanian, S.A. Ahmadi, M. Kakooei, A. Moghimi, S.M. Mirmazloumi, S.H.A. Moghaddam, S. Mahdavi, M. Ghahremanloo, S. Parsian, Q. Wu, 

B. Brisco, Google earth engine cloud computing platform for remote sensing big data applications: a comprehensive review, IEEE J. Sel. Top. Appl. Earth Obs. 
Rem. Sens. 13 (2020) 5326–5350. 

[33] Z. Zhu, C.E. Woodcock, C. Holden, Z. Yang, Generating synthetic Landsat images based on all available Landsat data: predicting Landsat surface reflectance at 
any given time, Rem. Sens. Environ. 162 (2015) 67–83. 

[34] J.L. Dwyer, D.P. Roy, B. Sauer, C.B. Jenkerson, H.K. Zhang, L. Lymburner, Analysis ready data: enabling analysis of the Landsat archive, Rem. Sens. 10 (9) 
(2018) 1363. 

[35] M.J. Choate, R. Rengarajan, J.C. Storey, M. Lubke, Landsat 9 geometric characteristics using underfly data, Rem. Sens. 14 (15) (2022) 3781. 
[36] J. Yan, G. Zhang, H. Ling, F. Han, Comparison of time-integrated NDVI and annual maximum NDVI for assessing grassland dynamics, Ecol. Indicat. 136 (2022), 

108611. 
[37] M. Jia, Z. Wang, D. Mao, C. Ren, K. Song, C. Zhao, C. Wang, X. Xiao, Y. Wang, (2023). Mapping Global Distribution of Mangrove Forests at 10-m Resolution, 

Science Bulletin, 2023. 
[38] A. Bhatia, P.L. Teo, M. Li, J.Y.B. Lee, M.X.J. Chan, T.W. Yeo, M. Mathur, S. Tagore, Yeo, S.H. George, S. Arulkumaran, Dinoprostone vaginal insert (DVI) versus 

adjunctive sweeping of membranes and DVI for term induction of labor, J. Obstet. Gynaecol. Res. 47 (9) (2021) 3171–3178. 
[39] S. Manna, B. Raychaudhuri, Mapping distribution of Sundarban mangroves using Sentinel-2 data and new spectral metric for detecting their health condition, 

Geocarto Int. 35 (4) (2020) 434–452. 
[40] C. Zhao, M. Jia, Z. Wang, D. Mao, Y. Wang, Toward a better understanding of coastal salt marsh mapping: a case from China using dual-temporal images, Rem. 

Sens. Environ. 295 (2023), 113664. 
[41] E.E. Maeda, J. Heiskanen, L.E. Aragão, J. Rinne, Can MODIS EVI monitor ecosystem productivity in the Amazon rainforest? Geophys. Res. Lett. 41 (20) (2014) 

7176–7183. 

C. Chen et al.                                                                                                                                                                                                           

http://refhub.elsevier.com/S2405-8440(23)06862-7/sref2
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref2
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref3
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref3
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref4
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref4
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref5
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref5
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref6
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref6
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref7
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref8
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref8
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref9
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref9
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref10
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref10
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref11
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref11
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref12
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref12
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref13
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref13
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref14
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref14
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref15
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref15
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref16
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref16
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref17
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref17
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref18
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref18
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref19
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref19
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref20
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref20
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref21
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref21
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref22
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref22
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref23
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref23
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref24
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref24
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref25
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref25
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref26
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref26
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref27
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref27
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref28
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref28
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref29
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref29
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref30
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref30
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref31
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref31
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref32
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref32
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref32
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref33
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref33
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref34
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref34
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref35
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref36
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref36
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref37
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref37
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref38
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref38
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref39
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref39
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref40
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref40
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref41
http://refhub.elsevier.com/S2405-8440(23)06862-7/sref41


Heliyon 9 (2023) e19654

13

[42] B. Franch, E.F. Vermote, S. Skakun, J.C. Roger, I. Becker-Reshef, E. Murphy, C. Justice, Remote sensing based yield monitoring: application to winter wheat in 
United States and Ukraine, Int. J. Appl. Earth Obs. Geoinf. 76 (2019) 112–127. 

[43] L. Chai, H. Jiang, W.T. Crow, S. Liu, S. Zhao, J. Liu, S. Yang, Estimating corn canopy water content from normalized difference water index (NDWI): an 
optimized NDWI-Based scheme and its feasibility for retrieving corn VWC, IEEE Trans. Geosci. Rem. Sens. 59 (10) (2020) 8168–8181. 

[44] K. Li, Y. Chen, A Genetic Algorithm-based urban cluster automatic threshold method by combining VIIRS DNB, NDVI, and NDBI to monitor urbanization, Rem. 
Sens. 10 (2) (2018) 277. 
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