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Rapid Access to Azabicyclo[3.3.1]nonanes by a Tandem Diverted
Tsuji–Trost Process
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Abstract: A three-step synthesis of the 2-azabicyclo[3.3.1]-
nonane ring system from simple pyrroles, employing a

combined photochemical/palladium-catalysed approach is
reported. Substrate scope is broad, allowing the incorpo-

ration of a wide range of functionality relevant to medici-
nal chemistry. Mechanistic studies demonstrate that the

process occurs by acid-assisted C@N bond cleavage fol-
lowed by b-hydride elimination to form a reactive diene,
demonstrating that efficient control of what might be

considered off-cycle reactions can result in productive
tandem catalytic processes. This represents a short and

versatile route to the biologically important morphan scaf-
fold.

Since their discovery, palladium-catalysed cross-coupling reac-

tions have seen increasing use in the synthesis of bioactive
molecules.[1] In particular, due to its reliability, the Suzuki cross-
coupling has become a key C@C bond forming reaction within

medicinal chemistry.[2] However, the resulting compounds are
often relatively planar in nature, despite evidence that in-

creased bioactivity might result from increased levels of sp3-hy-
bridized carbon.[3] The Tsuji–Trost allylation represents a palla-
dium-catalysed process with potential to achieve more three-

dimensional molecules, necessarily connecting fragments via
sp3-hybridized centres.[4] Recent work has added to this poten-

tial with increasingly effective systems for performing enantio-

selective Tsuji–Trost reactions.[5] The power of such reactions
within tandem processes has also been demonstrated, particu-

larly in combination with photochemistry to create complex,
three-dimensional molecules from simple substrates

(Scheme 1 a).[6]

Tsuji–Trost reactions are also potentially less prone to side
reactions, such as competing protodehalogenation encoun-

tered in Suzuki cross-couplings.[7] While competing b-hydride
elimination from intermediate p-allyl Pd complexes to form

dienes is known,[8] this process is less reported and potentially
reversible.[9] However, dienes themselves frequently serve as

useful synthetic intermediates,[11] raising the possibility that

their formation could form part of a productive catalytic
cycle.[11] Herein, we report a diverted Tsuji–Trost process, where

b-hydride elimination to form a reactive diene results in a
novel tandem process, forming complex tertiary amines that

represent the core of the biologically significant morphan ring-
system (Scheme 1 b).

Following our recently reported synthesis of lycorane alka-
loid 4,[12] employing a key Heck cyclisation on a photochemi-
cally-derived substrate, we were led to consider whether

simple homologation of the carbon tether might lead directly
to the homologated alkaloid series. However, initial investiga-
tion of the Heck reaction of iodide 10 a in fact yielded deiodin-
ated material 10 b under the majority of conditions (Table 1). In

no case was the desired Heck product detected, with use of

previously successful phosphite ligands[13] leading to the unex-

Scheme 1. Previous synthetic utility of photochemically synthesized vinyl
aziridines and their formation of azabicyclo[3.3.1]nonanes in a diverted
Tsuji–Trost process.[6]
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pected phosphonate ester 10 c (Entry 4), presumably via reduc-
tive elimination to a phosphonium salt intermediate.[14] Howev-

er, the use of triphenylphosphine and dppf (Entries 7 and 8)

led to the formation of bicyclic amine 11. This process ap-
peared to result from C@N bond cleavage with concurrent

amine migration and reduction of the iodide moiety. Further
screening of reaction conditions demonstrated that bicyclic

amine 11 was formed in good yield through the use of DPE-
Phos (Entry 9), and that iPr2NEt was required for this process to
occur, with either no base or Et3N proving unsuccessful (En-

tries 10 and 11).
While this process was found to be relatively tolerant of var-

iation of the aryl group (see SI for details), the inclusion of a
sacrificial iodide moiety (i.e. X = I) proved essential for reactivi-

ty.[15] As noted previously, the protodehalogenation of aryl ha-
lides is well documented within cross coupling reactions. Such

a process has the potential to generate stoichiometric quanti-
ties of HX, which might then facilitate the observed cleavage
of the C@N bond.[16] Further evidence for this was obtained

from a cross-over reaction where a mixture of iodinated and
non-iodinated substrates led to product formation from both

(see SI for details). We therefore investigated various additives
(Table 2).

It can be seen that the use of an external electron-rich aryl

iodide led to efficient reaction (Entry 2). However stoichiomet-
ric quantities were required (Entry 3), and the use of simpler,

less electron-rich species was less effective (Entries 4–6). Use of
iodide anion itself, either alone or in the presence of a weak

acid proved ineffective (Entries 7 and 8). However, the use of
the HI salt of iPr2NEt proved a real breakthrough, obviating the

need for a sacrificial aryl iodide (Entry 9). Exploring the re-

quired acid and amine stoichiometry led to further refinement,
with a buffered system of 1 equiv. each of methanesulfonic

acid and iPr2NEt (Entry 12) proving optimal (see SI for complete
acid study).

With these conditions in hand, we explored the scope of

this reaction (Figure 1), the substrates being easily accessible
via a simple two-step process from pyrrole 1 (R = CO2tBu), in-

volving photochemical conversion to tricyclic aziridine 7 fol-
lowed by a one pot retro-ene reaction/reductive amination se-

quence (see SI for details).[6a,c]

The reaction proved very general, with a range of N-alkyl, N-
benzyl and N-homobenzyl substrates proceeding in good to

moderate yield (17 a–i). Of particular note is the potential to in-
clude a simple methyl group (17 h), permitting access to N-
methyl morphan structures, and the medicinally important CF3

group (17 c).[17] Given the importance of the morphan scaffold

to medicinal chemistry,[18] we also explored heterocyclic sub-
stituents. The reaction proved to tolerate a range of electron-

rich (17 l, o, r) and electron-poor (17 j, n) heterocycles, albeit in
reduced yield. N-tosyl system (17 t) was also explored but
proved unreactive.

The rapidity with which such complex, sp3-rich aza-systems
can be reached from a single parent pyrrole is a significant

highlight of the methodology, as is the ability to include reac-
tive functional groups as in 17 p. Importantly, N-deprotection

can be readily achieved to form 19, permitting the installation

of additional functionality on nitrogen in only two further
steps. This could allow a practical approach to further expand

the range of R groups in 17. Exchange of PMB for the more
versatile Cbz protecting group is conveniently achieved in a

single step, as shown in the formation of 18. This could be a
significant advantage for a medicinal chemist wishing to pre-

Table 1. Initial reaction screening.

Entry Ligand Solvent[a] 10 b [%] 11 [%]

1 P(o-tol)3 MeCN <5 0
2 P(o-tol)3 toluene <5 0
3 P(o-tol)3 dioxane <5 0
4 P(OPh)3 MeCN 89[b] 0
5 XantPhos dioxane 55 0
6 dppb dioxane 0 3[c]

7 dppf dioxane 0 21[c]

8 PPh3 dioxane 0 36[c]

9 DPEPhos dioxane 0 76
10d DPEPhos dioxane 42 0
11e DPEPhos dioxane 0 0
12 CyDPEPhos dioxane 0 6[c]

[a] All reactions were performed at reflux for 20 h. [b] Yield for phospho-
nate ester 10 c, based on P(OPh)3. [c] Based on 1H NMR using 1,3,5-tri-
methoxybenezene as an internal standard. [d] Et3N used instead of
iPr2NEt. [e] No amine added.

Table 2. Optimization study of reaction additives.

Entry[a] Amine (equiv) Additive (equiv[b]) 13 [%]

1 None None 0
2 iPr2NEt (2) 14 (1) 50
3 iPr2NEt (2) 14 (0.5) 40
4 iPr2NEt (2) 15 (0.5) 26[c]

5 iPr2NEt (2) 4-iodoanisole (0.5) 23[c]

6 iPr2NEt (2) PhI (0.5) 19[c]

7 iPr2NEt (2) TBAI (1) 0
8 iPr2NEt (2) AcOH/TBAI (1) 0
9 none iPr2NEt.HI (1) 53
10 iPr2NEt (0.2) iPr2NEt.HI (1) 39[c]

11 iPr2NEt (1) CSA (1) 43
12 iPr2NEt (1) MSA (1) 70

[a] All reactions were performed at reflux for 20 h. [b] Equivalents relate to
molar quantity of starting material 12. [c] Yield based on 1H NMR using
1,3,5-trimethoxybenzene as internal standard. TBAI = tetrabutylammonium
iodide. CSA = camphorsulfonic acid. MSA = methanesulfonic acid.
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pare a 2D-library of compounds by dual functionalization of

the ester and amine moieties in 17.
Having established the scope to be relatively broad, we

turned our attention to the reaction mechanism. Formally a re-

arrangement, we considered that the process most likely in-
volved acid-assisted cleavage of the C@N bond forming a p-

allyl Pd intermediate, from which b-hydride elimination formed
a diene. This was tested by the addition of acetic anhydride to

a reaction of substrate 12, where uncyclized acetamide 20 was

formed in good yield (Scheme 2). Stopping the reaction at an
early stage also showed the presence of intermediate 21, con-

sistent with intramolecular 1,6-addition to this diene. Re-sub-
jection of 21 to the reaction conditions showed conversion to

13 even in the absence of palladium. Furthermore, brief treat-
ment of 21 to the optimized reaction conditions gave only 13

and no starting material 12 was detected. This latter experi-
ment likely indicates that 1,6-addition is not reversible.

We then prepared deuterated compounds 22 and 23 and
subjected these to the reaction conditions (Scheme 3). This led

to a somewhat surprising results, with both compounds show-

ing deuterium incorporation within the product ; in fact, com-
pound 24 showed a higher level of deuterium incorporation at

the bridgehead (60 % vs. 35 %), despite an anti-addition[19]/syn-
elimination[20] mechanism being expected to result in selective

cleavage of the C@D bond of 22 and the C@H bond of 23. As-
suming addition of palladium occurs anti to nitrogen, such be-

haviour suggests that facile equilibration of palladium between

the endo and exo faces occurs within the p-allyl Pd complex
(vide infra). Further, a competition reaction between 22 and 12
(see Supporting Information for details) suggested no signifi-
cant kinetic isotope effect was operating, although a second-

ary KIE, for instance during rate limiting p-allyl complex forma-
tion, cannot be excluded.[21]

Based on these results, a mechanism is proposed in

Scheme 4. Initial acid-promoted cleavage of the C@N bond by
Pd0 forms p-allyl Pd complex 25. Based on the similar H/D

ratios in the products of deuterated compounds 22 and 23,
this undergoes equilibration between faces, presumably by

palladium O-enolate 26,[22] with b-hydride elimination thus

Figure 1. Reaction scope and product derivatization. [a] Pd-catalysed reac-
tions were performed using 10 mol % Pd(OAc)2, 20 mol % DPEPhos at 0.2 m
concentration for 20 h. Amine to acid stoichiometry was 1:1.

Scheme 2. Investigation of trapping and intermediates. [a] Yield determined
by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard. Reaction
time of 20 h unless stated otherwise.

Scheme 3. Deuterium-labelling studies. [a] Substrate 24 contains a second
remote deuterium atom (NCHendoDexo) as a consequence of the synthetic
route, which remained unchanged in the reaction (see the Supporting Infor-
mation for full details).
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being possible from either face to form diene 28, and occur-

ring somewhat preferentially from the endo face (i.e. from

complex 27). The exchange of Pd between the faces of the p-
allyl complex suggests this species has a significant lifetime,

and this combined with the absence of the appreciable pri-
mary KIE generally associated with b-hydride elimination,[23]

leaves open the possibility that this step to form diene 28 may
be reversible. Trapping of this diene is possible through the in-

clusion of an electrophile such as acetic anhydride (Scheme 2),

and otherwise this diene then undergoes irreversible 1,6-conju-
gate addition to form intermediate 29 as a mixture of diaste-

reomers. These species undergo acid/base-promoted isomeri-
zation to the observed product. Related conjugated addition

processes have been observed to occur under palladium catal-
ysis.[24]

In conclusion, we have demonstrated that a diverted Tsuji–

Trost process provides rapid access to biologically important
ring systems. This occurs via an unusual Pd-catalysed mecha-

nism, exploiting processes often regarded as unwanted side re-
actions that is, proto-dehalogenation, b-hydride elimination

and Pd O-enolate equilibration. Overall, this methodology pro-
vides three-step access to complex, biologically significant mol-

ecules from simple aromatic starting materials. The versatility

of this chemistry could prove useful for medicinal chemists in
the construction of 2D-libraries based on the morphan scaf-

fold, and once again highlights the power of combining pho-
tochemical synthesis with palladium catalysis.
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