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Abstract

Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through
voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to
water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite
widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given
the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware
changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous
potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has
relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However,
recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact
propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics
have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI
analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a
graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality
assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using
the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a
statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool
of research associates. Projection of QA metrics to a low dimensional manifold reveal qualitative, but clear, QA-study
associations and suggest that automated outlier/anomaly detection would be feasible.
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Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance (MR)

imaging technique that provides contrasts uniquely sensitive to

intra-voxel tissue microarchitecture on a scale of tens of microns

[1]. DTI has transformed MR neuroimaging studies and has

found wide-spread applications in non-invasive assessment of

white matter microstructure, reconstruction of major fiber

bundles, and mapping of in vivo brain connectivity. A DTI

experiment can consist of up to 90 or more volumes, be aggressive

on hardware particularly gradients, and be susceptible to standard

as well as unique artifacts [2]; high data quality is difficult to

maintain. However, DTI data quality analysis is exceedingly

difficult. With multi-volume datasets, artifacts can present as

natural variability across the volumes and quality assurance (QA)

by manual inspection becomes time consuming and tedious.

Upgrades or hardware changes that impact noise structures may

adversely impact statistical compatibility across DTI datasets.

Additionally, the processing of DTI data involves mapping data to

a logarithmic diffusion model which is well-known to induce bias

in measured parameters [3,4]. Because of these challenges, DTI

data quality analysis is usually reserved as a separate step post data

collection, reducing the chances of an experimental response to

poor data quality. The documented challenges of producing

accurate and biophysically meaningful metrics from a DTI

experiment suggest DTI is an important target for further QA

development.

Important headway has been made towards developing quality

analysis methods for DTI. As in other MRI sub-disciplines which

have begun evaluating data quality through automatic pipeline

methods [5,6,7,8], the DTI field also offers DTI pipeline

programs. DTIPrep offers quality assurance primarily through
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artifact detection [9]. Similarly, DTI processing programs, such as

CATNAP [10], and DTI studio [11], offer streamlined processing

which can assist and enable the researcher to spend more time on

QA. Although existing image DTI processing and artifact

detection programs can significantly aide DTI QA evaluation,

they cannot address quality concerns that do not manifest as

artifacts.

Much quality analysis work has been done outside the realm of

artifact detection. These include sophisticated analyses developed

to understand noise structures in DTI and to investigate the

impact of noise on the quality of measured diffusion properties

[9,12,13,14,15,16,17,18]. To evaluate general hardware perfor-

mance, phantoms tailored for DTI have been developed

[19,20,21]. There have also been several recent developments of

modern statistical metrics with demonstrated sensitivity to

empirical DTI data quality [22,23,24,25]. Although the rapid

advancement in DTI quality analysis has produced a scope and

scale of publications that is exciting, the statistical advances are

difficult for clinical researchers to efficiently incorporate into their

own research, and it has remained uncertain if these theoretical

advancements would yield practical benefits. Additionally, imple-

mentation of any existing method requires manual execution and

does not address the potentially crucial time delay between data

collection and data quality analysis.

To address the concerns of time delays and limited access to

statistical methods for improved QA of DTI data, we present an in

situ quality analysis pipeline. Greater access to statistical methods

is enabled by the incorporation of multiple statistical metrics from

the literature. The metrics evaluate the collected image data

(patient motion estimates, voxel outlier detection, noise-sensitive

evaluation of fitting errors), the processed tensor parameters (bias

estimates, bootstrap standard deviation, boxplot distribution

analysis) and are complementary to the existing DTI QA artifact

detection software package, DTIPrep. The pipeline also takes

advantage of existing software packages for DTI data processing

and analysis [26,27,28]. To bridge the time gap between data

collection and human QA assessment, the pipeline can run

automatically post data collection and produces a four page report

that graphically summarizes the various pipeline outputs. This

report is produced within 24 hours of the DTI experiment and

provides a quick and easy overview of QA metrics and the image

data.

Researchers can visualize and develop exploratory analysis

methods on the stored pipeline outputs, thus granting easier access

to robust parameter estimates, statistical analysis outcomes, and an

encouragement of new data exploration. All statistical metrics

have been previously demonstrated useful for DTI QA and

providing researchers easier access to these methods is a clear

benefit of the pipeline. What remains to be evaluated are two

important pieces of the pipeline; (i) the effectiveness of the chosen

graphical visualization for aiding human QA and (ii) demonstrat-

ing an advantage, if any, of unifying the statistical pieces and

offering at least one possible avenues for data exploration that

combines these pieces.

Herein we present the pipeline, the QA report, an evaluation of

the QA report, and an analysis of the pooled statistical outputs. To

test the pipeline, the program is run retrospectively on 608 DTI

datasets from various studies. The effectiveness of the QA report is

tested using a multiple-choice four question QA rubric designed in

collaboration with local DTI clinical researchers. Rubric answers

from eight novices evaluating (a) image data only or (b) the QA

report only are compared to experienced evaluation of 50 random

DTI datasets. The QA report is rated on its ability to enable

novice agreement with expert evaluation and on the time saved.

To evaluate if the unified statistical outputs quantify key

characteristics of the DTI data, each of the DTI datasets is

summarized by a 112 element vector consisting of QA outputs.

Principal component analysis (PCA) data reduction to two

dimensions is used to investigate data clusters and evaluate if the

statistics collaboratively report on defining data characteristics that

could be used for outlier detection.

Theory

The QA pipeline incorporates distinct statistical metrics and

processing modules. Here, we provide background on important

pipeline segments. Segments that are part of software packages

(CAMINO, FSL) are not included in the theory background. The

pieces described below include a segmentation method, a modified

goodness of fit evaluation (pixel chi-squared), estimates of FA

standard deviation, estimates of FA bias, and estimated power

curves. Except for a minor adaptation to the pixel chi-squared, all

sections (2.1 – 2.6) described below explain methods developed

outside the context of this manuscript.

2.1 DTI Diffusion Model
To clarify use of terms, a brief background on DTI is provided.

Several detailed reviews have been published [1,29,30]. Briefly,

DTI measures the three-dimensional diffusion of water in vivo

which is described mathematically by a 363 diffusion tensor (D). A

DTI experiment consists of a series of diffusion weighted images

(DWI) that are each sensitized to diffusion along the direction of

an applied gradient, indexed by j = 1,2 ,…J (gj ). The DWIs are

divided by a non-diffusion weighted image, bo, yielding J

normalized images, Sj. The relationship between the data S and

the diffusion tensor is described by the Stejskal-Tanner relation,

Sj~ exp {bgT
j
:D:gj

� �
ð1Þ

As is common, b is the scalar b-value describing the magnitude

of diffusion weighting as determined by experimental protocols.

The collection of gradient directions, (gj ), is denoted the ‘gradient

table’, and varies for different DTI protocols. Several important

summary metrics are derived from the Eigenvalues of D, l1, l2,

and l3, and Eigenvectors of D, e1, e2 and e3. Here e1
corresponds to the largest Eigenvalue l1 while e3 corresponds to

the smallest, l3. Two important summary scalar metrics are mean

diffusivity (MD) which measures the average diffusion across all

directions and fractional anisotropy (FA) which measures the level

of anisotropic diffusion (Eq.2).

(a)MD~�ll (b)FA~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

l1{l
� �2

z l2{l
� �2

z l3{l
� �2

l2
1zl2

2zl2
3

vuut ð2Þ

2.2 Multi-Atlas Segmentation
We use multi-atlas segmentation to automatically segment

previously unseen bo volumes of DTI datasets. In the pipeline, the

labeled bo image is used for regional quality analysis of DTI

outputs, MD and FA, as well as for automatic noise estimation

(described in Methods). Multi-atlas segmentation represents a

highly robust and fully automated class of techniques for

segmenting a previously unseen context (target) using an existing

Quality Assurance for DTI
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labeled dataset (atlases) [31,32]. In general, multi-atlas segmenta-

tion is performed through two successive steps. First, the atlases,

consisting of both image intensities and labels, are transformed to

the target coordinate system through a deformable image

registration [33,34,35]. Second, the voxel-wise label conflicts are

resolved using label fusion [36,37,38] to form a final estimate of

the underlying target segmentation.

2.3 Modified Goodness of Fit Assessment
To quantify how well the image data fits the diffusion model

(Eq. 1), we turn to a ‘goodness of fit’ measure. Traditional statistics

uses the chi-squared metric to measure goodness of fit. Interest-

ingly, a modified chi-squared metric, the pixel chi-squared, x2
p, has

been adapted and tested specifically for DTI. Unlike the

traditional chi-squared, the pixel chi-squared has the property of

being sensitive to image noise [16]. To explain the difference we

examine the mathematical expressions for the two metrics. In Eq.

3, the pixel chi-squared, x2
p , is compared to the traditional chi-

squared, x2
p.

(a)x2
p~

XJ

j~1

Sm,j{Sf ,j

� �2

PJ
j~1 S2

m,j

(b)x2~
XJ

j~1

Sm,j{Sf ,j

� �2

s2
Sm

ð3Þ

For both metrics the fitted diffusion tensor from measured

normalized image data, Sm, is projected back through the

diffusion model (Eq. 1) to create fitted normalized image data,

Sf. Error is then defined Sm – Sf. The pixel chi-squared normalizes

the errors based upon the signal intensities of the Sm,j, while the

traditional chi-squared normalizes based upon their variance, s2
Sm

.

Note the traditional chi-squared maps both poor fitting ‘bad data’

and low noise ‘good data’ to largex2; [ Sm,j{Sf ,j

� �2
.. 0,

s2
Sm

,, 0]. The modification by Papadakis et. al enabled the

mapping of both poor fitting ‘bad data’ and high noise ‘bad data’ to

large x2
p while well fitting ‘good data’ and low noise ‘good data’ is

mapped to small x2
p. Papadakis et al demonstrated that x2

p values

cluster in two groups, a signal region centered just above zero, and

a ‘noise’ region centered nearx2
p , 0.2. These two regions are

referred to as ‘signal lobe’ and ‘noise lobe’.

Originally x2
p was proposed as a noise filtering method, but

herein we adapt the metric for QA. Instead of summing the fitting

residuals of Smj across all j, 1, = j , = J, at a single spatial location,

we sum across all spatial locations, k = 1,2, … K within an axial-

slice from a single normalized DWI. To maintain intensity

compatibility across slices with different number of spatial

locations and to maintain compatibility with the original x2
p the

sum is multiplied by an additional normalizing factor, J/K (Eq. 4).

x2
pj{slice~

J

K

XK

k~1

Sm,k,j{Sf ,k,j

� �2

PJ
j~1 S2

m,j

ð4Þ

To be clear, Eq. 3 produces one x2
p value per spatial location

while Eq. 4 produces one x2
pj{slice value per slice per normalized

DWI. The new x2
pj{slice can then be used to summarily evaluate

each axial slice of the normalized DWI based upon noise and the

fitting errors.

2.4 Estimates of FA Standard Deviation
Wild-bootstrap and bootstrap methods can be used to predict

the experimental variance of FA, sFA, given only a single DTI

dataset. The wild-bootstrap adapted for DTI has recently been

demonstrated to produce good estimates of sFA [39], and

confidence intervals based upon bootstrap estimates of sFA have

been demonstrated to be sensitive to DTI data quality [23]. The

premise of bootstrap is that the empirical standard deviation of FA

that would be measured if repeated datasets were collected can be

estimated through Monte-Carlo simulation of datasets with similar

statistical properties as the empirically measured dataset.

There are several possible approaches for implementing a wild-

bootstrap, and we present the bootstrap approach through the

method used herein. For a fixed spatial location the errors are,

ej = |Sm,j – Sf,j |. For each Monte-Carlo simulation, the J errors are

shuffled and given a random sign (+ or -), ±eshuffle. The use of the

random sign is what makes this a ‘wild’ bootstrap method. Wild-

bootstrap data, Sbs,, is synthesized by adding the shuffled errors to

the fitted data: Sbs = Sf +( ±eshuffle ).This process is repeated and

each Sbs is considered a sampling from a population created to be

statistically similar to the population that would result if data were

empirically re-measured. Each Sbs is fit to the diffusion model (Eq.

1) and a population of FA values is created and sFA can be

estimated.

2.5 Estimates of FA Bias
FA estimates are well-known to contain bias [4,13,15]. Bias

contributes to error in measured FA values and corrupts statistical

inferences by shifting the expected FA, E(FAmeasured), away from

the true FA value.

BFA~E FAmeasuredð Þ{FAtruevalue ð5Þ

SIMulation Extrapolation (SIMEX) is a modern statistical

method for estimating bias in parameter outputs from empirically

fitted mathematical models [40,41]. SIMEX has very recently

been demonstrated to produce accurate estimates of bias in

empirical FA values [24]. SIMEX measures bias in FA by first

observing the trend in the expected FA value when additional

synthetic noise of variance v is added to the observed diffusion

weighted images, DWIm, and bo. In the case of DTI, a stacked

Rician noise model [42] is used to further corrupt the DWIm to

form a noisy dataset DWImv. Let the standard deviation of

imaging noise in image DWIm be described bys2
E, then the

elements of the corrupted data set DWImv are Rician distributed,

DWImv*Rician DWIm,vs2
E

� �
: ð6Þ

Similarly for bo, bov
~RRician(bo,vs2

E). By varying v, the trend in

the expected value of FA with additional noise can be modeled. An

approximation function (polynomial order 2 in this case) is fit to

the trend and then extrapolated to zero-noise (which occurs at

v = 21 since DWIm has variance s2
E leading DWImv to have total

variance, s2
E + vs2

E). The difference between the measured FA

value and the extrapolated FA value represents the estimate of

bias.

2.6 Power Calculations
Power analyses are included in the pipeline for two key reasons

(i) power is a ubiquitous form of statistical evaluation that is

accessible and important to clinical researchers, and (ii) power is

Quality Assurance for DTI
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sensitive to data quality. Power evaluations traditionally require a

minimum sample size n = 3, but bootstrap estimates of sFAenable

the statistically tractable question to be asked of a single dataset: ‘If

all other n datasets in my study were collected with the standard

deviation observed in this dataset, sFA,what would be the power of

a two-sided t-test at an effect size of ES?’ SIMEX also enables

incorporation of bias into the power calculation as has been

previously demonstrated in the context of DTI [43]. Bias (B) is

known to impact the power of hypothesis tests and because FA is

well known to be biased, it is important to consider bias when

evaluating power of FA estimates. Briefly, without bias, power is

minimal when the effect size is zero, e.g., there is the smallest

chance of detecting a difference when there is none. However,

because bias shifts the expectation value of the observed difference

away from the true value (Eq. 5) , bias also shifts the power curve

minimum away from zero to the new minimum ES = -B.

The impact of bias on the power of a two-sided t-test can be

explicitly written. Consider two groups with sample size n,

common estimated standard deviation s, and a difference in bias

of DB. Letting T represent the cumulative distribution function for

the Student’s t distribution with degrees of freedom 2n-2, and ty
represents the inverse of T at point y, then the power of a two-

sided t-test between these two groups is written,

power~1{T t
1{anom=2

{
ESzDBð Þ

ffiffiffi
n
p

s

� �

zT {t
1{anom=2

{
ESzDBð Þ

ffiffiffi
n
p

s

� �
:

ð7Þ

The anom is the specified false error rate (typically anom = 0.05).

Note that when DB = 0, Eq. 7 reduces to the standard power

equation for a two-sided t-test.

Although SIMEX estimates of BFA enable incorporation of bias

into the pipeline power analysis, it is the difference in bias (DB)

between groups that determines the impact of bias (Eq. 7). To

frame a statistically tractable question without access to a bias

estimate for the comparison group, a worst-case scenario approach

is used. The question is asked: ‘If all other n datasets in my study

were collected with the standard deviation observed in this dataset,

s = sFA, and the difference in bias between groups equals my

observed bias, (e.g., the comparison group contains no bias and

DB = BFA), what would be the power of a two-sided t-test to detect

an effect size of ES? Letting DB = BFA is considered the worst case

scenario because FA bias tends to correlate with anatomy [4]and

the true difference in bias between groups will most likely be less

than the bias of either group alone.

Methods

3.1 DTI Data
Two primary groups of data are used in this study. The first

group consists of 608 DTI datasets that were submitted to the

pipeline for analysis. The datasets consisted of 607 datasets from 8

different studies belonging to the same principal investigator, and

one study from a different principal investigator. Study procedures

were approved by the Institutional Review Boards (IRB) at Johns

Hopkins University and Vanderbilt University. Participants were

recruited in Baltimore, MD and Nashville, TN. Prior to

enrollment in the study all participants, including control

participants, were screened using a scripted evaluation tool

administered by trained research staff over the telephone.

Individuals with brain injury, other physical disabilities, severe

emotional problems, uncorrected sensory disorders, or an IQ #

70, all of which may interfere with the specificity of the brain

activation patterns, were excluded during recruitment. In addition,

children were screened for claustrophobia and possible contra-

indicators such as dental braces. No individual who was defined as

having limited proficiency in English participated in the imaging

study. No restriction was made for gender, ethnicity, or

socioeconomic status. Prior to all research procedures, written

informed consent was obtained from all adults and children’s

guardians. Written assent was obtained from the children. Herein,

we access all data retrospectively in anonymous form as proscribed

by the overseeing IRB. All DTI data were collected using echo

planar imaging (EPI) with an 8-channel head coil on one of four

Philips 3T systems. Collection details for the nine studies are listed

in Table 1. Sub-samples of input and output data from two of the

datasets are presented in Figure 1. The figure also highlights

some important yet difficult aspects of quality analysis in DTI.

The second group was chosen (i) for the formation of bo atlases

required for multi-atlas segmentation and (ii) to serve as a constant

visual reference dataset for comparisons across QA reports. For

this second group we use the DTI component of the open-access

Multi-Modal MRI Reproducibility study [41]. Briefly, the study

consists of 42 DTI datasets in total from 21 subjects, each scanned

twice at 3T. Each dataset was acquired with a multi-slice, single-

shot, echo planar imaging (EPI) sequence with 32 diffusion

sensitizing gradient orientations at a b-value = 700 s/mm2 with

five signal averages used for the minimally weighted volume. The

resulting images consisted of 65 transverse slices with a field of

view of 2126212 mm2, reconstructed to 2566256 in-plane matrix

(voxel size 0.8360.8362.2 mm3).

3.2 QA Processing Pipeline
Unless otherwise indicated, all processing and analysis was

performed in Matlab 2010 (Mathworks, Natick, MA). External

software was incorporated into the pipeline through Matlab system

commands. Data processing was conducted using the resources of

the Advanced Computing Center for Research and Education

(Vanderbilt University, Nashville, TN). Data entering the QA

pipeline is processed according to the flowchart in Figure 2. Blue

boxes indicate processing steps and red ovals indicate outputs

presented in a four page graphical QA report (Figure 3,

Figure 4). Results presented on each page of the QA report

and pipeline stored outputs are listed in Table 2 and Table 3. To

begin the pipeline, input Phillips par/rec data are imported into

Matlab and converted to RAS (right-anterior-superior) oriented

NIfTI image files using an open-source Matlab toolbox [44]. The

program also accepts NIfTI inputs, but herein par/rec data is

used. Conversion of all input data (including gradient tables) into

an identical co-ordinate space greatly simplifies coding for the

remainder of the pipeline and facilitated troubleshooting. The

following section describes the pipeline roughly following data flow

in Figure 2.

3.2.1 DTI processing to estimate the diffusion

tensor. Upon data entering the pipeline, the par file (Philips

parameter file – the data ‘header’) is parsed and important

experimental properties are recorded. The DWIs are registered to

the bo in FSL (FLIRT, [28]) using a linear affine registration with

12 degrees of freedom for eddy current correction. The bo volume

is masked (FSL, BET, [27]) twice. One regular mask is used for

DTI fitting, a second slightly more restrictive mask is saved for

statistical analysis. Patient movement is measured by the

registration matrix for each DWI and the gradient table is rotated

accordingly.

Quality Assurance for DTI
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Next, diffusion models are fit using the CAMINO software

package [26]. To estimate the diffusion tensor a robust tensor

fitting method is used (RESTORE, [25]). RESTORE requires an

estimate of image noise as an input. For this estimate to be

automatically calculated, we use an add-on module to the multi-

atlas segmentation. Multi-atlas segmentation automatically seg-

ments the bo into 25 regions. The standard deviation of signals

across the segmented regions from each DWI volume is calculated

and the median value is measured across the DWI, creating 25

estimates of standard deviation (one per segmented region). This

estimate incorporates true noise and anatomical variability. The

lowest noise estimate of the 25 could therefore be considered the

closest to the true noise level, but to avoid the possibility of a

regional artifact contaminating all DWI observations, the second

smallest estimate of standard deviation is chosen as the estimate of

noise. This method was tested with success on a small external

subset of data with available repeat scans. CAMINO outputs the

location of outlier voxels as determined by RESTORE, as well as

the fitted diffusion tensor, and resulting tensor parameters of

interest; FA, MD, and e1.

3.2.2 Multi-atlas segmentation of bo volume. We em-

ployed a two-tier multi-atlas segmentation procedure in order to

(1) create a collection of bo atlases and (2) segment new bo images

using these newly created bo atlases. The creation of the bo atlases

was performed using the multi-modal dataset which consisted of

both T1-weighted and bo images. Although the dataset consists of

repeat scans, only one scan per subject was chosen. For each of the

21 subjects, the T1-weighted images were automatically labeled

through multi-atlas segmentation using a collection 15 T1-

weighted atlases from the Open Access Series of Imaging Studies

Figure 1. Example input and output data for two subjects from Study II. The DWIs were randomly chosen by a computer but are from the
same gradient for each subject. DWIs and bo are shown at different intensity scales for viewing purposes. The FA color scale ranges from [blue-red]
and colors map to FA values [0 1]. Inter-subject registration was not performed and the axial slices are from approximate matching locations. The FA
map of subject 2 contains an anomalous bright region in the middle-right mid-brain/hemisphere (patient right is image right). This bright region is
not clearly traced to DWI artifacts, but upon comparison to a re-scan of the same individual is associated with flow artifacts rather than pathology.
doi:10.1371/journal.pone.0061737.g001

Table 1. DTI Data.

Study # Data2 # G3 b-value (s/mm2) slices4 FOV (mm3)1 Voxel size (mm3)1

I 34(32) 32 700 60 21262126132 0.860.862.2

II 183(183) 32 700 60 21262126132 0.860.862.2

III5 136(111) 32 700 60, 65, 70 21262126(132–154) 0.860.862.2

IV5 71(69) 30,60 2000 34,48 24062406(85,120) 2.562.562.5

V5 41(37) 30, 60 2000 34,48,49,50 24062406 (85–125) 2.562.562.5

32, 34 2406240685 2.562.562.5

VI6 113(107) 34, 1,2,36103 50 24062406125 2.562.562.5

50, 60 60 25662506120 2.062.062.0

VII5 9(9) 70 1,2,36103 34 2406240685 2.562.562.5

VIII5 20(20) 11,60 2000 34, 49 ,50 24062406 (85 – 125) 2.562.562.5

IX 1(1) 92 1600 50 24062406125 2.562.562.5

1Spatial dimensions are reported (left/right, back/front, foot/head).
2Number of submitted datasets, parenthesis indicate number completed by pipeline.
3Number of gradient directions (DWI volumes).
4All data were collected using axial slices.
5Contains within-study variation in some parameters. FOV changed with slice number to maintain consistent voxel size.
6Contains within-study variation in some parameters. Voxel size and FOV changed with slice number as indicated.
doi:10.1371/journal.pone.0061737.t001
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(OASIS) dataset [43] that were previously labeled by an expert

anatomist (courtesy of Neuromorphometrics, Inc., Somerville,

MA). For each T1-weighted atlas, a collection of 26 labels

(including background) were considered: ranging from large

structures (e.g., cortical gray matter) to smaller deep brain

structures. For each subject, all pairwise registrations were

performed using ART [33] and the registered labels were then

fused using Non-Local STAPLE [38]. Finally, a collection of 21 bo

atlases were then constructed by transferring the T1-weighted

labels to the corresponding bo images through an intra-subject

rigid registration [45]. Using these newly created bo atlases, the bo

volume from the DTI dataset are segmented through a similar

multi-atlas registration procedure.

3.2.3 Statistical Evaluation of DTI. Fitting errors and noise

levels are evaluated through the pixel chi-squared. The fitted

tensor output from CAMINO is projected back through the

diffusion model (Eq. 1) to create fitted normalized DWI, Sf. The

original pixel-chi-squared x2
p calculated (Eq. 3) and the histogram

across spatial locations plotted in the QA report (Figure 3, page

1). The slice-pixel-chi-squared x2
pj{sliceis calculated (Eq. 4) and the

result per-slice per-normalized-DWI is plotted as a color image in

the QA report (Figure 4A).

FA standard deviation and bias are estimated by bootstrap and

SIMEX respectively. Both these methods are computationally

expensive requiring many Monte-Carlo Simulations each. To

keep the entire pipeline within a 24 hour processing period, linear

least squares estimation is used rather than RESTORE, and only a

sub-sampling of spatial locations undergoes bootstrap and SIMEX

evaluation. Subsampling is performed using random selections

across the brain volume. If necessary, continued random

subsample per region is used until each brain region has at least

50 voxels sampled. The percentage of sub-sampling is indicated on

the QA report, typically , 4 % for larger datasets (e.g.,

21262126132 voxels) and ,30 % for smaller datasets (e.g.,

96696665 voxels). Bootstrap is performed as described in Theory

2.4 using 1000 Monte Carlo simulations. SIMEX is implemented

as previously published [18]. Image noise parameter (Eq. 6) s2
E is

estimated from the multi-atlas registration add-on module (Section

3.2.1). Data is corrupted with noise values v = 2, 4, 6, and 8 using

2000, 4000, 6000, and 8000 Monte-Carlo iterations respectively

for determining the expectation value of FA at each noise level.

The trend in FA is fit with an order two polynomial and the

unbiased estimate of FA determined from extrapolation to zero

noise (v= 21).

Power curves with and without bias are plotted for two regions,

cerebral white matter (Figure 4C) and cerebral gray matter.

Power for effect sizes ranging from 20.1 to 0.1 is determined at

each voxel within each region using an analytic equation. The

median power across the region for each effect size is recorded as

the final power for that effect size. Note that only the subset of

voxels for which sFAand BFA were estimated can be included in

the power analysis. Data necessary to create power curves for any

other segmented region is stored by the pipeline (Table 3).

3.3 QA Report Design
A graphical four page report is automatically produced by the

pipeline to provide an easy to understand summary of the results.

Layout design was therefore an important consideration of

increasing the ease of using the QA report. The report is divided

into four categorical pages (Table 2, Figure 3). The first page of

the report is designed to investigate quality of input data (bo, DWI,

image protocol), the second page reports quality of output data

(FA and MD), the third page includes summary axial-slice views of

output data and power curves, and the fourth page displays the

vector map images with the diffusion vector direction overlaid as a

white vector across each voxel.

Several layout choices are worth noting. First the layout design

on page one takes advantage of the observation that four of the

variables are plotted with the DWI number (gradient number) on

the abscissa. We therefore aligned the shared abscissa across these

four graphs: chi-squared evaluation per axial slice, rejected outlier

plot, rotational motion plots, and the translational motion plot.

The visualization enables the eye to evaluate all four metrics

simultaneously for each gradient direction. Second was the

consideration of which output data to include graphically. Unlike

input data which always consists of a gradient table, b-value, bo,

and DWI, desired output data is study dependent and ‘unknown’

to an automatic pipeline. However, given the extra importance

and unique insight output data quality may provide [46], we

included quality analysis of typical scalar outputs of interest (FA

and MD). We take advantage of the labeled brain regions made

available through the multi-atlas segmentation method that used

for the automatic noise estimation. Boxplots showing the

distributions of FA, MD, sFAand BFA are displayed per segmented

region in order to have a greater chance of capturing unusual trends

in the data. Additionally, to make comparisons easier across QA

reports, the distributions from the 21 subjects in the multi-modal

study are displayed and serve as a reference dataset. Third, the

third page includes visualization of sFA and BFA . To obviate the

problem of visualizing sub-sampled data, the median value per

segmented region is chosen to represent sFA and BFA for the entire

region. Finally, the fourth page was included primarily as a self-

checking mechanism to ensure proper spatial interpretation of

gradients and images by the automatic pipeline. This feature will

be particularly useful as pipeline use extends to a greater diversity

of DTI datasets and DTI data storage structures.

Figure 2. Flowchart of QA pipeline showing major processing
steps (blue boxes) and outputs stored or graphed in the QA
report (red ovals). Not shown is conversion of image data to NIfTI
files (immediately after ‘Parse Header’), the creation of two brain masks
after ‘rotate gradients’, one mask for CAMINO and a second slightly
more restrictive mask for statistical analysis, and the implied additional
calculation of x2

pj{slice in ‘Analyze Residuals’.
doi:10.1371/journal.pone.0061737.g002
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3.4 Rubric Evaluation
3.4.1 Experimental Design. A four question multiple choice

rubric was used to evaluate the effectiveness of the QA report

(Table 4). The rubric asked evaluators to assess DTI data quality.

Comparison of novice responses to expert responses served as the

metric for evaluating the effectiveness of the QA report. First, a

total of fifty random datasets were selected from studies I, II, and

III (the first three studies completed by the pipeline). Second, a

pool of evaluators was established with one evaluator labeled

‘expert’ (2 years of experience with DTI data evaluation) and eight

evaluators labeled ‘novice’ (minimal to no previous experience

with DTI data). For each of the fifty studies, five rubrics were

completed; (a) to create a ‘gold standard’ one of the five rubrics

was completed by the expert using both image data and the QA

report, (b) two of the five rubrics were completed independently by

two randomly selected novices using the image data, and (c) two of

the five rubrics were completed independently by the same novice

pair using the QA report. Note each dataset is evaluated four times

by two novices with each novice evaluating the same dataset twice

in the opposite experimental order.

To control for the possible impact of learning, the order in

which each novice completed the rubrics, both in terms of dataset

numbers and whether a novice used the QA report or image data

first, was systematically mixed and assigned. Additionally, a fixed

minimum time width between an evaluators completion of the first

rubric to the second rubric for the same dataset was set at one

week. Users answered rubric questions through Google Docu-

ments which automatically recorded answers in a table that was

imported into Matlab for evaluation.

3.4.2 Statistical Evaluation. Rubric answers for novices

using image data, novices using the QA report, and expert

evaluation were analyzed to assess the effectiveness of the QA

report. Five questions were evaluated: (1) Does learning impacting

outcomes? (Evidence of learning may confound interpretation of

results), (2) Does using the QA report impact consistency of

different novices evaluating the same dataset? (3) Does use of the

QA report significantly change the novice response to the rubric

questions and overall assessment of quality? (4) Does use of the QA

report impact novice errors/disagreement with an expert? (5) Does

the QA report impact novice bias, e.g. are the errors centered

around zero?

To answer these questions, summary statistics were calculated

on the Rubric evaluations and several hypothesis tests were

performed. Due to the non-normal distribution of the data, all

hypothesis tests were non-parametric and robust (Wilcoxon rank

sum and Wilcoxon signed rank). In addition to the mean and

standard deviations of the responses, the following analyses were

done. (1) For assessing learning a hypothesis test was conducted

between (i) the pool of rubrics that were completed the first time

for any given dataset (two per dataset) and (ii) the pool of rubrics

that were completed the second time (two per dataset). (2) To

evaluate the stability of novice quality evaluation, the inter-rater

variability for each question was measured. Inter-rater variability

was defined as the standard deviation across the differences of

rubric answers corresponding to the same subject. The inter-rater

variability was calculated for QA report based responses and

image data based responses. (3) To detect a difference in overall

assessment of quality, a paired hypothesis test was conducted

between (i) rubric responses from novices using the QA report and

(ii) rubric responses from novices using the image data, (4) to test

for changes in errors, a hypothesis test was performed between (i)

errors when novices used image data and (ii) errors when novices

use the QA report. Finally, (5) bias was evaluated by using a

Figure 3. The four pages of the QA report. All data is shown from the same subject. The first page (P.1) parses the header (gray and blue boxes),
plots patient movement in rotation and translation, plots RESTORE outliers per DWI (three upper right plots), plots x2

pj{slice (color plot), shows five
‘best’ and ‘worst’ DWI slices (bottom left), and plots a histogram of x2

p with an automatically determined magnification around the ‘noise’ lobe region

as described in Papadakis et. al.. (P.2) shows a model of the 25 segmented regions (right column) and plots regional distributions of MD, FA, sFA, and
BFA (blue boxplots) adjacent to corresponding distributions from the Multi-modal dataset (black boxplots). (P.3) Page three displays mid-axial slice
views for MD, FA,sFA, and BFA (top row, left to right), select power curves for FA (middle column), and full mid coronal, axial, and sagittal slices for the
vector colormap (R = right-left, G = anterior-posterior, B = foot-head). (P.4) Page 4 shows the vector directions (while lines, not clearly discernible at
figure size) overlaid on the vector colormap for a mid-axial (left column) and mid-coronal (right column) slice. Three different enlargements are shown
for improved viewing.
doi:10.1371/journal.pone.0061737.g003

Figure 4. Comparing three pieces of the QA report for four
subjects. Each piece is selected from a different page of the report.
Subject 1 and subject 2 are from Study II and are the same subjects in
Figure 1. Subject 3 is from Study I and subject 4 is from Study IX. (A)
Colorplot ofx2

pj{slice. Within each colormap, one column represents an
entire normalized diffusion weighted volume, and each row represents
the same axial slice. High x2

pj{slice correspond to poor data with 0.2

being definitively bad. (B) MD distributions for four segmented regions,
left cerebellar gray matter (GM), right cerebellar GM, left cerebellar
white matter (WM), and right cerebellar WM. Blue boxplots indicate the
distribution of each subject’s MD value while the black box-plot is the
reference data from the multi-modal study. (C) Power curves for
theoretical sample sizes of n = 5 (black), n = 15 (red), and n = 30 (blue).
Curves include bias estimates and pertain to voxels in the cerebral WM.
doi:10.1371/journal.pone.0061737.g004
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hypothesis test to compare (i) errors from either responses using

image data or QA report to (ii) a zero-mean distribution.

3.5 Low Dimensional Analysis of QA Metrics
We evaluate if stored quality metrics from the pipeline capture

important characteristics of DTI data through qualitative analysis

of study clustering (Figure 5). The approach tests for a possible

advantage of unifying the statistical pieces and offers one method

for data exploration. In this effort, we also illustrate a possible

approach that could be used in future efforts to more fully

automate QA. This simple evaluation considers the data through

the ‘bottom-line’ perspective of a clinical researcher, in which only

impacts on final output data (rather than input) are considered

[46]. First the regional boxplot distributions of MD, FA, sFA, and

BFA are stored in a single vector for each DTI dataset. Note that

this data captures elements of a power curve analysis as it includes

the only two parameters needed for the power curve analysis, sFA,

and BFA. To characterize data, the 25 segmented regions are first

reduced to 14 regions through pooling left and right hemisphere

regions where appropriate. For each region the mean and

standard deviation of the boxplot data are recorded, creating a

112 element vector. PCA analysis across all DTI datasets is then

used to reduce the data to its two most fundamental dimensions.

To normalize variance measures between data of different scales

(e.g., MD vs. sFA), PCA is performed on z-scored data (mean

subtracted, normalized by standard deviation). The resulting two-

dimensional data is plotted and cluster behavior is qualitatively

evaluated.

Results

4.1 DTI Data and Pipeline Processing
To provide a relatively robust challenge for the pipeline, a total

of 608 DTI datasets were submitted for processing. These datasets

were arbitrarily selected from a large archive consisting of valid

clinical research data, pilot scans, development scans, and scans

that were incompletely acquired (i.e., terminated by the technol-

ogist during scanning). This highly heterogeneous dataset was

chosen to ensure that the pipeline would complete for all datasets

for which it was feasible to estimate tensors and return tractable

error messages when datasets could not be processed. The datasets

ranged in protocol (Table 1), quality, and contained naturally

occurring examples of the difficulty of assessing DTI data quality.

Figure 1 shows subsample images from similar anatomical axial

slices of two study II datasets. These datasets are labeled subject 1

and subject 2. The DWI and bo of both data appear of similar

quality with no clear artifacts, yet a subtle anomalous region of

high FA values can be seen in the middle right (patient

right = image right) hemisphere of subject 2. The question arises

regarding if the anomaly is real (i.e., a tumor) or the product of

poor data quality not manifested as a clear artifact.

The pipeline handled well the challenge of processing diverse

DTI data. Of the 608 submitted datasets 568 datasets completed

the full pipeline processing. One dataset was excluded after

successful processing because the report showed severe issues with

limited field of view and motion artifacts (i.e., an incomplete

dataset). The datasets that did not successfully complete processing

were individually inspected. All failures were due to corrupt data

of one of three types: (i) par file errors such as a missing gradient

table, (ii) data structure errors (e.g., missing slices), and (iii) datasets

not containing a bo because they were part of a larger multi-b-

value study.

Total processing time for each dataset was targeted to be

approximately 24 hours of total CPU time. Longer turn-around

times diminish the ability of researchers to respond to poor data

through experimental methods (including patient re-scans) and

attenuate the benefits of automatic methodology. From test cases,

time consuming pipeline steps included registration (, 20 minutes)

and multi-atlas registration (1 – 9 hours). The most time

consuming steps however are bootstrap and SIMEX. Long turn-

Table 2. Information presented on each page of the QA report.

Page 1 Page 2 Page 3 Page 4

Exam Info Anatomical schematic of 25
segmented regions

Mid-axial slice visualization of MD
and FA

Three mid-sagittal views of e1 overlaid on
vector color map with orientation
labeling

Patient movement, translation and
rotation

Boxplots of MD per region Mid-axial slice visualization of median
sFA and FA bias across segmented
regions

Three mid-coronal views of e1 overlaid on
vector colormap with orientation labeling

Total voxels in each DWI scored as
outliers by RESTORE

Boxplots of FA per region Power curves with and without bias
for gray and white matter cerebellum

Histogram x2
p

Boxplots of sFA per region Mid-axial view of vector colormap with
orientation labeling

Colormap of x2
pj{slice

Boxplots of FA bias per region Mid-sagittal view of vector colormap
with orientation labeling

Visual samples of best and worst
DWI slices in each 1/5th axial region
of the brain. Best and worst are as

graded by x2
pj{slice

Boxplots of multi-modal dataset
for each parameter.

Mid- coronal view of vector colormap
with orientation labeling

doi:10.1371/journal.pone.0061737.t002

Table 3. Stored Pipeline Outputs.

DTI Processing Statistical Analyses

registered data segmented bo volume

D sFA

FA BFA

MD squared error per voxel

e1 power curves

doi:10.1371/journal.pone.0061737.t003
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around times are needed for bootstrap and SIMEX because they

rely on Monte-Carlo simulation which is inherently improved

through greater repetition numbers. Average processing time

across the 567 datasets was 22.2 hours with a range (14.8, 27.8).

Total processing time was 525.2 days, which was reduced to 3 days

through cluster parallel processing. Note that the average reported

herein (22.2 hours) is for a single node. The program itself does not

use parallelization, and cluster analysis was only used to process

608 datasets simultaneously.

4.2 Four Page QA Report
It is not possible to present all results or observations regarding

the QA report. We therefore highlight a small subset of

particularly informative pieces and example how these pieces

may be interpreted by a researcher using DTI QA. Three pieces of

the QA report are compared for four different DTI datasets

(Figure 4). Subject 1 and 2 are from study II and are the same

subjects depicted in Figure 1. Subject 3 is from study I and

subject 4 is an informative ‘out-of-study’ comparison from study

IX. The presence of subject 4 is primarily to enable a positive

control for the pipeline since it is already known that larger

datasets (see protocols in Table 1) should produce higher quality

data.

First, we consider the response of the pixel chi-squared value

calculated per slice (Eq. 4, Figure 4A). This metric was plotted on

a color graph with a fixed range of x2
pj{slice = [0 0.2], where 0.2 is

definitively poor quality [22]. Subjects 1, 2, and 3 show decreasing

data quality as indicated by the increasing number of poor outlier

axial slices in each subject. Note that poor axial slice outliers tend

to align along the same gradient direction, as indicated by the

vertical striping patterns seen in subjects 2 and 3. This observation

was common and, in many cases, linked to large patient motion

for that gradient direction (data not enlarged but seen in Figure 3,

page 1). The last dataset contains 92 diffusion sensitizing gradient

directions, roughly three times as many as studies 1 and 2. For this

subject, random poor axial slice outliers can be seen clustered at

the lowest axial slices. This was common across QA reports and

expected given this region corresponds to anatomical regions of

low signal (e.g., brain stem). The rectangular region of blue seen in

the top of the x2
pj{slice plot for subject 3 indicates the slices were

outside the anatomical regions of the brain. The rectangular blue

pattern was also common among the QA reports.

Next, we consider the boxplots from page 2. Specifically,

Figure 4B examines the response of the boxplot distributions of

MD for four segmented regions: the left hemisphere cerebellar

gray matter, the right hemisphere cerebellar gray matter, the left

hemisphere cerebellar white matter, and the right hemisphere

cerebellar white matter. The thick dark blue boxplot indicates the

spread of MD values for the processed dataset, and the thin black

boxplot is the spread of values from the multi-modal study.

Although x2
pj{slice was higher for subject 2, the boxplots for subject

2 appear to be of comparable (perhaps superior) quality than

subject 1, suggesting that the lower quality DWI for subject 2 may

not have impacted this region and/or the MD results. However,

the MD boxplots for subject 3 clearly demonstrate an increase in

spread. This change was universal across all MD values for subject

3, indicating this dataset is a significant poor quality outlier to

other subjects in the study.

Finally, we investigate how data quality is manifested in the

power curves. Figure 4C shows the plots of the power curves for

the cerebral white matter (CWM), shown for n = 5 (black), n = 15

(red), and n = 30 (blue). These power curves include incorporation

of the bias estimate (Eq. 7). An unbiased power-curve would have

its minimum value at ES = 0. The bias in subjects 1–3 is apparent

in the shift in their power curves away from zero. In all three

subjects, the median bias for the CWM can be seen by the power

curve to be approximately +0.04. Subject 4 has a minimally biased

power curve, which is expected from its much larger gradient

table. The width of the power curves indicates the overall power,

with broader curves being less powerful. Thus, the curves narrow

as sample size increases. The curves also broaden across subjects 1,

2, and 3, indicating a decreasing quality across these three subjects

and trending with the x2
pj{slice graph.

4.3 Rubric Results
An important question is if the chosen visual representation of

the QA report conveys important statistical information provided

by the pipeline and improves overall human quality evaluation

Figure 5. Statistical metrics stored by pipeline evaluated using PCA. Each of the 567 DTI datasets was characterized by a 112 element vector
of stored outputs from the pipeline. PCA analysis was performed on the resulting data. (A) DTI dataset locations in the first two dimensions of the
PCA analysis. Data is symbolized by study Roman numeral (Table 1). Single arrow points to a data quality outlier from study I; subject 3 in Figure 4
and in (B). A double headed arrow points to a cluster representing an isolated protocol sub-group from study VI. (B) FA maps from similar sagittal
slice locations in two subjects from Study I. Subject 4 is the indicated outlier in (A) and subject 5 was selected from the center of the study I cluster
seen in (A).
doi:10.1371/journal.pone.0061737.g005
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accuracy. Comparison of rubric answers from novices using either

image data or the QA report to expert answers enabled a

controlled evaluation of quality analysis accuracy provided by the

QA report. Summary metrics of rubric responses are provided in

Table 5, results of hypothesis tests are provided in Table 6, and

an analysis of man-hours needed for evaluation are in Table 7.

First evidence of learning was evaluated as it may confound

interpretation of the novice responses (statistical results not

included in Table 6). No evidence of learning was found between

the first and second evaluations (p . 0.05). However when only

responses using image data were considered, there was evidence of

learning in the evaluation of motion. Reported motion decreased

by a significant amount (p , 0.05 for the second evaluation. No

significant differences were detected when only responses using the

QA report were considered. Because learning was overall not

significant, the rest of analysis was not complicated by accounting

for possible learning.

Novice responses were found to be significantly different for the

majority of rubric questions when novice’s used the QA report

versus when novice’s used image data (Table 6, Q1). Use of the

QA report increased the similarity between the average expert

evaluation across all 50 subjects and the novice evaluation. The

QA report generally lowered the inter-rater variability and

universally decreased the magnitude of novice errors (Table 5).

The decrease in error was found to be statistically significant for

most questions. QA report and image data yielded biased

evaluations for all rubric questions except the ‘overall evaluation’

which has no evidence of bias when the QA report was used
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Table 6. Rubric Evaluation Using Non-parametric Hypothesis
Testing.

Q1.
Responses1

Q2.
Errors2

Q3.
Image3

Q4.
Report4

1. Motion p = 0.08 p , 0.001 p , 1024 p , 0.01

2. Gradients p , 0.05 p = 0.35 p , 1025 p , 0.01

3a. Axial Slices p , 0.01 p , 0.01 p , 1027 p , 0.05

3b. Axial Slices p , 0.01 p , 0.01 p , 0.01 p , 0.001

3c. Axial Slices p , 0.001 p , 0.01 p , 0.01 p , 0.001

3d. Axial Slices p = 0.61 p = 0.06 p , 1024 p , 0.01

4. Evaluation` p , 0.001 p , 0.001 p , 1027 p = 0.43

1Q1. Are the rubric responses significantly different for Report vs Images?
2Q2. Are the rubric errors significantly different for Report vs Images?
3Q3. Are the rubric errors significantly different for Raw vs Zero mean
distribution?
4Q4. Are the rubric errors significantly different for Images vs Zero mean
distribution?
`Evaluation responses were assigned values 0 through 5, with 0 being
‘Unacceptable’ and 5 being ‘Unusually Excellent’.
doi:10.1371/journal.pone.0061737.t006

Table 7. Time Evaluation.

time (min)1 Expert Report Raw

mean +/2 std 2.2 6 1.3 1.9 6 0.9 6.9 6 2.9

(min, max) (0.7, 5.7) (0.7, 5.9) (1.0, 24.8)

1The time difference between Report and Raw are statistically significant (p ,

0.001).
doi:10.1371/journal.pone.0061737.t007
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(Table 6, Q4, p = 0.43) and a strong evidence of bias with image

data (Table 6, Q4, p , 1027).

Another significant factor when evaluating the effectiveness of

the QA report is human hours saved through its use. Use of the

QA report saved a statistically significant amount of time. On

average the QA report saved the novice 70% of total time while

maximum time spent on any one dataset was reduced from 25

minutes to 6 minutes (Table 7). Overall, the results indicate the

use of the report improves the accuracy of quality analysis

evaluation and saves a large and statistically significant amount of

human effort.

4.4 Low Dimensional Analysis of QA Metrics
PCA reveals that the regional statistical properties of MD, FA,

sFA , and BFA, provide important characteristic information on

the DTI datasets. Although intra-study protocols are variable for

many of the studies (Table 1), in the reduced two dimensions,

data is seen to cluster according to study number (Figure 5A). In

particular studies I – III cluster closely followed by studies IV, V,

and VII. Study VI is the study with the most diverse protocol

range and correspondingly contains the least tightly clustered

datasets. Interestingly, a sub-cluster from Study VI is clearly seen

adjacent to the studies I – III cluster (Figure 5A, double headed

arrow). This sub-cluster completely and exclusively includes study

VI data of identical protocol (b-value = 1000, 32 diffusion

sensitizing gradient directions, 60 slices).

The observation that data clusters by study may seem trivial,

but the clustering is important. Because data of similar protocol

groups together, it then becomes reasonable to conclude that study

cluster outliers may correspond to data of poor quality and

differing metric behavior. This is seen to be the case in investigated

outliers, for example, the study I red cross outlier (Figure 5A,

single headed arrow), belongs to the poor quality dataset of subject

3 in Figure 4 and Figure 5B. Although these clusters are only

shown for the first two dimensions of PCA, these dimensions

account for the majority of the variance. Additionally, inclusion of

the third dimension, which explains an important portion of the

variability, did not affect the clustering trends observable in the

first two dimensions (data not shown).

Discussion

QA in scientific data is important, but is particularly crucial for

DTI experiments which challenge hardware and gradients, induce

unique motion artifacts, and require patient cooperation for multi-

volume acquisitions. Manual QA on the raw data is not only

tedious but difficult since poor data does not always manifest as

clear artifacts and artifacts themselves can mask as natural

variability between volumes (Figure 1). If significant, poor data

can alter important diffusion measurements (such as FA in

Figure 1) which in turn may present as seemingly true anatomical

variability between subjects. Even if artifacts were more clearly

present to the human eye in the DTI data, a concern arises

regarding the number of human hours required to detect that

artifact within the context of a study (such as 183 datasets for the

anomaly in Figure 1). Artifact detection software (DTIPrep)

facilitates artifact detection, but cannot give warning to non-

artifact based quality analysis problems and still requires human

intervention for each DTI dataset. Because of these time

consuming hindrances, the question arises of whether the anomaly

might even go unnoticed under general practice.

To improve QA, we have combined in-situ pipeline method-

ology with statistical analyses that have been previously identified

as key components of DTI QA. These data are saved and

important components graphically represented in a four page

automatically generated report. The pipeline itself successfully

processed diverse DTI data (Table 1) and revealed interesting

trends. It was not uncommon, for example, for patient motion to

correlate with poor fitting DWI (Figure 3, page one). In terms of

correlation between quality of input data and quality of output

data, note that CAMINO RESTORE uses robust fitting

algorithms, and by design output data (e.g., FA) is less sensitive

to artifacts present in input data. However, trends were still

observable. Quality of input data trended with the regional

distributions of output data in the extremes of quality, as seen in

subjects 1 and 2 compared to subject 3 of Figure 4B. The power

curves demonstrated sensitivity to input data quality, but their

interpretation appears nuanced and study specific. For example,

the power curve for subject 1 in Figure 4C indicates good quality

for study I, but clearly not for study IX (subject 4). The power

curves and regional output distributions will likely be especially

informative when combined with the pipeline stored power curves

and regional output distributions from other subjects within the

same study. The easy ability to make such observations about

inter-protocol quality is an additional benefit and potential

secondary use of the QA pipeline.

One objective of the pipeline was to evaluate the QA report’s

ability to save human hours and improve QA. We demonstrate the

report improves QA even when an individual has the ability/time

to inspect all acquired data. The novices provided distinctly

different responses with and without the QA report, as indicated

by the hypothesis test (Table 6, Q1). The novice responses using

the QA report had greater similarity with the experienced

researcher responses (Table 5). Perhaps most importantly, use

of the QA report reduced the errors and eliminated the bias of a

novice’s overall evaluation of data quality (Table 6, bottom

row).The time saved doing QA using the report was statistically

significant and quite substantial, particularly when considering QA

on multiple DTI datasets as might be required for evaluation of

data for a complete study.

The pipeline offers clinical researchers easy access to modern

statistical methodology tailored for DTI while simultaneously

performing essential pre-processing and model fitting. The

pipeline stores analysis outputs tailored for more detailed

investigation/follow-up. Many possibilities exist for developing

approaches that use the stored outputs to evaluate protocol

differences, cohort differences, and data quality outliers. Herein,

we demonstrate one of many possible approaches and explore the

sensitivity of the metrics to DTI data characteristics. The metrics

were found to be sensitive to DTI protocol type with similar

protocols clustering together in two-dimensional PCA. Because

DTI data clusters according to protocol, within-protocol cluster

outliers become poor quality suspects, as was the demonstrated

case for an outlier from study I. This outlier detection approach

suggests one possible methodical pathway for summarily evaluat-

ing statistical compatibility and classifying data as ‘usable’ or

‘unusable’. Although interesting for future investigation, the

primary focus of this paper is on DTI processing and QA rather

than machine learning, so we leave optimization/characterization

of fully automated QA for future work.

Herein, our goals were to present the pipeline, demonstrate the

visualization method succeeds in aiding QA, and provide data that

demonstrates an advantage of unifying the statistical pieces. Yet an

important question is ‘what decision should a scientist be making

given the data in the pipeline?’. As the pipeline is the first time

many of these statistics have been made readily available for

scientists, the meaning of the individual pieces and their combined

interpretation remains a large space for exploration. In the article,
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pieces of the QA report have been highlighted for guidance on

interpretation (Section 4.2) and one method for data exploration

that combines multiple pieces of the stored output has been

presented (Section 4.4). However, we try to communicate these

pieces without limiting the possibilities to the scope presented in

the article. In regards to ‘what should a scientist do’, the answer

depends upon the scientist’s needs, the results of the QA report,

and the community’s growing understanding of the meaning of

many of these metrics; an understanding that can be facilitated by

multi-metric processing pipelines such as the one presented herein.

Conclusion

Integration of processing software and isolated statistical metrics

into a single automated QA pipeline significantly improved QA for

DTI data. The presented pipeline offers the benefits of (1) an in-

situ analysis option when integrated with MRI scanners (as

currently running at a local facility), (2) encourages deeper data

analysis and exploration by making existing state-of-the-art

computational and statistical methods readily available to clinical

researchers, and (3) provides a summary PDF of QA metrics to

enable timely (within approximately 24 hours of data collection)

quality analysis evaluation, enabling early experimental response

to poor data quality and improved DTI methodology. The four

page QA report was demonstrated effective in improving quality

evaluation of DTI data, both in terms of accuracy and in time

saved. The pipeline outputs, as demonstrated herein, can then be

used outside of the graphical representations in the QA report for

further analysis of data characteristics.

The analysis software is available in open-source under the

Lesser GNU Public License (LGPL) 2.1+ at http://www.nitrc.

org/projects/masimatlab. Please see the ‘‘mediawiki’’ section for

download instructions and documentation on the ‘‘DTI QA

Pipeline’’ sub-project.
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