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Objectives: This study sought to develop a multiparametric MRI radiomics-based
machine learning model for the preoperative prediction of clinical success for high-
intensity-focused ultrasound (HIFU) ablation of uterine leiomyomas.

Methods:One hundred and thirty patients who received HIFU ablation therapy for uterine
leiomyomas were enrolled in this retrospective study. Radiomics features were extracted
from T2-weighted (T2WI) image and ADC map derived from diffusion-weighted imaging
(DWI). Three feature selection algorithms including least absolute shrinkage and selection
operator (LASSO), recursive feature elimination (RFE), and ReliefF algorithm were used to
select radiomics features, respectively, which were fed into four machine learning
classifiers including k-nearest neighbors (KNN), logistic regression (LR), random forest
(RF), and support vector machine (SVM) for the construction of outcome prediction
models before HIFU treatment. The performance, predication ability, and clinical
usefulness of these models were verified and evaluated using receiver operating
characteristics (ROC), calibration, and decision curve analyses.

Results: The radiomics analysis provided an effective preoperative prediction for HIFU
ablation of uterine leiomyomas. Using SVM with ReliefF algorithm, the multiparametric MRI
radiomics model showed the favorable performance with average accuracy of 0.849,
sensitivity of 0.814, specificity of 0.896, positive predictive value (PPV) of 0.903, negative
predictive value (NPV) of 0.823, and the area under the ROC curve (AUC) of 0.887 (95% CI =
0.848–0.939) in fivefold cross-validation, followed by RF with ReliefF. Calibration and decision
curve analyses confirmed the potential of model in predication ability and clinical usefulness.

Conclusions: The radiomics-based machine learning model can predict preoperatively
HIFU ablation response for the patients with uterine leiomyomas and contribute to
determining individual treatment strategies.
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INTRODUCTION

Uterine leiomyomas are benign smooth-muscle neoplasm of the
uterus in women of reproductive age, with a high morbidity of
more than 70%, and seriously makes the quality of life of patients
worse or even affects fertility (1). When uterine leiomyomas are
symptomatic and pharmacotherapy fails (2), the choice between
hysteromyomectomy and hysterectomy treatment depends on
female fertility needs (3, 4), which is also a common factor for
surgical removal of the uterus. Recently, high-intensity focused
ultrasound (HIFU) ablation has played a significant role and
been a subject of interest in noninvasive treatment modality of
thermal ablation (5). Compared with hysterectomy, the use of
HIFU as a noninvasive intervention in abundant clinical trial has
demonstrated the potential to ablate the uterine leiomyomas by
selective tissue heating, which can significantly improve
symptoms resulting from the uterine leiomyomas (6, 7).
However, preoperative evaluation is a crucial factor for
ensuring a high ablation rate of leiomyoma tissue as well as the
success rate of HIFU treatment, so preoperative outcome
prediction would better guide clinical decision making for
therapeutic strategy (8, 9).

In clinical practice, magnetic resonance imaging (MRI) is
commonly used for preoperative evaluation and response
assessment before and after HIFU ablation treatment,
respectively (10). Several studies have investigated the
relationship between the degree of signal intensity on T2-
weighted (T2WI) images and treatment outcome of HIFU
ablation for uterine leiomyomas, but only showed a limited
predictive power (11, 12).
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Radiomics has emerged as a promising tool to provide
quantitative biomarkers from routine multimodal radiological
images that can help recognize imaging information linked with
treatment outcome (13–15), by considering that the high-
throughput extraction of images is beyond the capabilities of
the naked eye in clinical application. Radiomics-based machine
learning is quite rapidly gaining importance in the medical field
(16). It tries to identify patterns in imaging data and provide
decision support by connecting these patterns to treatment
outcome, which can facilitate higher precision in diagnosis and
prognosis (17, 18).

However, no studies reported the radiomics analysis of
nonenhanced MRI for outcome prediction in HIFU ablation,
and there is still a lack of machine learning approaches to
automatically predict HIFU treatment outcome so as to guide
patient selection. This study aims to develop and validate
multiparametric MRI radiomics-based machine leaning model
to preoperatively predict clinical outcome of HIFU ablation of
uterine leiomyomas.
MATERIALS AND METHODS

An overview of the proposed prediction model for the HIFU-
based uterine leiomyoma ablation is illustrated in Figure 1. More
details are given in the following sections.

Study Population
This single-center retrospective research was approved by the
Institutional Review Board of the First Affiliated Hospital of
FIGURE 1 | The conceptual flowchart of the present study. (I) lesion segmentation and preprocessing. (II) Quantitative radiomics features extraction. (III) Feature
selection and classification. (IV) Performance evaluation of machine learning model. T2WI, T2-weighted imaging; RFE, recursive feature elimination; LASSO, least
absolute shrinkage and selection operator; SVM, support vector machine; KNN, k-nearest neighbors; RF, random forest.
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Chongqing Medical University, and the patient consent was
waived. From January 2013 to December 2018, 318 patients
receiving HIFU ablation therapy for uterine leiomyomas were
enrolled for this analysis. The inclusion criteria were as follows:
(1) above 18 years of age, (2) premenopausal or perimenopausal,
(3) no previous history of surgery or drug treatment, and (4)
leiomyomas diameter ≥3 cm. The exclusion criteria were as
follows: (1) patients have contraindications for MRI
Frontiers in Oncology | www.frontiersin.org 3
examination and contrast injection, (2) the volume ratio of
severe necrosis of leiomyomas is ≥1/2, and (3) patients are in
pregnancy and lactation. Figure 2 shows the flowchart of patient
enrollment and exclusion criteria. Finally, a total of 130 patients
with uterine leiomyomas were included for the following
analysis. According to the relationship between treatment
outcome and HIFU ablation efficiency reported in the previous
studies (19), the ablation rate of uterine leiomyomas was used to
FIGURE 2 | Patient recruitment pathway.
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divide the patients into two groups: 70 uterine leiomyomas with
sufficient ablation (ablation rate ≥70%) and 60 uterine
leiomyomas with nonsufficient ablation (ablation rate <70%).
The ablation rate was defined as the ratio between the
nonperfused volume in the target uterine leiomyoma after
HIFU ablation and the volume of original uterine leiomyoma
before treatment. The calculation of ablation rate was
implemented in a standard picture archiv ing and
communication system (PACS) workstation (Carestream
Health, Rochester NY) by outlining the target leiomyoma
before treatment and the unenhanced areas of that after
treatment in the contrast-enhanced images layer by layer.

Multiparametric MRI Scanning Protocol
In this study, each patient underwent MRI examination using
3.0T system (Signa HDxt, GE Medical System) before and after
HIFU ablation, respectively. The postoperative MRI examination
was within 7 days after treatment. The imaging protocol included
(1) fat-suppressed fast spin-echo T2WI imaging in the axial,
coronal, and sagittal planes; (2) axial fast spin-echo T1-weighted
(T1WI) imaging; (3) axial DWI with reconstruction of ADC
map; and (4) dynamic contrast-enhanced (DCE) MRI. The
parameters of T2WI imaging and DWI are presented in Table 1.

Image Segmentation
All MRI images were exported from PACS in DICOM format.
Two blinded abdominal radiologists with 7 and 12 years of
experience in pelvic radiological imaging independently
interpreted all MR images and manually determined the
regions of interest (ROIs) by delineating the margin of
leiomyoma using ITK-SNAP software (www. itksnap.org) in
the axial plane, as shown in Figure 3. The ROIs of DWI with
a b-value of 800 s/mm2 were delineated on corresponding
apparent diffusion coefficient (ADC) maps. The principles of
ROI sketching were as follows: (1) sketching layer by layer to
form the 3D ROIs of the lesion; (2) including the cystic and
necrotic area of the lesion; (3) sketching the maximum extent of
the lesion as much as possible, if the tumor boundary is blurred.

Radiomics Feature Extraction
In this study, a total of 972 candidate radiomics features were
extracted from each of T2WI image and ADC map, which
comprised first-order statistic features, intensity- and shape-
based features, high-order textural features, and wavelet
Frontiers in Oncology | www.frontiersin.org 4
transform-based features. Textural features were divided into
five categories such as gray-level co-occurrence matrix (GLCM),
gray-level run-length matrix (GLRLM), gray-level size zone matrix
(GLSZM), neighborhood gray-tone difference matrix (NGTDM),
and gray-level dependence matrix (GLDM) (20, 21). Wavelet
features are the transformed domain representations of the
intensity and textural features, which were computed on the
wavelet decomposition of the original image. Then, the radiomics
feature set was performed z-score normalization. The PyRadiomics
package (http://pyradiomics.readthedocs.io) implemented in
Python (version 3.6) was used for radiomics feature extraction
referring to the corresponding mathematical definitions (22).

Feature Reproducibility Evaluation
and Selection
Intraclass correlation coefficients (ICC) were used to evaluate the
agreement and robustness of extracted features from the different
ROIs in the same images between two observers. The
reproducibility of radiomics features were evaluated by
computing ICC prior to feature selection. An ICC value of
more than 0.8 was considered to represent excellent
consistency (23). The optimal characterization condition often
means the minimal prediction error (24), so feature selection as
an important factor for pattern classification plays an important
role in the processing of high-dimensional radiomics features.
The algorithms of recursive feature elimination (RFE), ReliefF,
and least absolute shrinkage and selection operator (LASSO)
were used for feature selection in this study (25, 26).
Additionally, publicly available implementations were readily
available for these methods, which increase the reusability of
the results in this study.

Machine Learning Model
For the prediction model development, four machine learning
classifiers such as k-nearest neighbors (KNN), logistic regression
(LR), random forest (RF), and support vector machine (SVM)
were implemented in Python environment (version 3.6). The
reason for choosing these classifiers was that they have been
proven to rank at the top of prediction performance and
commonly used in the related study.

Performance Validation
To ensure robust and efficient prediction performance of model,
the selective features by the different feature selection methods
were used to construct models with these four machine learning
algorithms one-by-one, and the analysis of performance
comparison were performed by means of standard
performance metrics including the area under the ROC curve
(AUC), accuracy, sensitivity, and specificity in fivefold cross-
validation. The most efficient combination of machine learning
and feature selection method with the highest accuracy was
determined as predictive model, which was used to predict the
treatment outcome of HIFU ablation for uterine leiomyomas.

Statistical Analysis
Continuous variables, expressed as mean value ± standard
deviation or median with interquartile range as appropriate,
TABLE 1 | Parameters for MRI sequences.

Parameter T2WI DWI

Scanning plane Axial Axial
TR/TE (ms) 4,380/106 4,000/62.9
Slice thickness (mm) 5 6
Slice gap (mm) 1.5 1.5
Field of view (cm) 28 × 22.4 38.0 × 45.8
Matrix 320 × 224 128 × 130
b-value (s/mm2) N/A 800
N/A, not applicable.
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were analyzed using Student’s t-test or Mann-Whitney U-test,
respectively. ROC curves were calculated from all validation
sets to show generalization. The comparisons of AUCs were
accomplished using the DeLong nonparametric approach
(27). Decision curve analysis was employed to evaluate the
clinical usefulness of the radiomics model. Calibration curve
along with the Hosmer-Lemeshow test was used to evaluate
the similarity between the predicted and observed probabilities
(28). Statistical analysis was performed with R software (version
3.6.1). A two-sided p < 0.05 was considered to represent
statistically significant.
RESULTS

Clinical Characteristics
The clinical and radiological characteristics of the patients
are summarized in Table 2, and there were no significant
differences between the primary and validation cohorts.
Between the high and low ablation groups, there were no
significant differences in the primary and validation cohorts in
the volume, size, subtypes, and location of leiomyomas (p > 0.05,
Table 3). A few radiological features were significantly different
between two groups in the primary or validation cohorts,
including T2 signal intensity, T2 signal homogeneity, and
uterine position (Table 3).
Frontiers in Oncology | www.frontiersin.org 5
Predictive Performance Comparison of
Machine Learning Models
In the predictive model building, the performance of different
models was investigated, where four machine learning classifiers
and three feature selection algorithms were tested, and the
corresponding heatmaps of AUCs in the primary and validation
cohorts using multiparameter MRI were shown in Figure 4. For
the different feature selection methods, the most suitable machine
learning classifier is individualized. For RFE and LASSO, KNN, and
LR models work better, respectively. ReliefF algorithm is more
suitable to RF and SVM. The detail predictive performance metrics
of the four machine learning models in the primary and validation
cohorts were shown in Figure 4C and Table 4. The comparison
result indicated SVM and RF outperformed LR and KNN
significantly (all p-values <0.05), when the number of radiomics
features ranged from 15 to 18 and the predictive performance of
machine leaning models was optimal. The ReliefF-SVM model
showed the best predictive performance with an AUC of 0.911 and
accuracy of 0.884 in the primary cohort and an AUC of 0.887 and
accuracy of 0.849 in the validation cohort (Figure 5), followed by
ReliefF-RF model which yielded an AUC of 0.875 and accuracy of
0.851 in the primary cohort and an AUC of 0.854 and accuracy of
0.817 in the validation cohort (Table 4). The result of the DeLong
test suggested that the prediction performance of the ReliefF-SVM
model was significantly better than that of the ReliefF-RF model in
the primary and validation cohorts (p = 0.021 and
0.044, respectively).
FIGURE 3 | Two cases for delineating ROI. The preoperative MR images for uterine leiomyomas with sufficient ablation on (A) T2WI image and (B) ADC map from
DWI and with nonsufficient ablation on (C) T2WI image and (D) ADC map from DWI.
September 2021 | Volume 11 | Article 618604
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Performance of Sequences
Furthermore, we have investigated whether the radiomics
features extracted from multiple sequences can better predict
the therapeutic response of uterine leiomyoma to HIFU ablation
Frontiers in Oncology | www.frontiersin.org 6
using the ReliefF-SVM model. For single sequence, the SVM
classifier using the DWI sequence yielded an AUC of 0.831 (95%
CI = 0.740–0.922) in the primary cohort and an AUC of 0.789
(95% CI = 0.689–0.889) in the validation cohort, while it yielded
TABLE 3 | Demographic information and radiological image characteristics between the high and low ablation groups.

Characteristics Primary cohort p-Value Validation cohort p-Value

High ablation (≥70%) Low ablation (<70%) High ablation (≥70%) Low ablation (<70%)

N 56 48 14 12
Age 38.76 ± 5.96 37.81 ± 6.65 0.442a 39.07 ± 5.86 38.58 ± 7.84 0.858a

Volume (mm3) 84.65 (50.6–152.9) 99.05 (56.52–180.10) 0.173c 73.9 (57.32–121.70) 88.15 (68.65–117.75) 0.311c

Size (mm) 53.15 (41.47–63.62) 59.65 (46.55–70.45) 0.202c 49.80 (35.40–52.75) 57.75 (48.67–71.85) 0.197c

Type
Submucous 3 2 0.914b 1 1 0.791b

Myometrial 47 42 10 10
Subserous 6 4 3 1

Location
Anterior wall 35 29 0.987b 6 9 0.209b

Posterior wall 21 19 8 3
T2 signal intensity
Hyperintensity 19 21 0.409b 13 4 0.003b

Hypointensity 37 27 1 8
T2 signal homogeneity
Homogeneous 10 4 0.258b 7 1 0.030b

Inhomogeneous 46 44 7 11
Uterine position
Anteversion 46 27 0.007b 6 9 0.209b

Retroversion 10 21 8 3
September 2021 | Volume 11 | Article
ap-Values obtained using independent-sample t-test.
bp-Values obtained using Chi-squared test or Fisher’s exact test.
cp-Values obtained using Wilcoxon rank-sum test.
TABLE 2 | The comparison of demographic information and radiological image characteristics between primary and validation cohorts.

Characteristics Primary cohort Validation cohort p-Value

N 104 26
Ablation efficacy
High (≥70%) 56 14 1.000b

Low (<70%) 48 12
Age 38.32 ± 6.27 39.14 ± 6.59 0.211a

Volume (mm3) 91.54 (52.08–159.07) 79.12 (46.02–122.47) 0.322c

Size (mm) 56.85 (45.32–67.87) 49.45 (43.20–64.43) 0.618c

Type
Submucous 5 2 0.481b

Myometrial 89 20
Subserous 10 4

Location
Anterior wall 64 15 0.893b

Posterior wall 40 11
T2 signal intensity
Hyperintensity 40 9 0.892b

Hypointensity 64 17
T2 signal homogeneity
Homogeneous 14 7 0.133b

Inhomogeneous 90 19
Uterine position
Anteversion 73 15 0.385b

Retroversion 31 11
Energy efficiency factor (J/mm3) 3.6 (1.6–7.1) 3.7 (1.8–6.9) 0.118c

Sonication time (s) 790 (380–1,360) 815 (405–1,420) 0.247c
ap-Values obtained using independent-sample t-test.
bp-Values obtained using Chi-squared test or Fisher’s exact test.
cp-Values obtained using Wilcoxon rank-sum test.
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an AUC of 0.863 (95% CI = 0.796–0.929) in the primary cohort,
and an AUC of 0.822 (95% CI = 0.755–0.888) in the validation
cohort using the T2WI sequence. The performance of T2WI
sequence is better than that of DWI sequence. However, when
use the combination of T2WI and DWI sequences, the SVM
classifier yielded the highest AUC of 0.911 (95% CI = 0.854–
0.973) in the primary cohort and an AUC of 0.887 (95% CI =
0.848–0.939) in the validation cohort. In general, for the
multiparametric MRI, the SVM classifier with ReliefF
algorithm had the best performance.
Frontiers in Oncology | www.frontiersin.org 7
Clinical Usefulness
The calibration curves of the radiomics model for the therapeutic
response of uterine leiomyoma to HIFU ablation demonstrated
good agreement between observation and prediction in both the
primary dataset (Figure 6A) and validation dataset (Figure 6B).
The Hosmer–Lemeshow test revealed no statistically significant
departure from a perfect fit (p = 0.632 and p = 0.498,
respectively). Then, the decision curves showed that the
ReliefF-SVM model provided a higher overall net benefit for
predicting clinical outcome for HIFU treatment than the ReliefF-
TABLE 4 | The best performance of four radiomics models in the primary and validation cohorts.

Classifier N Cohort AUC [95% CI] Accuracy Sensitivity Specificity PPV NPV

RFE-KNN 18 Primary 0.798 [0.754–0.836] 0.764 0.723 0.816 0.863 0.762
Validation 0.762 [0.721–0.807] 0.744 0.716 0.802 0.822 0.743

LASSO-LR 8 Primary 0.861 [0.824–0.922] 0.833 0.775 0.917 0.885 0.790
Validation 0.784 [0.755–0.834] 0.769 0.605 0.894 0.881 0.712

ReliefF–RF 15 Primary 0.875 [0.829–0.933] 0.851 0.809 0.892 0.878 0.830
Validation 0.854 [0.816-0.907] 0.817 0.784 0.904 0.894 0.801

ReliefF-SVM 18 Primary 0.911 [0.854–0.973] 0.884 0.857 0.921 0.918 0.853
Validation 0.887 [0.848–0.939] 0.849 0.814 0.896 0.903 0.823
Sept
ember 2021 | Volum
e 11 | Article 6
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C

FIGURE 4 | Performance of HIFU ablation prediction with different machine learning methods. The heatmaps show the AUCs of model with four classifiers and three
feature selection methods in different feature numbers for (A) the primary cohort and (B) the validation cohort. The annotation of the heatmap (located to the right of
the entire image) illustrates that red or yellow represents a high AUC and pink or blue represents a low AUC. (C) Model performance presentation for the four optimal
combinations of feature selection and machine learning in the validation cohort.
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RF model in the primary and validation cohorts (Figures 6C, D).
The threshold probability was within the range of 0.24 to 0.86.
This indicates that the radiomics machine learning model is
clinically useful and has favorable performance in the outcome
prediction of HIFU ablation of uterine leiomyomas.
DISCUSSION

HIFU as a noninvasive therapeutic technique, can selectively
produce typical coagulation necrosis at a precise focal point
within leiomyomas lesions. It has several attractive advantages
including noninvasion, nonsurgical treatment, lower risk,
no ionizing radiation, and faster recovery time (29, 30),
when compared with the other noninvasive or minimally
invasive therapeutic methods such as vascular embolization,
radiofrequency ablation, cryotherapy, and targeted
radiotherapy (31).

In this study, we developed 12 machine learning models for
the preoperative outcome prediction of HIFU ablation for
uterine leiomyomas using multiparametric MRI radiomics
features. The ReliefF-SVM-based radiomics machine learning
model showed favorable predictive performance in the current
data cohort, demonstrating the potential to predict individual
treatment outcome for the patients with uterine leiomyomas.

This study investigated different combinations of the
frequently used feature selection algorithms and machine
learning classifiers for the construction of outcome prediction
models and performed the performance comparison of different
combinations. The result indicated that these machine learning
models achieved favorable performance in predicting the clinical
success for HIFU treatment, and the best performance was found
in the combination of SVM classifier and ReliefF algorithm. This
showed consistency with previous studies where machine
learning exhibits a potential in clinical application such as
Frontiers in Oncology | www.frontiersin.org 8
preoperative gastrointestinal stromal tumor prediction,
Parkinson’s disease, and breast lesion classification (32, 33).

Preoperative prediction of treatment outcome is essential
before HIFU intervention and is also an important factor to
determine individual therapeutic schedule for the patients with
uterine leiomyomas. The previous studies have investigated the
relationship between some qualitative radiological indicators and
the difficulty level of HIFU ablation of uterine leiomyomas. The
results revealed the enhancement pattern of leiomyoma lesion on
T1WI image, and the signal intensity of that on T2WI image
were related to the HIFU ablation efficiency (34–37).
Furthermore, multivariate regression model was proposed to
predict the difficulty level of HIFU ablation by estimating the
energy efficiency factor and sonication time. However, there is
currently no accurate machine learning model for predicting
the therapeutic response of uterine leiomyomas to HIFU
ablation using the quantitative radiomics characteristics on
unenhanced MR image. To our knowledge, this is the first
study that uses radiomics analysis and machine learning model
for the preoperative prediction of clinical outcome for
HIFU ablation.

Our study revealed that the quantitative radiomics features
from the preoperative MR images could effectively describe the
degree of difficulty in HIFU ablation of uterine leiomyomas. This
result is supported by literature (36, 38) which also demonstrated
that the blood supply of uterine fibroids, tissue structure of
fibroids, and the size offibroids are important factors influencing
the HIFU ablation efficiency (10). Some studies have shown that
uterine leiomyomas displaying the mixed hyperintensity on
T1WI image with s ignificant enhancement or the
hyperintensity on T2WI image had worse therapeutic response
of uterine leiomyoma to HIFU ablation (36, 39). This
demonstrates that radiomics analysis has potential in the
preoperative prediction of treatment outcome for leiomyoma
HIFU ablation, because it could feasibly be used to quantify the
A B

FIGURE 5 | Graph shows receiver operating characteristic curves of ReliefF-SVM model for outcome prediction of HIFU treatment in (A) the primary and
(B) validation cohorts.
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different textures that are regarded as different patterns of
hyperintensity or hypointensity in MR images.

In this study, we investigated the feasibility of applying
radiomics and machine learning to predict the efficiency of
HIFU ablation on conventional unenhanced MR images. The
ability to predict preoperatively HIFU treatment outcome on
T2WI image and ADC map can potentially minimize the need
for contrast agent administration as well as avoid the contrast
agent adverse events.

There were several limitations in this study. Firstly, the data
were obtained from a single institution, which lacked the
validation data from different image acquisition protocols for
generalization. Secondly, the conventional clinical parameters
were not involved in the prediction model, and we only
investigated two routine MR sequences such as T2WI and
DWI sequences. In the future, other advanced sequences such
Frontiers in Oncology | www.frontiersin.org 9
as diffusion tensor imaging, perfusion-weighted imaging, and
MR spectroscopy combined with clinical parameters should be
involved. Thirdly, segmentation of uterine leiomyomas was
performed manually, because of the challenges encountered in
automatic VOI labeling and complex anatomical structure
delineation in abdominal MR image.

In conclusion, this study developed a multiparametric MRI
radiomics-based machine learning model for the preoperative
prediction of HIFU treatment outcome for uterine leiomyomas
by the comparison of different machine learning models. The
ReliefF-SVM model showed favorable performance in
predicting clinical outcome of HIFU ablation in the current
data. If the model will be further developed and validated, it
may help clinicians better screen patients who can most benefit
from HIFU therapy and provide a reference for treatment
decision-making.
A B

C D

FIGURE 6 | Calibration curves of the radiomics model in (A) the primary and (B) validation cohorts. Calibration curves depict the calibration of ReliefF-SVM model
in terms of the agreement between the predicted probability and actual outcomes. The y-axis represents the actual rate of HIFU probability. The x-axis represents
the predicted probability. The diagonal blue line represents a perfect prediction by an ideal model. The pink line represents the performance of the radiomics model,
where a closer fit to the diagonal blue line represents a better prediction. Decision curve analysis for the ReliefF-SVM and ReliefF-RF models in (C) the primary and
(D) validation cohorts. The y-axis measures the net benefit. The red and green lines represent the radiomics model. The blue line represents the assumption that all
patients received high HIFU ablation. The black line represents the assumption that no patients received
high HIFU ablation.
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