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ABSTRACT

Numerous potential ligand-binding sites are avail-
able today, along with hundreds of thousands
of known binding sites observed in the PDB.
Exhaustive similarity search for such vastly
numerous binding site pairs is useful to predict
protein functions and to enable rapid screening of
target proteins for drug design. Existing databases
of ligand-binding sites offer databases of limited
scale. For example, SitesBase covers only �33 000
known binding sites. Inferring protein function and
drug discovery purposes, however, demands a
much more comprehensive database including
known and putative-binding sites. Using a novel al-
gorithm, we conducted a large-scale all-pairs simi-
larity search for 1.8 million known and potential
binding sites in the PDB, and discovered over
14 million similar pairs of binding sites. Here, we
present the results as a relational database Pocket
Similarity Search using Multiple-sketches
(PoSSuM) including all the discovered pairs with an-
notations of various types. PoSSuM enables rapid
exploration of similar binding sites among struc-
tures with different global folds as well as similar
ones. Moreover, PoSSuM is useful for predicting
the binding ligand for unbound structures, which
provides important clues for characterizing protein
structures with unclear functions. The PoSSuM
database is freely available at http://possum.cbrc
.jp/PoSSuM/.

INTRODUCTION

With the rapid growth in the number of solved protein
structures, mainly as a result of structural genomics

projects, the need for automated methods to predict
protein functions from structures has become increasingly
important. In many cases, proteins exhibit their biological
functions by interacting with other molecules: so-called
ligands. Therefore, ligand-binding sites can be regarded
as functional units of the proteins. Their comparison is
an important approach for elucidating protein functions.
For that purpose, many methods have been developed
during the last decade (1–6). To date, more than 70 000
protein structures have been available in the Protein Data
Bank (PDB) (7), which contains hundreds of thousands of
local regions binding to molecules of many kinds such as
metal ions, nucleic acids, peptides and other small mol-
ecules. In addition to these known binding sites, numerous
potential ligand-binding sites are available through
various methods of ligand-binding site prediction (8–13).
Performing an exhaustive similarity search for such vast
quantities of protein-binding sites provides the basis for
automatic classification of protein functions. Moreover,
such a systematic understanding of protein–ligand inter-
actions can be exploited for structure-based drug design.
Nevertheless, existing binding site comparison methods

are applicable only to small data sets such as representa-
tive entries in the PDB, mainly because the time complex-
ity for obtaining 3D alignment is too expensive. In many
cases, the protein structure has been solved in multiple
forms with a wide variety of ligands, e.g. inhibitors of
different kinds. Therefore, using a representative data set
results requires that the user miss such valuable samples.
A reasonable strategy to retrieve similar binding sites in
the PDB scale is that of employing a fast alignment-free
method to detect candidates of similar binding sites first,
with subsequent application of the time-consuming 3D
alignment to the candidates. To achieve that objective,
fingerprint-based fast similarity search approaches have
been proposed recently (14–17). We have also developed
an ultrafast fingerprint-based method (24) that can enu-
merate similar pairs from millions of binding sites in a
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reasonable time. Our method first encodes ligand-binding
sites as feature vectors based on their physicochemical and
geometric properties. Then similar sites are enumerated
using a fast neighbor-search algorithm called SketchSort
(18). For this study, we applied the proposed method to
all-pair similarity searches for 1.8 million known and po-
tential ligand-binding sites. Consequently, we discovered
over 14 million pairs of similar binding sites, which is
the largest-scale study of binding site comparison for
the PDB entries ever reported. All the discovered similar
pairs were compiled into a new database called Pocket
Similarity Search using Multiple-sketches (PoSSuM).
Similar binding sites have already been enumerated and
stored in our database. Therefore, users can retrieve
similar sites rapidly, within a few seconds, through our
web interface. Because, all sites were annotated with in-
formation of various types such as CATH (19), SCOP
(20), EC numbers (21) and Gene Ontology (GO) terms
(22), users can easily scrutinize similar binding sites
between proteins with different folds or similar catalytic
sites between enzymes with different EC numbers.
In comparison with a well-known existing database,

SitesBase (23), which includes �33 000 known
ligand-binding sites, our new database stores a much
larger number of up-to-date known binding sites de-
posited in the PDB. In addition to them, our database
includes pairs between known and potential ligand-
binding regions predicted using a novel pocket detection
program. Our database is expected to be useful for anno-
tation of protein functions and rapid screening of target
proteins in drug design. The PoSSuM database is freely
available for use by researchers at http://possum.cbrc.jp/
PoSSuM/.

PROCEDURE FOR DATABASE CONSTRUCTION

1.8 million binding site data set

As the source data set, we concatenated the following
two sets: 241 486 known ligand-binding sites obtained
from protein–ligand complexes in the PDB and 1 588 329
putative ligand-binding sites predicted using a geometric-
based pocket detection algorithm.
In our study, the definition of a ligand is any HET

molecule observed in the PDB (excluding water molecules,
nucleic acids and peptides). The definition of a binding site
is a set of amino acids around a ligand. We selected 47 562
protein entries (X-rays with resolution �4.0 Å and
MODEL1 of all NMR) from the PDB (version January
2011). Of those, we found HET molecules fulfilling the
definition of ligands given above. As a ligand-binding
site, we extracted a set of all amino acids, each of which
had at least one heavy atom lying within a distance of
5.0 Å, from at least one heavy atom of the ligand. A
binding site consists of amino acids that are not necessar-
ily continuous in the sequence and which need not be
located in the same domain or chain [one example is
Figure 12C in our earlier study (24)]. Consequently, we
obtained 241 486 known ligand-binding sites: far more
than those of SitesBase (Table 1). This difference is
mainly attributable not only to the version of the PDB,

but also to the ligand definition: our data set includes
small molecules such as metal ions.

Potential binding sites were predicted using a novel
binding pocket detection program: Ghecom (13). In this
program, a potential ligand-binding pocket on the protein
surface is detected as a region into which small probes can
enter, but large probes cannot. Various shapes and sizes of
pockets can be predicted by changing the radius of large
probes (Rlarge). We prepared a non-redundant PDB subset
(95% sequence identity cutoff and resolution �4.0 Å
for X-rays) that contained 29 779 entries. For each, we
iterated Ghecom four times while changing the values
of Rlarge (3, 4, 5 and 6 Å) and fixing the value of Rsmall

to 1.87 Å. The detected pockets are measured by the
number of small probes filling up a pocket. To adjust
the putative pocket size approximately to that of known
ligand-binding sites, we chose pockets that were smaller
than 200 probes. Then, a potential binding site was
obtained by extracting a collection of all amino acids,
each of which had at least one heavy atom within a
distance of 5.0 Å from one of the probes. Consequently,
1 588 329 potential binding pockets were obtained
(Table 1). In total, we collected 1 829 815 known and
putative ligand-binding sites. Although the known sites
were taken from almost all PDB entries, the putative
ones account for about half of the PDB entries in the
current version of PoSSuM.

Annotation to binding sites

To facilitate subsequent analyses, all binding sites were
annotated to the greatest degree possible using CATH
(version 3.4) codes, SCOP (version 1.75) domain classifi-
cation codes EC commission numbers, and three biologic-
al domains of GO terms (molecular functions, biological
processes and cellular components).

Each site was annotated with four levels of CATH
codes, i.e. Class, Architecture, Topology and Homology,
and of SCOP codes, i.e. Class, Fold, Superfamily and
Family, by matching the binding site residues against the
domain region defined by CATH or SCOP. One binding
site can reside between multiple domains. In such a case,
we found all domains involved with the binding site, and
annotated the site with the multiple CATH and SCOP
codes. Among those domains, many had not been

Table 1. Data set of protein-binding sites included in SitesBase

and PoSSuM

SitesBase PoSSuM

PDB version June 2005 January 2011
Definition of a ligand HET molecule

with �6 atoms
All HET molecules

Number of known
ligand-binding
sites (number of
PDB entries)

33 168 (12 898) 241 486 (47 562)

Number of putative
sites (number of
PDB entries)

None 1 588 329 (29 779)
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defined in CATH or SCOP. In our study, if the number of
binding site residues that were overlapped with undefined
domains was >70% of all binding site residues, then we
regarded the binding site as an undefined one and assigned
‘0.0.0.0’ to it. Furthermore, we assigned EC numbers and
GO terms to binding sites. Because, an EC number and/or
a GO term was assigned to each protein chain, we detected
the largest overlapped protein chain for the binding site,
and assigned the corresponding EC number/GO term to
the site.

Fast method for enumerating similar binding sites

To enumerate similar pairs, we applied our ultrafast
method to the 1.8 million binding sites. Our method
encodes each binding site as a feature vector based on
their physicochemical and geometric properties. Then,
the similarity between two sites is measured as the cosine
similarity of two vectors, ranging from �1.0 to 1.0.
To compare sites, an earlier often-used method, FuzCav
(15), which uses similar descriptors of binding sites to
those that we use, employed a special similarity metric
counting of exact matches of frequencies in the descrip-
tors. However, this is too sensitive to small frequency
changes of sites. Instead, we use cosine similarity, which
is more robust against such changes, in our method (24).
The cosine value drops according to the difference
between two vectors, i.e. two sites. For brute-force
pairwise cosine calculation, similar sites are enumerated
using a fast neighbor-search algorithm called SketchSort
(18), in which feature vectors are converted into bit strings
and where neighbor pairs are enumerated by multiple
masked sorting (25). The source code of SketchSort is
available on our website (http://sites.google.com/site/
tabeiyasuo/). A crucial point is that the sorting operation
can be performed as approximately O(n), where n repre-
sents the number of binding sites. It is much faster than a
brute-force pairwise comparison whose time complexity is
O(n2). The computation time to enumerate all similar
pairs with cosine similarity �0.77 from the 1.8 million
sites was 7 days or less on a single-core processor (Xeon
2.93GHz; Intel Corp.). From the enumerated pairs, we
eliminated the pairs that comprised only two putative
sites because the pairs without a ligand label are less in-
formative for finding ligand analogs that bind to a similar
region, and for predicting the bound ligands of putative
sites. We specifically examined the remaining pairs
(over 277 million) consisting of at least one known
ligand-binding site and performed structural alignment
of all of them. To obtain the 3D superpositions for all
pairs, we simply employed TM align (26). Although
this program was developed to obtain 3D alignment of
protein global structures, it can also be applied to two
sets of discontinuous amino acids such as those of the
ligand-binding site [details presented in our accepted
paper (24)]. An important concern is that biologically
meaningful pairs might be filtered out during this proced-
ure because TM align can only find 3D superposition with
sequence-order dependent alignment. However, we
selected it mainly for the computation time because no al-
gorithm that can perform over 277 million sequence-order

independent alignments within a reasonable time has ever
been reported. Eventually, we obtained 14 556 057 pairs
whose binding sites were aligned with six or more residues.

Statistics of obtained pairs

Of the similar pairs, 66% (9 625 132 pairs) were known–
known pairs comprising only known ligand-binding
sites (Figure 1A). The remaining 34% (4 930 925) were
known–putative pairs consisting of a known ligand-
binding site and a putative site. These pairs, which are
unique to our database, are particularly interesting
because they are useful for speculating on the type of
bound ligand and for assigning functions to the
un-characterized proteins.
Meanwhile, 51% of detected pairs consisted of two

binding sites, both of which were annotated with CATH
code(s). We classified them into two categories: homolo-
gous pairs comprise two binding sites with identical
CATH codes; all remaining pairs are analogous pairs. A
binding site can have multiple CATH codes, as described
earlier. In such a situation, if at least one pair of the
CATH codes exactly matches at four levels, then the
pair is regarded as homologous; otherwise it is an analo-
gous pair. Analogous pairs were 1 973 495 (13%); homolo-
gous pairs were 5 540 245 (38%) (Figure 1B), suggesting
that our method can detect similar binding sites, not only
between homologous proteins but also between proteins
with different folds or sequences.
All of the obtained 14 million pairs were compiled into a

relational database, POSSUM, along with their corres-
ponding annotations such as CATH, SCOP, EC and GO.

THE WEB INTERFACE

PoSSuM is implemented using PHP, MySQL and
JavaScript on a machine with eight 2.93-GHz processors
(core i7; Intel Corp.). One advantage of the PoSSuM
database is that similar pairs have already been
enumerated using our method and have been stored in
the MySQL database. Consequently, similar sites can be
retrieved rapidly. PoSSuM provides search modes of two
types.

(i) SearchK: given a known ligand-binding site as a
query, this search mode provides two applications.
The users can retrieve various ligands whose
binding sites are similar to the query site if the
target data set is set to known ligand-binding
sites. By searching against the putative data set,
users can detect putative pockets that might bind
the ligand of the query site, which might be useful
for detecting apo-forms.

(ii) SearchP: post a known protein structure as a query,
and search for similar sites for the predicted bind-
ing pockets on the query structure against
known binding sites. This search mode is helpful
for inferring the binding ligand of a structure of
interest.
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Input: submit a known ligand-binding site or a whole
protein structure

The required inputs for SearchK are PDB ID (e.g. 1DJQ)
of a protein structure and the HET code (e.g. ADP, CA,
or K) of a ligand bound to the structure (Figure 2). A
protein structure frequently contains multiple ligands
with the same HET code. Users can specify the ligand
by selecting ‘Chain ID’. Otherwise, all ligands with a
name corresponding to the HET code the users selected
are regarded as query sites. Users can select a target data
set from known ligand-binding sites, putative-binding
sites, or both. The only required input for SearchP is a
PDB ID of interest. The potential binding pockets of the
query structure will be searched against the known
ligand-binding sites. For advanced search options such
as similarity thresholds, please refer to our website.

Output: report a list of similar binding sites

Once the query is posted, a summary of the query is dis-
played at the top of the result page (Figure 3). Sites are
listed and sorted in descending order of aligned length if
similar binding sites are detected against the query.
Information related to each hit (similar binding site) is
presented in a row in the list. The rows involved with
known ligand-binding sites are shown with a blue back-
ground; putative ones are green. The first column shows
the superposition of the query site to the hit. The second
to fourth columns, respectively, show the PDB ID of the
structure, the name of the bound ligand and the Chain ID
of the ligand. Regarding putative sites, the name of the
bounded ligand is simply displayed as ‘PRB’. The fifth to
eighth columns show similarity/dissimilarity values such
as cosine similarity, P-value [based on our empirical

Figure 2. Submission form of PoSSuM. PDB ID and HET code of ligand should be specified for SearchK; PDB ID is required for SearchP.

Figure 1. Categorization of 14 million obtained pairs. (A) 9 625 132 pairs (66%) comprised only known ligand-binding sites, whereas 4 930 925 pairs
(34%) comprised a known ligand-binding site and a putative site. (B) Undefined pairs were 7 042 317 (49%). The remaining pairs were categorized
into two groups: 5 540 245 pairs of homologs (38%) and 1 973 495 pairs of analogs (13%).

D544 Nucleic Acids Research, 2012, Vol. 40, Database issue



study (24)], aligned length and RMSD. In addition to
protein names on the ninth column, CATH, SCOP, EC
numbers and GO terms that users specified in the submis-
sion form are shown. These structural and functional an-
notations are useful for exploring similar binding sites
from different folds or from different enzymes. Only a
CATH and SCOP code that accounts for the largest
part of the binding site is displayed if the binding site
has multiple CATH or SCOP codes. The last column
provides users with a powerful function to search similar
binding pockets throughout the PDB rapidly. For
example, if a known ligand-binding site of interest is
detected using SearchP, then one might then be inspired
to find the binding sites that are related to the site.
One could then simply click the ‘Search it!’ button at the
last column instead of returning to the top page and
resubmitting the site using SearchK. For further
analyses, all results can also be downloaded as a plain
text file, which includes a list of well-aligned amino acids
whose interatomic distances of the Ca atoms are

within 5.0 Å, as obtained from 3D superposition using
TM align.

Superposition on JmolApplet

The first column for each hit is linked to the superposition
of the hit to the query site. The superposition can be
visualized using the JmolApplet (http://www.jmol.org)
on a web browser. To make JmolApplet available, the
Java Runtime Environment (http://www.java.com/ja/
download/) should be installed on the web browser in
advance. The query site and the bound ligand are shown
as pink and red sticks, whereas the hit site and the bound
ligand are shown as cyan and green sticks (Figure 4). For
the putative sites, only the binding site is displayed with
stick representation.

Demonstration and application

We next demonstrate the utility of PoSSuM database for
finding ligand analogs that bind to similar protein regions

Figure 3. Result report of PoSSuM. Blue and green rows, respectively, show the known ligand-binding sites and putative sites.
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and the utility of assigning functions to proteins with
unknown function.
In drug discovery, it is important to design chemical

leads that show high specificity only to their target
proteins, thereby avoiding unexpected side effects. An ap-
propriate approach is to retrieve a set of related binding
sites from non-homologous proteins. Then one can
analyze the variation of ligands bound to them. SearchK
is useful for such a task because it reports similar binding
sites not only between structures within a specific family,
but also among whole PDB structures. Neprilysin is
involved in the regulation of amyloid b-peptide levels
(27) whose structure (PDB ID: 1R1H) was determined
in a complex with an inhibitor (HET code: BIR). Using
the inhibitor binding site as a query, we searched for simi-
lar sites using SearchK and found eight similar sites: five

sites are from proteins whose CATH code is identical
to that of the query (i.e. 3.40.390.10), whereas three
other sites are from proteins whose fold topology dif-
fers from that of the query (i.e. 3.10.170.10). Figure 5A
shows superposition of an example of an analogous
pair: an inhibitor (HET code: BIR) binding site from
neprilysin (PDB ID: 1R1H) to an inhibitor (HET code:
TI1) binding site from thermolysin (PDB ID: 1QF1).
Although the global folds of the two proteins differ,
their binding sites and conformations of the bound inhibi-
tors were mutually overlapped. Furthermore, the three
inhibitor-interacting residues (Glu-143, His-231 and
Arg-203 of thermolysin; Glu-584, His-711 and Arg-717
of neprilysin) were well superimposed, which is regarded
as representing conserved catalytic residues (28). These
results support the general application of our database

Figure 4. Color scheme for the superposed binding sites. Pink and cyan colored sticks, respectively, show the binding site of query and hit. The red
sticks show a ligand of the query site (i.e. user-specified on the submit form).

Figure 5. Superposition of a query site to a hit. (A) Superposition of a BIR-binding site of 1R1H (pink and red) a TI1-binding site of 1QF1 (cyan
and green). Orange shows the conserved catalytic residues for both sites. (B) Superposition of a putative site of 3K0B (pink) and a SAH-binding site
of 2ORE (cyan and green).
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for collection of various chemical compounds binding to
related binding pockets. Such comprehensive information
of protein–ligand interactions is expected to be useful for
drug design.

To demonstrate the ability of our database to predict
the type of bound ligand for unbound protein structures,
an application of SearchP is presented below. First, we
selected an unbound protein structure (PDB ID: 3K0B),
as obtained from a structural genomics project, as a query
for use in this demonstration. We then explored similar
known ligand-binding sites for the query using SearchP,
and retrieved 46 hits with aligned length of more than
10 residues. Of those, the top 38 hits were binding sites
of S-adenosylmethionine (SAM) or S-adenosyl-L-homo-
cysteine (SAH). The most similar hits were a SAH-
binding site of 2ORE: 24 residues were aligned with
RMSD 1.81 Å, as shown in Figure 5B. Furthermore, the
38 hits were from 21 different proteins whose EC numbers
are limited to ‘2.1.1.72’ and ‘2.1.1.-’. These results strongly
indicate that the query protein structure can be
bound with a S-adenosyl-(L)-methionine or its product
S-adenosyl-(L)-homocysteine, and can be involved in
methyltransferases (EC: 2.1.1.-), or more specifically,
site-specific DNA-methyltransferase (EC: 2.1.1.72). This
example demonstrates the utility of SearchP for predicting
the type of binding ligand and function for structures
whose function is unclear.

SUMMARY AND FUTURE WORK

We presented a database PoSSuM for finding similar
protein–ligand binding sites. We believe that our
database is a powerful tool for the annotation of protein
functions and for structure-based drug design. PoSSuM
will be updated as new protein structures are accumulated
in the PDB. As of August 2011, PoSSuM includes over 14
million similar pairs of both known and putative-binding
sites of non-polymer small molecules. We plan to include
all PDB entries of proteins into our database for SearchP
in the next update. Searching known ligand-binding sites
similar to potential ones of a structure of the users’ own
is expected to be useful. We are developing our server so
that users can upload their protein structures and analyze
their potential binding sites. In addition to or instead
of Ghecom, applying other method(s) to detect potential
ligand-binding sites is expected to be beneficial. For
example, using PocketFinder (11), unlike Ghecom,
which finds potential ligand-binding envelopes rather
than binding pockets on protein surface, can engender
enhanced discovery of novel or hidden ligand-binding
sites. We intend to improve our database in this direction.
In the near future, we plan to extend our data set to
binding interfaces of proteins to proteins and to nucleic
acids. Performing such a comprehensive search might
engender identification of overlap regions of a protein
and a small molecule (29); knowledge of such regions is ex-
pected to be useful for developing inhibitors for protein–
protein interaction.
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