
© 2021 Journal of Pathology Informatics | Published by Wolters Kluwer - Medknow 1

Abstract

Research Article

IntroductIon

Colorectal cancer ranks as one of the predominant cancers, 
being the third most commonly occurring cancer in men 
and the second most commonly occurring cancer in women. 
There were over 1.8 million new cases and 880,792 deaths 
in 2018.[1] Fortunately, its early detection significantly 
increases the survival rate, reaching a cure rate of 90% when 
diagnosed at a localized stage.[2] Furthermore, colorectal 
cancer can be prevented by detection of colonic adenomatous 
polyps, premalignant lesions which may progress toward 
colorectal cancer. It is estimated that 20%–40%[3] of patients 

undergoing colonoscopy present polyps. Of these detected 
polyps, 29%–42% are hyperplastic and entail little or no 
malignant risk, whereas the rest are neoplastic and could 
progress to colorectal cancer if not removed.[3‑5] When multiple 
polyps (i.e., 5–10) are detected in a patient, the current gold 
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standard procedure is the complete removal of all the polyps, 
using a technique appropriate to each polyp size and shape, 
followed by subsequent histopathological analysis. Resection 
of hyperplastic polyps, which carry no malignant potential, and 
the subsequent costly analysis together with patient trauma and 
bleeding risks could be avoided if they were accurately and 
objectively identified at the time of endoscopy.

Besides this, during a conventional colonoscopic polypectomy 
using endoscopic mucosal resection, residual adenomatous 
tissue rates of 46% and postprocedure recurrence rates of 
12%–21.9% have been reported.[6,7] This makes follow‑up and 
reintervention necessary, which negatively affects the prognosis 
of the patient and increases the risk of complications (bleeding 
or perforation). This fact reinforces the necessity of new in situ 
and in vivo diagnostic technologies to assist decision making 
on polyp resection by measuring the presence and degree of 
malignancy for the identified tissue and thus, allowing safer 
resection with clean margins, as the polyp margins could be 
analyzed prior and after resection.

The latest advances in optical imaging technologies 
enable structural and functional tissue microscopy in 
real time. Of relevance, recent studies[8,9] conclude that 
images of human colon tissue obtained with multiphoton 
excitation microscopy at high resolution (×40 objective 
with 1.3 NA, ×25 objective with 1.1 NA, respectively) 
contain morphological and functional information for 
discriminating between cancer, adenoma, and normal 
tissue. Moreover, this imaging technology takes advantage 
of the endogenous tissue fluorescence avoiding the use 
of fluorescent dyes which are time‑consuming and may 
present the risk of toxicity. A systematic review by Tatjana 
et al. published in 2019[10] discusses the diagnostic value, 
advantages, and challenges in the practical use of multiphoton 
microscopy (MPM) in surgical oncology. They identified 
specific tumor characteristics in MPM imaging and compared 
this type of images to gold standard histopathology images.

While deep learning has been previously applied to the 
analysis of colorectal cancer (Xu et al.[11]), to the best of the 
authors’ knowledge, there is no published work about the 
use of deep learning to characterize MPM images of colon 
tissue. In this paper, we propose a deep learning algorithm 
to demonstrate the capabilities of multiphoton excitation to 
distinguish among healthy, hyperplastic, adenomatous, and 
adenocarcinomatous tissue by extracting imaging biomarkers 
present in human colon tissue images acquired with a 
multiphoton microscope and histopathologically confirmed. 
The implemented algorithm consists of a convolutional 
neural network (CNN) that classifies MPM images into 
two classes or categories: benign (which includes images 
of healthy, hyperplastic, and benign neoplastic tissues) or 
malignant (which includes images of malignant neoplastic 
tissues). Adenomatous polyps are considered as benign 
neoplastic, whereas adenocarcinoma polyps are considered 
as malignant neoplastic.

MaterIals and Methods

Dataset definition
The dataset consists of a set of 44 samples of lesions obtained 
during colonoscopies and colectomies carried out between 
2012 and 2017 at the Basurto University Hospital (Spain). 
These are 23 malignant neoplasms (adenocarcinomas), 19 
preneoplastic lesions (adenomas), and 2 hyperplastic polyps, 
obtained from 24 men and 18 women. The samples were 
diagnosed by the Pathological Anatomy Department and 
formalin‑fixed paraffin‑embedded (FFPE) blocks were stored 
in the Basque Biobank (structure accredited by the Health 
Department of Spain and inscribed in the register of the 
Instituto de Salud Carlos III). All the samples were processed 
after patients signing informed consent and following standard 
operation procedures. Samples obtained by cutting the FFPE 
blocks at 30 µm were scanned using a multiphoton microscope 
and later stained with hematoxylin and eosin (H and E) as 
explained in the next subsection (acquisition procedure). 
The histopathological analysis of the samples was done by 
the pathology department. The results are shown in Table 1 
according to the nomenclature specified in Nagtegaal et al.,[12] 
In the case of adenocarcinomas, the terms “low grade” and 
“high grade” refer to the tumor grading. Low includes the well 
and moderately differentiated grades, whereas high refers to 
the poorly differentiated grade.

Note: These samples are a subset of a larger set of samples 
scanned with other technologies. For traceability purposes, 
the identifiers assigned by the histology lab are kept. Samples 
scanned with the multiphoton microscope for the study 
presented in this paper have identifiers from 56 to 98.

Acquisition procedure
The experimental setup used for the acquisition of the maps 
consists of a custom‑made multimodal multiphoton microscope, 
having the optical scheme shown in Figure 1. The excitation 
source is a chameleon discovery (Coherent, Santa Clara, CA, 
USA), an Yb‑based femtosecond pulsed laser at 80 MHz rate 
with two synchronous outputs. The beam used in the experiments 
here described is tunable in the 680–1300 nm range. Immediately 
after the laser output, a mechanical shutter allows minimizing the 
sample exposure when acquiring images, a telescope collimates 
the beam and adjusts its size, and a motorized half‑waveplate, 
mounted in tandem with a Glan‑Taylor polarizer, is used for 
power dimming. Laser light is then directed onto a vertical 
stainless‑steel optical breadboard, mounted vertically onto an 
antivibration optical table (Thorlabs Inc., Newton, NJ, USA), 
where two galvanometric mirrors (Cambridge Technology, 
Bedford, MA, USA) provide beam scanning. A telescope 
optically relays the beam to the objective lens, which is mounted 
on an optomechanical support equipped with both mechanical 
and piezoelectric (P‑725KHDS PIFOC, Physik Instrumente, 
Karlsruhe, Germany) actuators for gross and fine movements, 
respectively. The samples are placed onto a xy‑translator (M‑687 
PIline, Physik Instrumente, Karlsruhe, Germany) that allows 
moving the sample over a broad range with sub‑micrometric 
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Table 1: Dataset histopathological description

Sample 
identified

Slide content description Histological analysis Scanned 
tissue sections

56 2.2 cm part of a 7 cm size polyp obtained from the descending colon Villous adenoma with high grade dysplasia 1
57 1 cm part of a 3.7 cm size polyp obtained from the ascending colon Tubulovillous adenoma with high grade 

dysplasia
1

58 2.3 cm part of a 4 cm size polyp obtained from the descending colon Villous adenoma with high grade dysplasia 1
59 0.4 cm size polyp obtained from the ascending colon Tubular adenoma 2
60 3.3 cm size polyp obtained from the ascending colon Tubulovillous adenoma with high grade 

dysplasia
2

61 2.1 cm part of a 9 cm size polyp obtained from the descending colon Villous adenoma with high grade dysplasia 1
62 0.5 cm size polyp obtained from the ascending colon Tubular adenoma 1
63‑1 1.1 cm part of a 2.8 cm size polyp obtained from the descending 

colon
Tubular adenoma with low grade dysplasia 1

63‑2 1.65 cm part of a 2.8 cm size polyp obtained from the descending 
colon

Adenocarcinoma over tubulovillous 
adenoma with high grade dysplasia

1

64 0.9 cm part of a 1.2 cm size polyp obtained from the ascending colon Tubular adenoma with low grade dysplasia 1
65 6 polyps with sizes between 0.32 and 0.54 cm, belonging to a case 

of 118 polyps with sizes between 0.6 and 6 cm, obtained from the 
ascending colon

Tubular adenoma with low grade dysplasia 1

66 3.1 cm part of a 9 cm size polyp obtained from the ascending colon Tubulovillous adenoma with high grade 
dysplasia

1

67 1.4 cm size polyp obtained from the ascending colon Sessile tubular adenoma, low grade 1
68 0.2 cm part of a 0.3 cm size polyp obtained from the descending 

colon
Tubular adenoma with low grade dysplasia 1

69‑1 2 polyps with sizes of 0.2 and 0.3 cm, belonging to a case of 5 
polyps, obtained from the descending colon

Hyperplastic polyp 1

69‑2 0.36 cm part of a 0.4 cm size polyp obtained from the descending 
colon

Tubular adenoma with low grade dysplasia 1

70 0.8 cm part of a 1 cm size polyp obtained from the ascending colon Tubular adenoma with low grade dysplasia 1
71 2.2 cm part of a 2.5 cm size polyp obtained from the ascending colon Tubulovillous adenoma with high grade 

dysplasia
1

72 3.2 cm part of a 4 cm size polyp obtained from the ascending colon Tubular adenoma with low grade dysplasia 1
73 0.2 cm size polyp obtained from the descending colon Hyperplastic polyp 1
74 1.2 cm part of a 1.8 cm size polyp obtained from the descending 

colon
Tubulovillous adenoma 1

75 No polyp from a case with a 3 cm size polyp obtained from the 
descending colon

Invasive colloid adenocarcinoma 1

76 0.4 cm part of a 0.6 cm size polyp obtained from the transverse colon Tubular adenoma 6
77 No polyp obtained from the ascending colon Low grade adenocarcinoma, NOS 1
78 2.2 cm part of a 3 cm size polyp obtained from the transverse colon Low grade adenocarcinoma, NOS over high 

grade tubulovillous adenoma
1

79 No polyp obtained from the ascending colon Low grade adenocarcinoma, NOS 1
80 No polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1
82 1.4 cm part of a 4 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1
83 2 cm part of a 2.3 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1
84 2.6 cm part of a 4 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1
85 1.5 cm part of a 2.5 cm size polyp obtained from the ascending colon Low grade adenocarcinoma, NOS 1
86 1.2 cm part of a 1.5 cm size polyp obtained from the descending 

colon
Low grade adenocarcinoma, NOS 1

87 1.6 cm part of a 2.6 cm size polyp obtained from the ascending colon Low grade adenocarcinoma, NOS 1
88 1.9 cm part of a 4.5 cm size polyp obtained from the ascending colon Low grade adenocarcinoma, NOS 1
89 1.9 cm part of an 8.7 cm size polyp obtained from the descending 

colon
Low grade adenocarcinoma, NOS 1

90 1.6 cm part of a 3.5 cm size polyp obtained from the descending 
colon

Low grade adenocarcinoma, NOS 1

91 1.8 cm part of a 6.5 cm size polyp obtained from the descending 
colon

Low grade adenocarcinoma, NOS 1

92 2.7 cm part of an 8 cm size polyp obtained from the transverse colon High grade , adenocarcinoma NOS 1
93 1 cm part of an 8 cm size polyp obtained from the descending colon High grade adenocarcinoma, NOS 1

Contd...
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resolution for mapping large areas. Fluorescence light emitted 
by the sample is then collected in Epi‑detection by the same 
objective lens used for excitation, reflected by a dichroic 
mirror (FF665‑Di02‑25 × 36, Semrock Inc. New York, 
NY, USA) and focused on the active area of a photomultiplier 
tube H7422‑40 (Hamamatsu, Hamamatsu City, Japan). The 
photocurrent is integrated using custom electronics and acquired 
on a PC through an acquisition board PCI‑MIO (National 
Instruments, Austin, TX, USA) that allows synchronous 
signal sampling and scanner driving. System control and data 
acquisition are controlled using a custom software developed 
using LabView 2015 (National Instruments, Austin, TX, USA) 
development module. A more detailed description of the 
experimental setup can be found in literature.[13,14]

Multiphoton fluorescence images were acquired using an 
excitation wavelength of 785 nm, focused on the sample by 
means of a Plan‑Apochromat ×10 objective lens (NA 0.45, 
WD 2.1 mm, Carl Zeiss Microscopy, Jena, Germany). Image 
tiles were acquired using a field of view of 511 × 511 µm2, 
with a resolution of 1024 × 1024 pixel2, a pixel dwell time 
of 5 µs, and an average laser power of about 20 mW on the 
sample.

As example of the captured images, Figure 2 shows several 
511 × 511 µm2 image tiles acquired with the multiphoton 

microscope using two‑photon fluorescence (TPF) in different 
positions of the same tissue slide.

Figure 3 shows an example of a whole 30 µm thick 
paraffin‑embedded tissue slide scanned with the multiphoton 
microscope. The image has been generated by concatenating 
all the individual TPF image tiles.

Samples analyzed for this study were cut with a rotary 
microtome (RM2255, Leica Biosystems, Wetzlar, Germany) 
at 3 and 30 µm from FFPE blocks of human tissue. Then, 
superfrost slides (LineaLAB, Badalona (Barcelona), Spain) 
were H and E stained in an automated slide stainer (SIMPHONY 
system, F. Hoffmann‑La Roche Ltd, Basel, Switzerland). 
The histopathologists analyzed the stained slides under a 
microscope and annotated them as shown in the examples 
of Figure 4. Finally, all the slides were scanned with a fully 
motorized microscope (BX 61, Olympus Corporation, Tokyo, 
Japan) equipped with Ariol software platform, where all the 
images had ×1.25 and ×20s magnification.

Clinical capabilities of multiphoton fluorescence images
To gain some understanding of the potential uses for 
the MPM images, we aimed to establish what clinical 
information can be obtained from them. A representative 
panel of 18 tissue samples acquired with the multiphoton 
microscope were presented to four immunoglobulins 
pathologists, as well as the equivalent images from the 
H and E slides. The images were viewed at a low‑power 
view (the complete sample image including all tiles) and at 
a higher‑power view by examining individual tiles within a 
region of interest, in much the same manner as examining 
a conventional H and E slide. Figure 5 shows an example 

Table 1: Contd...

Sample 
identified

Slide content description Histological analysis Scanned 
tissue sections

94 2.4 cm part of a 6 cm size polyp obtained from the ascending colon High grade adenocarcinoma, NOS 1
95 1.3 cm part of a 4 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1
96 1.7 cm part of a 5 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1
97 1.3 cm part of a 5 cm size polyp obtained from the descending colon High grade adenocarcinoma, NOS 1
98 2 cm part of a 5 cm size polyp obtained from the descending colon High grade adenocarcinoma, NOS 1
NOS: Not otherwise specified

Figure 2: Individual image tiles acquired using two‑photon fluorescence 
in different positions of a 30 µm thick paraffin‑embedded tissue slide 
with sample 73 diagnosed as hyperplastic polyp. The images show cells 
with different shape and morphology acquired in different regions of the 
sample, demonstrating the capability of two‑photon fluorescence for the 
label‑free morphological assessment of tissues

Figure 1: Schematic of the custom‑made multimodal multiphoton 
microscope: tunable source; shutter (S); mirrors (M); telescope lenses 
(L1‑L2); half wave plate; quarter wave plate; Glan‑Taylor polarizer; 
galvanometric mirrors (GMx, GMy); scan lens (L3); tube lens (L4); 
objective translator; XY‑translation stage (TS); dichroic mirror (D)
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of one of the analyzed MPM images and its corresponding 
co‑registered H and E image.

The findings of the MPM image analysis showed promise, in 
that the tiled images viewed as a whole, showed good fidelity 
with the H and E samples and allowed for the assessment of 
gross cellular architectural structures. On closer examination 
of the individual image tiles, the level of detail appreciated 
on the MPM images was felt to be less than that found in 
traditional H and E slides. Part of the reason for this was the 
reduced visual contrast as the MPM images are grayscale 
as opposed to the colored H and E staining. It was also felt 
that the intracellular features such as cell nuclei were less 
apparent on the MPM images. Overall, the MPM images 
do show tissue architecture, but not at the level of detail 
shown in traditional H and E images as presented in Figure 5 
which shows representative microscopic images of human 
colon, obtained using traditional H and E staining (1,2) 
and MPM (3,4) and viewed at low‑power (1,3) and 
high‑power (2,4) magnification. High‑power magnification 
of the H and E stained slide identifies the colonic crypts and 
goblet cells, although these features are not appreciable on 
the high‑power MPM image.

From a diagnostic point of view, it was felt to be difficult to 
make a confident tissue diagnosis using the MPM images. 
The reasons for this are complex, but relate in part to 
the reduced level of detail within the images, and partly 
to the unfamiliarity with MPM images when compared 
with H and E slides; it is difficult for a human operator to 
confidently interpret a new image modality until this is fully 
understood and more widely studied. From the point of view 
of machine‑learning, however, the observed similarities 
between H and E and MPM slides suggest that there is 

potential for a deep learning approach to analysis of the 
MPM images.

Dataset partitioning
In order to feed the proposed CNN, the dataset consists of 
the TPF images acquired with the multimodal multiphoton 
microscope and converted to PNG file format. To generate 
these image files, the values returned by the multiphoton 
microscope have been normalized using the maximum and 
minimum values of all the tiles belonging to the same sample 
and then rescaled between 0 and 255. Each image corresponds 
to an area of 511 × 511 µm2, so the scanning of each sample 
results in several images that are consecutive tiles of the whole 
slide. The images are grouped into two categories or classes: 
benign for images of tissue samples with benign lesions, that 
is, hyperplastic polyps or adenomas; and malignant for images 
of tissue samples with adenocarcinomas.

Initial image tiles have been filtered discarding those images 
without tissue (only the microscope slide appears in the image), 
with little tissue or with strong artifacts. The rest of the image 
tiles of the benign samples are included in the dataset including 
tiles containing normal (that is, healthy) tissue. In the case of 
the malignant samples, the image tiles that are outside the 
tissue area marked as adenocarcinoma by the pathologists are 
considered as tiles with uncertain diagnosis and not included 
in the dataset.

The resulting dataset is composed of 14,712 images of 
1024 × 1024 pixels and it is well balanced with 6985 images 
from benign lesions and 7727 images from malignant lesions. 
Then, for algorithm development purposes, the dataset has 
been partitioned into training (70%), validation (15%), and 
test (15%) sequences as described in Table 2. Six different 
partitions have been generated for statistics purpose. The 
dataset is openly available at https://www.biobancovasco.
org/en/Sample‑and‑data‑e‑catalog/PD177‑Databases‑EN.html 
after download request form completion (https://forms.office.
com/r/ycdFxGaMEE).

Figure 3: Two‑photon fluorescence image of a whole 30 µm thick 
paraffin‑embedded tissue slide with sample 86 diagnosed as low grade 
adenocarcinoma. The signal originates mainly from mitochondrial NADH in 
the cell cytoplasm and from elastic fibers and other fluorescent molecules 
in the extracellular matrix. This image has been obtained by merging 37 
by 29 image tiles, resulting in an overall field of view: 18.907 mm by 
14.819 mm

Figure 4: Examples of tissue slides annotated by the histopathologists. 
Left: specimen 57 with tumoral area diagnosed as tubulovillous adenoma 
with high grade dysplasia; centre: specimen 73 with marked area 
diagnosed as hyperplastic polyp; right: specimen 86 with tumoral area 
diagnosed as low grade adenocarcinoma. TU stands for “tumoral”
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Later, during the network training phase, data augmentation has 
been applied on the training set in order to have more training 
images. Specifically, the left‑right flip and 90°, 180° and 270° 
rotation transformations have been randomly performed with 
a probability of 0.5.

Deep learning architecture
Proposed architecture
The purpose of the present analysis is to study if the human 
colon tissue images acquired with a multiphoton microscope 
include enough information, so that a deep learning‑based 
algorithm can recognize images of malignant neoplastic lesions 
and distinguish them from images of healthy, hyperplastic, or 
benign neoplastic tissues. To this end, we have built a two‑class 
classifier based on the Xception model architecture.[15]

The network architecture is modified following the methodology 
explained in.[16,17] In this case, a CNN with Xception architecture 
has been instantiated removing the top fully connected layer. 
After the last convolutional block, a global average pooling 
layer is added followed by a fully connected layer with two 
outputs and softmax activation. The network is initialized 
with the weights pretrained on image net dataset.[18] Details 
on training are given in next section.

Dataset images are grouped into training, validation, and test 
sequences as described in the previous section. These images 
need to be preprocessed. Since pretrained image net weights 
are used for network initialization, the images in our dataset 

were resized from (1024, 1024) to the expected input shape 
of (299, 299, 3). In order to perform image net based fine 
tuning, the same gray‑scale image has been repeated into the 
three channels and the preprocessing method for the Xception 
model is applied.

Baseline multiphoton microscopy classifier
The described network model has been trained in three 
phases: first, only the top Dense layer (which weights are 
randomly initialized) and the Batch Normalization layers 
are trained, while the weights of all convolutional layers are 
frozen; in the second phase, the weights of the convolutional 
layers of the last three Xception blocks are unfrozen and 
trained together with the Batch Normalization and top 
Dense layers; and finally, in the third phase, all the layers 
are unfrozen and trained. The momentum parameter of the 
Batch Normalization layers is set to 0.9. The training tries 
to minimize a categorical cross‑entropy loss function. Each 
training phase runs for 30 epochs and data is divided into 
batches of 4 images. The optimization configuration is the 
same in the three training phases: The Adam optimizer is used 
with an initial learning rate equal to 1e‑4 and the learning 
rate is reduced by a factor of 10 if the validation loss does 
not improve for 10 training epochs.

Once the model has been trained and tested following the 
described strategy, the last step has been to look for the threshold 
value between the two classes (by default this threshold is set 
to 0.5) that maximizes the balanced accuracy (BAC) for the 

Table 2: Dataset partition summary

Partition Class Training Validation Test

Image 
number

Sample identified Image 
number

Sample 
identified

Image 
number

Sample 
identified

K1 Benign 4843 56, 58, 60, 63‑1, 66, 67, 69‑1, 
69‑2, 70, 71, 73, 76

1028 57, 62, 64, 68 1114 59, 61, 65, 
72, 74

Malignant 5401 63‑2, 77, 82, 83, 84, 85, 87, 88, 
90, 91, 94, 95, 96, 97, 98

1173 75, 78, 80, 86, 93 1153 79, 89, 92

K2 Benign 4931 56, 57, 59, 60, 61, 63‑1, 65, 66, 
67, 68, 69‑1, 69‑2, 73, 76

991 71, 72, 74 1063 58, 62, 64, 70

Malignant 5428 63‑2, 75, 78, 80, 82, 83, 84, 86, 
87, 88, 91, 93, 95, 96, 97, 98

1153 79, 89, 92 1146 77, 85, 90, 94

K3 Benign 4914 57, 58, 59, 61, 62, 63‑1, 64, 66, 
67, 68, 70, 71, 72, 73, 74, 76

1044 60, 65, 69‑1 1027 56, 69‑2

Malignant 5392 63‑2, 75, 77, 78, 79, 84, 85, 87, 
89, 90, 91, 92, 94, 95, 96, 98

1168 83, 88, 97 1167 80, 82, 86, 93

K4 Benign 4902 57, 58, 60, 61, 62, 64, 65, 67, 
68, 70, 71, 72, 73, 74, 76

1052 56, 59, 69‑2 1031 63‑1, 66, 69‑1

Malignant 5431 78, 79, 80, 82, 84, 86, 87, 88, 
89, 91, 92, 93, 95, 96, 98

1146 77, 85, 90, 94 1150 63‑2, 75, 83, 97

K5 Benign 4852 56, 59, 60, 61, 62, 64, 65, 66, 
69‑1, 69‑2, 71, 72, 73, 74, 76

1064 58, 63‑1, 70 1069 57, 67, 68

Malignant 5485 75, 77, 78, 79, 80, 82, 83, 85, 
86, 87, 88, 89, 90, 92, 93, 94, 97

1109 63‑2, 84, 96 1133 91, 95, 98

K6 Benign 4899 56, 57, 58, 59, 60, 61, 62, 63‑1, 
64, 65, 68, 69‑1, 69‑2, 70, 72, 74

1025 66, 67 1061 71, 73, 76

Malignant 5467 63‑2, 75, 77, 79, 80, 82, 83, 85, 
86, 89, 90, 91, 92, 93, 94, 96, 97

1190 87, 95, 98 1070 84, 88, 78
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validation set. The results are very promising as shown later 
in the results section.

Multiphoton microscopy classifier with spatially coherent 
predictions
Two strategies have been followed to improve the performance 
of the baseline MPM classifier: test‑time augmentation (TTA) 
and prediction based on adjacent tiles or spatially coherent 
predictions (SCP).

TTA consists in creating several copies of each image in the 
test set by performing different image transformations. Then, 
predictions are made for the original image and each copy, and 
the final prediction for the image to test has been generated 
as the mean of all the predictions. In our experiment, the 
transformations have consisted in 90°, 180°, and 270° rotations 
and left‑right flips, generating seven augmented copies per test 
image. This strategy does not improve the performance of the 
baseline model, leading to similar metrics values.

The second strategy relies on the fact that a lesion extends 
over several tiles and therefore, the image tiles that belong to 
a certain lesion area have the same diagnosis. In the practice, 
the algorithm identifies all the image tiles that are adjacent to 
each image to test, and it is analogous to a human pathologist 
examining a region of tissue and interpreting their findings 

in the context of surrounding tissue structure. We can find 
between 0 and 8 adjacent tiles per image in our test set. Then, 
the final prediction for each image is calculated as the mean 
of the predictions for the image and its adjacent tiles. This 
mechanism improves the mean BAC of the baseline model in 
almost 4 points, as it is described in the next section.

An example of the classification improvement with the SCP 
method over the baseline model is shown in Figure 6. Two 
images of a full slide created by concatenating its image tiles after 
resizing the original 1024 × 1024 pixels tiles into 128 × 128 pixels 
tiles are shown in the figure. Concretely, the slide corresponds to 
a malignant tissue sample. The tiles that are correctly classified 
by the algorithm are highlighted in green, while those tiles that 
are misclassified are highlighted in red color. The gray tiles 
are the sample tiles that have not been included in the dataset, 
because they are tiles without tissue, with little tissue, with strong 
artifacts, or tiles outside the area marked as adenocarcinoma by 
the pathologist. In this example, 37 tiles out of the 268 tiles are 
misclassified with the baseline model. However, with the SCP 
scheme, only 3 tiles result in wrong classification.

results

The proposed classifier architecture and training mechanism 
results in a BAC of 0.8293 ± 0.0895 for the baseline model, 
calculating the mean and standard deviation of the results 
obtained with the six dataset partitions detailed in Table 2. 
When the adjacent tiles are considered in the prediction 
(SCP scheme), the BAC increases up to 0.8671 ± 0.0966. 
These results confirm that the combination of this novel 
imaging technology together with deep learning algorithms 
leads the way to perform real‑time optical biopsies for in vivo 
diagnosis.

The confusion matrixes over the test sequence in partition 
K1 for both, baseline and SCP models, are presented in 
Tables 3 and 4. The performance metrics of the implemented 
network model for all dataset partitions are shown in Table 5.

Figure 6: Classification improvement with the spatially coherent 
predictions method versus the baseline model: correctly classified 
tiles are shown in green, while misclassified tiles are highlighted in red; 
tiles in gray are the tiles not included in the dataset. 37 tiles out of 268 
were misclassified with the baseline model (left). Only 3 tiles resulted 
misclassified with the spatially coherent predictions method (right)

Figure 5: Two‑photon fluorescence image (bottom‑left) acquired from a 
30 µm thick paraffin‑embedded tissue slide with sample 69‑2 diagnosed 
as tubular adenoma with low grade dysplasia and its co‑registered 
corresponding H&E image (top‑left). Two‑photon fluorescence image 
was obtained by concatenating 9 by 12 image tiles. The overall field 
of view results in 4.599 mm by 6.132 mm. Detail marked by the red 
box in the images on the left is represented on a magnified scale on the 
right. Colonic crypts and goblet cells can be identified in the H&E crop 
(top‑right), but these features are not appreciable on the corresponding 
two‑photon fluorescence crop (bottom‑right)
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We have additionally analyzed the effect of the self‑confidence 
estimation. For this, we have taken the SCP model (the one that 
takes adjacent tiles into account) and the threshold value that 
maximizes the BAC, and we have defined a confidence margin 
around this threshold value that makes network predictions 
falling in that range (threshold ± margin) to be marked as 
uncertain. Then, we apply this threshold and uncertainty 
margin to the predictions for the test set of the six partitions. 
The effect of the confidence margin on the mean performance 
metrics is shown in Figure 7. We can appreciate the increase on 
the performance as we increase the uncertainty margin, getting 
a BAC of 0.9111 (0.8697 sensitivity and 0.9524 specificity) 
when we classify as uncertain the 18.67% of the test images.

dIscussIons

The use of deep learning methods to efficiently characterize 
MPM datasets is still in an early stage. However, some 
recently published studies illustrate the potential derived 
from using MPM imaging together with deep learning. For 

example, the work presented by Huttunen et al.,[19] shows a 
successful classification of MPM images of murine ovarian 
tissue as healthy or high‑grade serous carcinoma achieving 
95% sensitivity and 97% specificity; Lin et al. demonstrate[20] 
the fusion of MPM and deep learning to classify different 
stages of hepatocellular carcinoma with an accuracy over 90%; 
Huttunen et al. show[21] that MPM images collected on the 
dermo‑epidermal junction can be automatically classified into 
healthy and dysplastic classes with high precision (sensitivity, 
specificity and accuracy all exceeding 90%) using a deep 
learning method and existing pretrained CNNs; in the work 
presented by Guimarães et al.,[22] they train and tune a CNN 
to detect the presence of living cells, and if so, to diagnose 
atopic dermatitis from MPM images; finally, Yu et al. explain[23] 
the use of a pretrained deep learning network for automated 
MPM image classification and scoring of liver fibrosis stages 
in a Wistar Rat model. These previous works have encouraged 
our study about the use of deep learning to characterize MPM 
images of human colon tissue.

The results presented in Table 5 are good, but other published 
deep learning studies using images of human colon or 
gastrointestinal cancer tissues can be found presenting better 
metric results. For example, the work from Xu et al.[11] achieves 
an accuracy of 99.9% for normal slides and 94.8% for cancer 
slides on H and E stained histology slides, or the work from Wei 
et al.[24] obtains a mean accuracy of 93.5% (86.8% sensitivity 
and 95.7and specificity) when classifying histology slides into 
four colorectal polyp types. However, it is not straightforward 
to compare the results of our work with this type of studies, 
because the nature of the images is different. As described in 
the “Clinical capabilities of multiphoton fluorescence images” 
section, the level of detail of the features presented in MPM 
images is not the same as in images of H and E stained tissue. 
There are some imaging biomarkers present in H and E images 
that are not present in MPM images, such as colonic crypts and 
goblet cells. In addition, most works, such as the mentioned 
references, report classification results for whole slides, while 
our metrics refer to image tiles or patches which is a more 
complicated approach.

Regarding studies using MPM images, the works presented by 
Li et al.[25,26] related to colorectal and gastric tissue respectively, 
or the study shown by He et al.[27] about colorectal tissue, obtain 
sensitivity and specificity values higher than those obtained 
in our study. However, the data have been obtained on fresh 
colon tissue and on frozen stomach tissue. Hence, it is a bit 
difficult to compare the results as we used paraffine fixed tissue 
specimens. It can be expected that the diagnostic accuracy is 
higher when using fresh tissue since the molecules contributing 
to the auto fluorescence signal are less degraded and the signal 
is stronger and hence, more functional information available. 
As a confirmation of this hypothesis, in the studies examined 
in the review paper,[10] the diagnostic accuracy is almost 
always higher when using fresh or frozen tissue than using 
fixed tissues, even if it is difficult to compare data obtained 
on different tissue types.

Table 4: Confusion matrix over the testing subset for the 
spatially coherent predictions model

Actual Predict

Benign Malignant
Benign 948 166
Malignant 106 1047

Table 3: Confusion matrix over the testing 
subset for the baseline model

Actual Prediction

Benign Malignant
Benign 859 255
Malignant 142 1008

Figure 7: Effect of the confidence margin on the performance metrics: 
as the uncertainty margin increases (orange line) and more predictions 
are marked as uncertain, the performance for the rest of the predictions 
increases resulting in better metrics. A confidence margin of 0, 5 around 
the classification threshold results in a balanced accuracy of 0.9111 
(0.8697 sensitivity and 0.9524 specificity) and 18.67% of the test images 
marked as uncertain
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Table 5: Multiphoton microscopy classifier performance metrics

Model Partition BAC Sensitivity Specificity PPV NPV Threshold
Baseline K1 0.8238 0.8765 0.7711 0.7981 0.8581 0.10

K2 0.9419 0.9083 0.9755 0.9756 0.9081 0.48
K3 0.6654 0.6249 0.7059 0.7068 0.6239 0.59
K4 0.8871 0.8460 0.9282 0.9293 0.8439 0.71
K5 0.7783 0.6295 0.9270 0.9013 0.7028 0.14
K6 0.8796 0.9213 0.8379 0.8511 0.9137 0.13
Mean±SD 0.8293±0.0895 0.8011±0.1252 0.8576±0.0954 0.8604±0.0887 0.8084±0.1080 N/A

SCP K1 0.8795 0.9081 0.8510 0.8632 0.8994 0.38
K2 0.9932 0.9939 0.9925 0.9930 0.9934 0.34
K3 0.7003 0.6255 0.7751 0.7596 0.6456 0.51
K4 0.9095 0.8296 0.9893 0.9886 0.8388 0.72
K5 0.7884 0.6011 0.9757 0.9632 0.6977 0.42
K6 0.9318 0.9785 0.8850 0.8956 0.9761 0.39
Mean±SD 0.8671±0.0966 0.8228±0.1575 0.9114±0.0814 0.9105±0.0826 0.8418±0.1314 N/A

BAC: Balanced accuracy, PPV: Positive predictive values, NPV: Negative predictive values, SCP: Spatially coherent predictions, SD: Standard deviation, 
N/A: Not applicable

conclusIons

At present, colonoscopy is the gold standard technique for the 
detection and removal of colorectal lesions with potential to 
evolve into cancer. However, in this process, gastroenterologists 
cannot assure complete resection and clean margins which 
are given by the posterior histopathology analysis of the 
removed tissue that is performed at laboratory, leading to 
potential recurrence of the lesions. Besides, the current clinical 
procedure involves the complete removal of all the polyps 
found in the colonoscopy, including hyperplastic polyps, which 
carry no malignant potential. Therefore, clinicians demand new 
in situ and in vivo diagnostic technologies that help them in 
the detection and discrimination of hyperplastic and neoplastic 
polyps and assist them during the polyp resection process 
assuring clean margin detection.

The work presented in this paper demonstrates that a deep 
learning algorithm can recognize images of malignant 
neoplastic lesions and distinguish them from images of healthy, 
hyperplastic, or benign neoplastic tissues, by autonomously 
extracting imaging biomarkers present in human colon tissue 
images acquired with a multiphoton microscope. The dataset 
generated to carry out this analysis has also been presented 
and it is openly available. The implemented classifier gets a 
BAC of 0.8671 ± 0.0966 (0.8228 ± 0.1575 sensitivity and 
0.9114 ± 0.0814 specificity).

Current work presents a first attempt of applying deep learning 
methods over a dataset of human colon MPM images acquired 
from tissue slides. Although obtained results are promising in this 
direction, the deep learning strategy can be further improved. The 
relevance of our research is that it shows the potential of both 
technologies (multiphoton imaging and deep learning) for colon 
cancer detection. Some published studies about multiphoton 
imaging and deep learning with other types of tissue show 
classification accuracies over 90%[20,21] or even higher, such as in 
Huttunen et al.,[19] where they have achieved 95% sensitivity and 

97% specificity. Considering this, the following future steps could 
be implemented with the aim of reducing the false negative rate:
• Implement multiple instance learning approaches, since 

it could reduce the problem of the weakly supervised tiles
• Add contextual information on close tiles or use 

multiscale networks, which will help integrate fine details 
and contextual information

• Study whether combining TPF images with second 
harmonic generation images could lead to better results. 
The study presented by Huttunen et al.,[21] reports sensitivity 
and specificity improvement when combining both types 
of multiphoton images, although the results published by 
Huttunen et al.,[19] show only a slight improvement.

As mentioned before, the dataset is public and available for 
download after request form completion which can lead to 
further research of other groups working on this subject.

Apart from being used to implement the deep learning model, 
the acquired MPM images have been reviewed by an external 
panel of pathologists who have concluded that although cellular 
structure is apparent, the level of diagnostic information is not 
adequate for making a confident informed diagnosis of tissue 
type. This is due in part to the lower level of detail in comparison 
with H and E images, but it is also related to the novel nature of 
the images and consequent unfamiliarity with them. This gives 
us insight that a method for comparison of MPM images with 
an imaging modality well‑known by clinicians, such as H and E 
stained microscopy images, is necessary to break down the 
barriers for incorporating new imaging technologies into real 
clinical practices. In fact, in parallel to this study, we have worked 
on an algorithm to transform multiphoton images into virtually 
H and E stained images which can be interpreted by clinicians, 
since it is their current gold standard image modality. This work 
has been presented by Picon et al.,[28] and it also includes the 
results of classifying these virtually stained images with an 
algorithm trained with native H and E images. Further steps in 
this direction are to be included in a new publication soon.
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Clinicians also distrust black‑box methods (as deep 
learning) where further assessment of the reasoning process 
cannot be done, preventing their adoption in the daily 
clinical practice. The application of explainability methods 
could therefore be useful to understand and demonstrate 
what imaging features a neural network looks for. This is 
another interesting work line complementary to our work 
presented here, to facilitate the adoption of new optical 
imaging modalities for clinical diagnosis. In this regard, 
the adequacy of the currently available methods, designed 
to detect features at macroscopic level, to explain deep 
learning models that identify features at microscopic level 
should be investigated.

Finally, the SCP scheme has been used to perform diagnosis 
prediction for a tile taking into account the predictions 
for its adjacent tiles, increasing, in this way, the algorithm 
performance. This scheme could also be used to perform 
diagnosis of the whole lesion considering the mean score 
for all its tiles. This opens the possibility to perform digital 
pathology for automatic slide classification and diagnosis 
without H and E staining.
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