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Abstract: Due to the complex marine environment, side-scan sonar signals are unstable, resulting in
random non-rigid distortion in side-scan sonar strip images. To reduce the influence of resolution
difference of common areas on strip image mosaicking, we proposed a mosaic method for side-scan
sonar strip images based on curvelet transform and resolution constraints. First, image registration
was carried out to eliminate dislocation and distortion of the strip images. Then, the resolution
vector of the common area in two strip images were calculated, and a resolution model was created.
Curvelet transform was then performed for the images, the resolution fusion rules were used for
Coarse layer coefficients, and the maximum coefficient integration was applied to the Detail layer
and Fine layer to calculate the fusion coefficients. Last, inverse Curvelet transform was carried out on
the fusion coefficients to obtain images in the fusion area. The fusion images in multiple areas were
then combined in the registered images to obtain the final image. The experiment results showed that
the proposed method had better mosaicking performance than some conventional fusion algorithms.

Keywords: strip images mosaic; image resolution; curvelet transform; image fusion

1. Introduction

As the depth of global ocean exploration continues to increase, understanding the
seafloor surface and near-surface is of great significance in the “digital ocean” and “trans-
parent ocean” era. Currently, side-scan sonar is an important means to explore seafloor
geomorphology [1], and side-scan sonar images provide important data for seafloor object
identification, classification of seafloor sediments, and exploration of marine resources [2,3].
In order to obtain side-scan sonar images in the entire testing zone, the most important task
is to mosaic the strip images, in addition to seafloor tracking, slant-range correction, gain
correction, and geocoding [4]. Side-scan sonar is generally operated using towing cables,
which leads to inaccurate location information. If the coordinate information is directly
used to mosaic the images, there will be distortion in the images [5–8]. Currently, a large
number of studies have been carried out to achieve a mosaic of object-level strip images
that produce images with complete information and of high quality.

By dividing sonar strip images into paired objects and shadows, Daniel et al. [9]
realized rigid registration of side-scan sonar images using a decision tree. Through region
segmentation, Thisen et al. [10] extracted shadow areas from side-scan sonar images
and calculated the displacement between two images using the cross-correlative method,
thereby achieving rigid registration. Vandrish et al. [11] showed that the scale invariant
feature transform (SIFT) algorithm can be used for registration of sonar images, although
the accuracy was not ideal. Using correlation coefficients and mutual information as
similarity parameters, Chailloux et al. [12] extracted a series of significantly correlated areas
on adjacent strip images and calculated the global rigid transformation parameters and
local elastic transformation parameters, thereby eventually realizing mosaic of adjacent
strip images. Wang et al. [13] improved the pre-processing method of side-scan sonar
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images to extract feature points more accurately and effectively after preprocessing; they
also proposed a sped up robust feature (SURF)-based elastic mosaic algorithm to achieve
feature-level conformal mosaic of the images. Moreover, Cao et al. [14] used wavelet
transform in a strip image mosaic, yet it required the 3D posture information of the side-
scan sonar. Zhao et al. [15] extracted SURF features of the pre-processed strip images
and then performed block registration, which achieved good mosaic results. To obtain
sonar images of large-area seafloor surface, Zhao et al. [16] also proposed a side-scan
image mosaicking method based on the coupling feature points of position constraints.
In addition, He et al. [17] used the unsharp masking (USM) algorithm to enhance the
side-scan images and the SURF algorithm for image mosaicking; experiments showed
that their method effectively enhanced image features and increased the amount of image
information, but the average gray values of the images were affected.

The above image mosaic algorithms primarily focused on the extraction and regis-
tration of features points of adjacent strip images, and most adopted the wavelet fusion
algorithm after image registration, without further exploration for alternative image fusion
algorithms. Due to the complex marine environment during ocean exploration, it is nearly
impossible to ensure that the sonar images on one survey line are always better than those
of an adjacent strip image. Therefore, it is necessary to take into account the differences in
image resolution during strip image mosaicking and retain clear image information while
screening necessary information in blurred images. To address this problem, we performed
image fusion using curvelet transform, which can reveal more detailed information of
strip images than wavelet transform. Then, the resolution of strip images was evaluated
using a resolution weight model to constrain the curvelet transform, thereby achieving
mosaicked strip images with better quality. The contents of this paper were arranged as
follows: Section 2 mainly introduces seven different methods of resolution assessment,
which would all be used in the calculation of resolution weight model; Section 3 mainly
introduces the specific process of strip Mosaic method proposed in this paper; Section 4
uses the measured data to verify the feasibility of this method; and Section 5 contains the
summary and prospects.

2. Image Resolution Assessment Methods

As an important data source of seafloor geomorphology, the resolution of side-scan
sonar images directly determines the accuracy of target identification and seafloor sed-
iments classification. The assessment of image quality can be divided into two types:
subjective assessment and objective assessment [18,19]. Subjective assessment is mainly
performed by trained professionals, whereas objective assessment uses mathematical mod-
els to measure the image resolution based on different indices. Thus, it is imperative to
develop an objective assessment method that is in consistency with subjective assessment.
Currently, common objective assessment methods can be divided into three categories
according to the degree of use of reference images, i.e., full-reference quality assessment,
reduced-reference quality assessment, and no-reference quality assessment [20]. Since
there is no original reference image for side-scan sonar images, the no-reference quality
assessment method was adopted in this study.

Image resolution is one of the most important image quality evaluation indexes and is
the most important image parameter of sonar image. Therefore, the resolution of image
became the main research object. A total of seven resolution assessment methods from
four aspects will be introduced in this section. As the more classical parameter indexes in
the assessment method, they measure the sharpness of the image from different aspects.
Additionally, they will all be used in the calculation of resolution vector in Section 3, making
the evaluation result more accurate and perfect.
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2.1. Assessment Method Based on Image Gradient

Image gradient reflects the marginal information of images. The greater the gradient
value is, the sharper the image edge and the clearer the image will be. Common gradient
functions for evaluating image resolution include the following three types [21].

2.1.1. Energy Gradient Function

The energy gradient of an image is the quadratic sum of the difference in grayscale
value of adjacent pixels in the horizontal and vertical direction. The summation of energy
gradient values of all pixels in the image is then taken as the function value. The function
is shown in Equation (1):

FEG = ∑
x

∑
y
{[ f (x + 1, y)− f (x, y)]2 + [ f (x, y + 1)− f (x, y)]2

}
(1)

where x and y are pixel coordinates, and f (x, y) is the grayscale value of the pixel.

2.1.2. Brenner Gradient Function

Brenner gradient function is relatively the easiest gradient assessment function [22]. It
calculates the quadratic sum of the grayscale difference of two adjacent pixels, meaning a
small calculation amount. Yet, it is sensitive to noise. The function is shown in Equation (2):

FBrenner = ∑
x

∑
y
[ f (x + 2, y)− f (x, y)]2 (2)

2.1.3. Tenengrad Gradient Function

Krotkv et al. [23] used the Tenengrad gradient function as one of the assessment
indexes of image resolution, the results of which were close to objective assessment results.
In this method, the Sobel operator was first used to extract the horizontal and vertical
gradient values of pixels, then the quadratic sum was compared with a threshold T. The
gradient values of pixels greater than T were added to obtain the Tenengrad gradient
function value. The function is shown in Equation (3):

FTenengrad = ∑
x

∑
y

[
G(x, y)2

]
(3)

where G(x, y) is the gradient calculated by the Sobel operator, as shown in Equation (4):

G(x, y) =
√

G2
x(x, y) + G2

y(x, y) (4)

where Gx(x, y) and Gy(x, y) represent the horizontal and vertical gradient values, respec-
tively.

Gx(x, y) = f (x, y)⊗ gx
Gy(x, y) = f (x, y)⊗ gy

(5)

where ⊗ is the convolution operator, and gx and gy represent the horizontal and vertical
templates of the Sobel operator, respectively:

gx =

 −1 0 1
−2 0 2
−1 0 1


gy =

 −1 −2 −1
0 0 0
1 2 1

 (6)
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2.2. Assessment Method Based on Image Transform Domain

It is generally believed that a clear image contains more high-frequency components
than a blurry image. Thus, some studies have attempted to transform the image to the
frequency domain to perform image quality assessment [24].

2.2.1. Discrete Fourier Transform (DFT)

As the most basic time–frequency transformation methods, DFT is widely used in
resolution assessment. Specifically, 2D DFT is first performed on the image, and then the
zero-frequency component is shifted to the matrix center, such that the frequency diffuses
from the center to the periphery and from low frequency to high frequency. The spectrum
values of corresponding pixels are weighted based on the distance to the central pixel,
and the resolution assessment value is the weighted average of the spectrum values of
all pixels [25,26]. The function of DFT-based image resolution assessment is shown in
Equation (7) [27]:

FDFT =
1

M× N

M−1

∑
µ=0

N−1

∑
ν=0

√
µ2 + ν2P(µ, ν) (7)

where M and N are the image dimensions,
√

µ2 + ν2 represents the distance of a pixel to
the central pixel, and P(µ, ν) is the spectrum value of a pixel after DFT.

2.2.2. Discrete Cosine Transform (DCT)

DFT-based resolution assessment methods have high sensitivity; however, they are
computationally more demanding than DCT-based methods. In comparison, DCT has a
general orthogonal transform property, and the base vector of DCT matrix could describe
image features very well [28,29]. Therefore, by replacing DFT with DCT, the transform
coefficient is changed into a real number, which reduces the computation while still obtain-
ing the distribution of image frequency. The resolution assessment function based on DCT
is shown in Equation (8):

FDCT =
1

M× N

M−1

∑
µ=0

N−1

∑
ν=0

(λ + ϕ)|C(λ, ϕ)| (8)

where C(λ, ϕ) is the spectrum value of a pixel after DCT.

2.3. Assessment Method Based on Entropy Function

The entropy of an image is an important index to measure the richness of image
information. Shannon believed that the greater the entropy value, the richer information
the image contains. During image resolution assessment, the clearer the image is, the more
abundant grayscale distribution it has, and thus, the greater the entropy value is [30]. The
definition of entropy function is shown in Equation (9):

Fentropy =
255

∑
i=0
−p(i) log2 p(i) (9)

where p(i) is the probability of occurrence of every grayscale value.

2.4. Assessment Method Based on Variance Function

The variance function can represent the dispersion degree of the image grayscales.
The smaller the range of grayscale, the smaller the variance is and the blurrier the image is,
and vice versa [31]. The definition of variance function is shown in Equation (10):

FVar = ∑
x

∑
y
{[ f (x, y)− ε]2} (10)
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where ε is the average grayscale value of the image, the definition of which is in Equation (11):

ε =
1

M× N ∑
x

∑
y

f (x, y) (11)

3. Strip Mosaic Method Based on Curvelet Transform and Resolution Constraints
3.1. Image Fusion Algorithm Based on Curvelet Transform

To obtain a clear and continuous image that can reflect complete information of
the entire testing zone, image fusion in the overlapping area of side-scan sonar strip
images is required. Currently, there are three common image fusion methods, namely
weighted average method, image pyramid method, and wavelet fusion method [32]. The
wavelet fusion method is the most common side-scan sonar strip image mosaicking method.
However, due to the limitations in algorithms, the wavelet transform can only obtain edge
features in the horizontal and vertical directions, and the wavelet basis does not have
the anisotropy property. Hence, it is unable to get close to the image texture features. To
overcome the limitations in the wavelet transform and improve the quality of strip image
mosaicking, the Curvelet transform was introduced in the current study.

The Curvetlet transform was first proposed by Candes and Donoho in 1999 [33] based
on the Ridgelet transform. As a multi-resolution, band-pass, and directional multi-scale
image analysis method, Curvelet transform has the three characteristics of an optimal
image representation method proposed by the National Institute for Physiological Science,
Japan [34]. Similar to wavelet transform, Curvelet transform calculates the correlation of
spatial images using a group of base functions, thereby characterizing edges and curves
at different angles. The main steps of image fusion based on Curvelet transform are as
follows: Curvelet coefficients are first obtained from Curvelet decomposition of the image,
the coefficients are then processed based on specific fusion rules, and lastly, inverse Curvelet
transform is carried out on the fused coefficient to obtain the final fusion image [35,36].

The Curvelet coefficients are obtained using the equation below:

C(j, θ, k1, k2) = ∑
0≤x≤M,0≤y≤N

f (x, y) · ϕj,θ,k1,k2(x, y) (12)

where f (x, y) is the input image, M × N are the image dimensions, j is the scale, θ is
the direction, k1, k2 is the spatial location of Curvelet, and ϕ(x, y) represents the Curvelet
function, which includes a group of base functions described by parameters (j, θ, k1, k2).

Different from the wavelet coefficients, the Curvelet coefficients include the low-
frequency coefficient in the innermost layer (i.e., the Coarse layer), the mid-to-high fre-
quency coefficient in the Detail layer, and the high-frequency coefficient in the outermost
Fine layer. As the number of layers increases, the scale of the corresponding base function
turns smaller, and there are more directions. Figure 1 shows a frequency-domain base
division method. Each square in Figure 1 represents a scale, and there are five scales.
The bigger the square, the higher the frequency, and the smaller the scale is; hence, more
detailed information will be reflected. The radial lines represent the angles. At each scale,
the angle division is different, and the higher the frequency is, the smaller the angle is.

From Jia et al. [37], the energy of coefficients is mainly concentrated in the low-
frequency coefficient, and the energy gradually declines as the frequency increases. In
other words, the low-frequency coefficient reflects the general trend of the image, whereas
high-frequency coefficient reflects the outline and texture details of an image. By fusing the
coefficients at various layers using different fusion rules, the fusion image coefficient can
be obtained, and by performing inverse Curvelet transform of the fusion image coefficient,
the fusion image is obtained.
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3.2. Strip Image Mosaicking Based on Curvelet Transform and Resolution Constraints

Due to uncertainties in the marine environment during exploration, common areas
in adjacent strip images might have large differences during actual measurement. Both
strip images might have good quality, or one or both of them may not be good at all. The
traditional side-scan strip image mosaicking algorithms do not take the image resolution
into account. In order to ensure good mosaic results, a Curvelet coefficient fusion criterion
based on the resolution weight model was proposed in the present study.

In Section 2, we have introduced seven different image resolution assessment meth-
ods, including energy gradient function, Brenner gradient function, Tenengrad gradient
function, DFT, DCT, entropy function, and variance function. According to Li et al. [38] and
Xie et al. [39], different resolution assessment methods may have different results for the
same group of images. In other words, a single method is not able to assess the resolution
of an image accurately. Hence, these seven resolution assessment methods were integrated
in this study to build a resolution vector, and the image resolution was obtained based on
probability and given weights.

The resolution vector Q, created based on the resolution value of the above seven
methods, is shown in Equation (13):

Q = [FEG, FBrenner, FTenengrad, FDFT , FDCT , Fentropy, FVar] (13)

Since the resolution index in each method has a positive relationship with the image
resolution, the resolution weight is obtained by comparing the resolution vectors of image 1
and image 2, Q1, Q2, respectively.

Ratio =
sum(Q1 ≥ Q2)

7
(14)

where the resolution weight Ratio represents the probability of an image having better
resolution than the other image. Thus, it was taken as the fusion rule in the Coarse layer of
Curvelet transform, as shown in Equation (15).

CCoarse_ f usion = Ratio · CCoarse_1 + (1− Ratio) · CCoarse_2 (15)

where CCoarse_ f usion, CCoarse_1 and CCoarse_2 represent the coefficient in the Coarse layer
after fusion and that of image 1 and image 2, respectively.
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In order to fully show the texture and details of the image, the maximum coefficient
fusion approach was adopted to process the Detail layer and Fine layer coefficients, as
shown in Equation (16):

CDetail_ f usion(x, y) = Max{|CDetail_1(x, y)|, |CDetail_2(x, y)|}
CFine_ f usion(x, y) = Max{|CFine_1(x, y)|, |CFine_2(x, y)|} (16)

where CDetail_ f usion, CDetail_1 and CDetail_2 represent the coefficient in the Detail layer after
fusion and that of image 1 and image 2, respectively. CFine_ f usion, CFine_1 and CFine_2
represent the coefficient of the Fine layer after fusion and that of image 1 and image 2,
respectively. Figure 2 shows the flowchart of the proposed mosaic method based on
Curvelet transform and resolution constraints.
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Figure 2. Flowchart of the proposed method.

1. Extract and match feature points of adjacent strip images and obtain registered mosaic
strips using the affine transformation.

2. Select the common area A from two strip images.
3. Perform Curvelet transform for two images to obtain the coefficients in the Coarse

layer, Detail layer, and Fine layer.
4. Calculate the resolution vectors of the two images to obtain the corresponding resolu-

tion weight.
5. Fuse the Coarse layer coefficients using resolution fusion rules to obtain the low-

frequency coefficients. Fuse the Detail layer and Fine layer coefficients using the
maximum coefficient fusion rules to obtain the high-frequency coefficients.

6. Perform inverse Curvelet transform on the fusion coefficients to obtain the fusion
image in area A, which is then mosaicked to the registered strip images.

7. Repeat steps 2–6 until the whole mosaic image is obtained.

In traditional mosaic algorithms for strip images, there are various problems, such
as inconsistent resolution of adjacent strip images and image distortion. In this study, we
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proposed a mosaic method for strip images based on Curvelet transform and resolution
constraints, which produced mosaic images with complete information and high quality.

4. Experiment and Results

To verify the effectiveness of the proposed image mosaicking method, image data
collected in 2019 using the Klein4000 side-scan sonar in Jiaozhou Bay, Qingdao, Shandong
Province, China was used in the experiment. The water depth of the survey area is
approximately 30–40 m. The overlapping rate of adjacent strip images is 50%. After
preprocessing, such as seafloor tracking, slant-range correction, gray level equalization,
noise suppression, gain correction, and geocoding, a group of strip image pairs with
obvious common features were selected, as shown in Figure 3.
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Figure 3. Two strips used for verification. Four image pairs with obvious common features were selected.

Figure 4a shows a mosaic image calculated based on geographic coordinate informa-
tion. As can be seen, there is obvious dislocation and distortion. According to the steps of
our method, the feature points in the strip images were extracted and matched, as shown
in Figure 4b. Figure 4c shows a registered strip image after affine transformation. Based on
the results, the distortion and dislocation were eliminated after image registration, resulting
in good visual effects and laying a solid foundation for image fusion in the next step.
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registration process of strips. It can be seen that there was significant dislocation in A–D. After strip registration, the
dislocation effect largely disappeared in E–H.

To effectively select the fusion area and ensure the integrity of the selected features,
the whole survey area was first rotated counterclockwise for a certain angle, such that the
survey line was approximately along the vertical direction [40]. Another reason to rotate
the strips is that a series of subsequent steps, such as Curvelet transform and image fusion,
require regular rectangles. After image mosaicking, it was rotated back to the original
direction. Areas 1–3 were selected, and the sonar images of two strips in these areas are
shown in Figure 5.

Taking Area 1 as an example, the proposed algorithm was used to process two strips
in the area. First, the coefficients in the Coarse, Detail, and Fine layers were extracted using
Curvelet transform. The coefficient structure is shown in Table 1.

In both strips, Area 1 has the same dimensions of 923× 166. Five layer decomposition
was carried out. As shown in Table 1, the dimension of the coefficient matrix increases
with the increase in scale. The larger the scale in spatial domain, the smaller the scale in
frequency domain, and the more detailed the description of high frequency information.

Then, the resolution vectors of two strips in Area 1 were calculated, and the results
are shown in Table 2.
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frequency domain, and the more detailed the description of high frequency information. 

Then, the resolution vectors of two strips in Area 1 were calculated, and the results 
are shown in Table 2. 

Table 2. Resolution vectors of two strips in Area 1. 

 EGF  rennerBF  enengradTF  DFTF  DCTF  entropyF  arVF  

Figure 5. Selected fusion areas.

Table 1. Structure of Curvelet transform coefficients.

Layer Scale Coefficient Number of Directions Matrix Dimensions

Coarse C{1} 1 77× 13

Detail

C{2} 16 62× 14 57× 14
77× 11 77× 10

C{3} 32

120× 14 115× 15
115× 14 115× 15

77× 22 78× 21
77× 21

C{4} 32

241× 29 231× 28
231× 29 154× 44
155× 42 155× 42

154× 42
Fine C{5} 1 923× 166

Table 2. Resolution vectors of two strips in Area 1.

FEG FBrenner FTenengrad FDFT FDCT Fentropy FVar

Q1 1.6× 109 7.2× 108 6.0× 108 2.5× 108 4.3× 103 2.6× 106 7.303
Q2 2.2× 109 1.4× 108 1.0× 108 3.4× 108 6.2× 103 3.3× 106 6.886

Q1, Q2 denote the resolution vectors of Strip 1 and Strip 2, respectively. Additionally, the resolution weight ratio,
computed according to Equation (14), is 0.1428.

Then, using the proposed algorithm, the coefficients in the Coarse layer of the two
images were fused based on the resolution fusion rule, and the coefficients in the Detail and
Fine layers of the two images were fused using the maximum coefficient fusion approach,
thereby obtaining the low-frequency and high-frequency coefficients of the fused image.
Lastly, the fused image of Area 1 was obtained via inverse Curvelet transform.

In order to verify the rationality of the resolution fusion rule proposed in this paper,
the resolution fusion rule, the mean fusion rule, and the maximum fusion rule are used
to combine the five layer coefficients of the two images obtained by the Curvelet decom-
position, respectively. As shown in Figure 6, 19 combinations of fusion coefficients were
obtained.
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Then, the fusion coefficients of each group were inversely transformed to obtain fusion
images.

The information entropy, average gradient, and spatial frequency were used as evalu-
ation indices of the fusion results. The information entropy reveals the amount of informa-
tion contained in the image, and the greater the entropy, the better the fusion result; the
average gradient reflects the image’s contrast expression of small details, and the greater
the average gradient, the higher the image fusion quality; the spatial frequency represents
the overall activity of the image in spatial domain, and the higher the spatial frequency, the
better the fusion result. Table 3 shows the three indices of each combination, and Figure 7
shows the line chart of the analysis results.
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Table 3. Comparison of fusion effects in different combinations.

Case Information Entropy Average Gradient Spatial Frequency

a 7.3376 9.4983 25.5944
b 7.3826 11.1938 31.9010
c 7.4250 12.5927 33.7882
d 7.4637 13.0406 34.3080

e 1 7.6156 13.7586 35.4629
f 7.2523 9.4976 25.5687
g 7.3222 9.7393 25.8062
h 7.3588 10.3818 26.4863
i 7.3941 11.8541 28.6577
j 7.4265 13.1232 34.4313
k 7.1802 7.5718 19.2626
l 7.2552 10.3865 30.7766

m 7.3167 12.3194 33.4798
n 7.3728 12.9310 34.1983
o 7.4441 13.1217 34.4303
p 7.2523 9.4976 25.5687
q 7.3222 9.7393 25.8062
r 7.3588 10.3818 26.4863
s 7.3941 11.8541 28.6577

1 is the fusion rule combination form of our method.

As shown in Table 2 and Figure 7, the Curvelet coefficient fusion strategy proposed in
this paper, namely the resolution fusion rule used in the Coarse layer and the maximum
coefficient fusion rule used in the Detail layer and Fine layer, has the best image fusion
effect.

To further demonstrate the effectiveness of the proposed algorithm, the images were
fused using different algorithms, including simple average, traditional wavelet fusion and
wavelet fusion with resolution constraints. The fusion results were compared with that of
the proposed algorithm. The traditional wavelet fusion algorithm applies the mean fusion
rule to the low-frequency information of wavelet transform and the maximum coefficient
fusion rule to the high-frequency information. In the wavelet fusion with resolution
constraints, the resolution fusion rule is applied to the low-frequency information of
wavelet transform and the maximum coefficient fusion rule is applied to the high-frequency
information.

Table 4 shows the three indices of the four fusion methods, and Figure 8 shows the
fusion strip images.

Table 4. Comparison of fusion results of different methods in Area 1.

Algorithms Information Entropy Average Gradient Spatial Frequency

Our method 7.6156 13.7586 35.4629
Wavelet fusion with

resolution constraints 7.3569 9.0872 28.6397

Traditional wavelet
fusion 7.2260 8.2050 26.8381

Simple average 7.1584 7.6452 19.5543

As shown in Table 4, the information entropy, average gradient, and spatial frequency
of the proposed algorithm are much greater than those of the other three methods, indicat-
ing that the fusion result of the proposed method is the best. By comparing the results of
wavelet fusion with resolution constraints and our method, it can be seen that Curvelet
fusion achieved better fusion results than wavelet fusion. In addition, based on the value
of indices of traditional wavelet fusion and wavelet fusion with resolution constraints, the
effectiveness of the resolution fusion rule proposed in this study was demonstrated. It can
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also be seen intuitively from Figure 8 that the fusion image obtained by our method has
better clarity and can show more details.
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Figure 8. Fusion results of the four different methods.

To further verify the effectiveness of the proposed method, the same experiments were
repeated for Areas 2 and 3. Figure 9 shows the fusion strip images in Area 2 and Area 3.
The evaluation results are shown in Table 5.
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Figure 9. (a) shows the strip images and fusion strip images in Area 2. (b) shows the strip images
and fusion strip images in Area 3.

Table 5. Comparison of fusion results of different methods in Areas 2 and 3.

Ratio Fusion Algorithms Information Entropy Average Gradient Spatial Frequency

Area 2 0.1428

Our method 7.1318 11.7527 30.4386
Wavelet fusion with resolution

constraints 6.9388 8.2569 25.4472

Traditional wavelet fusion 6.7614 7.3451 23.7968
Simple average 6.6962 6.7457 17.0373

Area 3 0.2857

Our method 7.2367 11.8425 30.1219
Wavelet fusion with resolution

constraints 6.9619 7.8150 24.4447

Traditional wavelet fusion 6.9174 7.4510 23.7001
Simple average 6.8657 6.8585 16.9889

As shown in Table 5, the fused images in Areas 2 and 3 of the proposed method
have the highest information entropy, average gradient, and spatial frequency, suggesting
the best performance in image fusion and validating the effectiveness and stability of the
proposed algorithm.

Then, the fused images in the three areas were mosaicked onto the registered strip,
which was then rotated clockwise to the original orientation, as shown in Figure 10. Com-
pared with Figure 4c, it can be seen that Figure 9 better reflects the overall characteristics of
the features by enhancing detail texture information while retaining the overall trend of
the overlapping areas.
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5. Conclusions

Current strip image mosaicking algorithms do not consider the influence of the res-
olution difference of common objects in adjacent images on the results of mosaicking.
Moreover, a traditional wavelet fusion algorithm is not able to fully describe the image
details. To address these problems, in this study, we proposed an image mosaic method
based on Curvelet transform and resolution constraints. Experimental verification using
actual measurement data showed that the proposed method can greatly improve the fusion
results, which provides high-quality image data for subsequent submarine target recogni-
tion and sediment classification, thereby greatly benefiting ocean exploration. However,
there are still a lot of improvements to be made in this method, such as human involvement
in the process. In view of this, target recognition and other technologies in deep learning
can be introduced in the future. Thus, it can automatically identify and extract the areas
that need to be fused and achieve full automation.
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