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Introduction

Obstructive sleep apnea (OSA) is a common chronic 
disorder, with estimates indicating a prevalence ranging 
from 22% in men and 17% in women in the general 
population (1) to as high as 70% in specific groups, such 
as patients undergoing bariatric surgery (2). OSA is 

characterized by repetitive instances of the upper airway 
collapsing during sleep, specifically at the pharyngeal  
level (3). The main complaint of patients with OSA is 
excessive daytime sleepiness, which can lead to deterioration 
in quality of life, impaired work performance, and  
accidents (4). Moreover, OSA is increasingly linked to 
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cognitive deficits (5,6), risk of dementia (7,8), and other 
major neurologic and psychiatric disorders (9-12). OSA 
is a risk factor for both chronic conditions, such as 
cardiovascular diseases and hypertension, as well as acute 
conditions, such as stroke, myocardial infarction, congestive 
heart failure, and in extreme cases, sudden death (13-15).

Polysomnography (PSG) is the accepted gold standard 
for diagnosing OSA (16). Following the administration of 
this test, the apnea hypopnea index (AHI) is calculated by 
determining the average number of apnea and hypopnea 
occurrences (complete and partial cessation of breathing, 
respectively) per hour of sleep. A diagnosis of OSA is 
typically made when the patient has an AHI ≥5 events/
hour accompanied with symptoms of excessive daytime 
sleepiness and/or cardiovascular morbidity (17). However, 
this diagnostic procedure requires an overnight stay of 
the patient at the sleep unit within a hospital, where their 
breathing patterns, heart rhythm, and limb movements 
can be monitored. Although this approach is available 
as ambulatory, it can be costly, time-consuming, and 
potentially uncomfortable for the patient. For these reasons, 
a large number of OSA cases remain undiagnosed (18). 
Consequently, there is a strong need to explore faster and 
less costly alternatives for the recognition of OSA.

The human speech signal can be easily and quickly 
obta ined and conta ins  abundant  informat ion on 
individual characteristics. Previous studies have identified 
characteristic differences of speech in patients with 
OSA that differ from those of healthy individuals  
(19-22). In addition, snoring is the most direct and earliest 
symptom of OSA, providing valuable insights into the 
patient’s condition, including the severity of the disorder 
and the site of obstruction within the upper airway (23). 
Therefore, speech and snoring sounds are expected to be 
good candidates for the evaluation of OSA. In recent years, 
with the rapid development of machine learning in audio 
analysis, investigators have attempted to use the abnormal 
changes of speech information or snoring sounds to develop 
an approach for the automatic detection of OSA. However, 
the prediction value of speech and snoring sounds in 
patients with OSA remains unclear. 

In this review, we offer a comprehensive summary of the 
current research progress on the automatic detection of 
OSA using snoring sounds or speech signals. In addition, 
we discuss the key challenges that need to be overcome 
in future research of this novel approach. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://jtd.amegroups.com/article/

view/10.21037/jtd-24-310/rc).

Methods

A literature search was performed using the PubMed, 
IEEE Xplore, and Web of Science databases for literature 
published between 1989 and 2022. The search strategy is 
presented in Table 1. The following keyword search strategy 
was used: (“obstructive sleep apnea syndrome” OR “OSAS” 
OR “OSA”) AND (“speech” OR “voice” OR “snore sound”) 
AND (“screen” OR “prediction”) AND “deep learning” 
OR “machine learning” OR “artificial intelligence”). All 
English-language papers including original articles, reviews, 
and editorials related to studies in humans were included. 
Each article was screened for relevance through a reading of 
the titles and abstracts. Relevant information was extracted 
independently by two reviewers (S.C., M.X.).

Speech and OSA

The generation of speech

The human speech is a complex signal of sound produced 
by vocal fold vibration. It is not only a primary source for 
communication between individuals, but also contains 
various characteristic information of the human body, 
including biological information (e.g., age, body size) and 
paralinguistic information (e.g., emotional state) (24). 

Speech formation is an exceedingly complex physiological 
process. Generally speaking, under the control of the 
nervous system, air exhaled from the lungs vibrates through 
the vocal organs and resonates through the cavity organs, 
such as the pharynx, from which speech is generated.

The abnormal speech of patients with OSA 

Previous study has indicated that individuals with OSA 
exhibit abnormalities in their speech compared to those 
unaffected by this condition (19). These abnormalities can 
be attributed to alterations in the upper airway anatomy, 
such as craniofacial abnormalities, dental occlusion, 
increased distance between the hyoid bone and the 
mandibular plane, relaxed soft tissues, enlarged tongue 
base, and other related factors, and the impact of persistent 
snoring during sleep.

The cues for the abnormal speech of OSA were firstly 
reported by Fox et al. (25). In this study, they found that 
abnormal resonance, articulation, or phonation was present 

https://jtd.amegroups.com/article/view/10.21037/jtd-24-310/rc
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in 74% of participants with OSA. In a study by Fiz et al. (26),  
in which the vocalizations in 18 men with OSA and  
10 normal men were analyzed, significant differences were 
observed in the maximum frequency of harmonics of the  
/i/ and /e/ vowels between the two groups. Later, Robb 
et al. (27) reported that OSA speakers exhibited lower 
formant values and wider formant bandwidths compared to 
the non-OSA speakers, and they attributed this alteration 
to the longer vocal tract length and excessive vocal tract 
tissue compliance in patients with OSA. A recent study (28)  
explored the relationship between voice quality and OSA 
severity; according to its voice analysis results, there 
were significant differences between OSA and non-OSA 
individuals in the fundamental frequency, jitter percentage, 
shimmer percentage, harmonic-noise ratio (HNR), and 
maximum phonation times as the severity of OSA increased.

Another study employed spectrographic analysis to 
determine the correlations among AHI and acoustic 
features, indicating that AHI correlates poorly with formant 
frequencies and bandwidths extracted from sustained 
vowels (20). It was thus proposed that the effects of clinical 
variables should be considered in any research on speech 
and OSA. 

Undoubtedly, speech carries a large amount of characteristic 
information concerning the anatomical structures of the 
upper airway (29-31). Consequently, it may serve as a valuable 
tool for diagnosing OSA or, at the very least, for identifying 
individuals who are susceptible to the condition.

Automatic detection of OSA based on speech

According to the above-described contributions to this 
subject, studies have been carried out on the automatic 

assessment of OSA based on abnormal speech signals. 
Table 2 provides summary of the studies that have 

employed speech data and artificial intelligence algorithms 
to facilitate the automatic detection of OSA.

In 2009, Fernández Pozo et al. (32) presented pioneering 
research on the automatic diagnosis of severe OSA using a 
Gaussian mixture model (GMM) with continuous speech 
and achieved an 81% correct classification rate for male 
participants. A speech corpus containing four sentences in 
Spanish based on physiological OSA features was designed, 
which was then used in subsequent studies. In a study 
conducted by Goldshtein et al. (33) in 2011, a GMM-based 
system was developed to analyze speech recordings of 93 
participants. The recordings included five vowels (/a/,  
/e/, /i/, /o/, /u/) and two nasal phonemes (/n/, /m/). The 
system achieved a specificity of 83% and a sensitivity of 
79% for male patients with OSA, while for female patients, 
it achieved a specificity of 86% and a sensitivity of 84%. In 
another study by Benavides et al. (34), speech samples from 
control (AHI <10) and OSA (AHI >30) individuals and text-
dependent hidden Markov models (HMMs) were employed 
to train a binary machine learning classifier for severe OSA 
detection, achieving an 85% correct classification rate 
among 80 male participants.

Due to the impact of different body positions on the 
vocal tract in patients with OSA, individuals exhibit 
different speech features. Solé-Casals et al. (35) analyzed 
both recordings of five vowels and a sentence from 
two distinct positions, upright or seated and supine or 
stretched. They presented experimental findings regarding 
various feature selection and reduction schemes [statistical 
ranking, genetic algorithms, principal component analysis 
(PCA), linear discriminant analysis (LDA)] and compared 

Table 1 The summary of the literature search strategy 

Items Specification

Date of search Nov 1, 2022 to Dec 1, 2022

Databases and other sources searched PubMed, IEEE Xplore, and Web of Science

Search terms used Obstructive sleep apnea syndrome, OSAS, OSA, speech, voice, snore sound, screen, 
prediction, deep learning, machine learning, artificial intelligence

Timeframe 1989–2022

Inclusion criteria English-language papers including original articles, reviews, and editorials related to studies in 
humans 

Selection process Each article was screened for relevance by reading the titles and abstracts. Relevant 
information was independently extracted by two reviewers (S.C., M.X.)
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various classifiers [Bayesian classifiers, k-nearest neighbor 
(KNN), support vector machines (SVM), neural networks, 
adaptive boosting (Adaboost)]. The classifier performed 
optimally when a well-suited genetic algorithm was used 
for feature selection, leading to the best results. In contrast 
to the promising outcomes documented in prior studies, 
Espinoza-Cuadros et al. (36) reported contradictory results 
when implementing the proposed methods on a sizable 
clinical database. In their study, the speaker recognition 
technology, including supervectors and i-vectors, was used 
for the first time to estimate AHI, yielding an accuracy of 
68% and 71%, respectively. In this case, the variation in 
results can primarily be attributed to the sample size and 
participant composition. Unlike previous studies that used a 
limited sample size, the one by Espinoza-Cuadros et al. (36)  
included a database comprising 125 controls (AHI <10) 
and 118 patients with OSA (AHI >30). Another significant 
aspect contributing to the decline in performance is that the 
controls in previous studies were asymptomatic individuals. 
Meanwhile, in Espinoza-Cuadros et al.’s study (36),  
all participants were referred to a sleep disorders unit, 
indicating that they were suspected to have OSA; that 
is, most of them were heavy snorers. Furthermore, the 
imbalance in confounding factors (age, height, weight, sex) 
between the control group and the OSA group in earlier 
research might have produced overoptimistic results.

Considering the language-dependent differences in 
speech, Ding et al. (37) conducted the first study with 
Chinese participants. They classified the participants 
with thresholds of AHI =30 and AHI =10 events/hour by 
using linear prediction cepstral coefficients (LPCC) and 
SVM, which both obtained an accuracy of 78%. Recently, 
the researchers expanded on their investigation of the 
classification performance of Chinese syllables for OSA by 
using LPC and the decision tree model: specific Chinese 
syllables, such as [leng] and [jue], consonant pronunciations 
such as [zh] and [f], and vowel pronunciations such as 
[ing] and [ai], were found to be particularly effective for 
OSA classification (38). This study highlights the efficacy 
of using Chinese pronunciation as a reliable feature for 
predicting OSA and provides a comprehensive reference for 
the selection of an OSA corpus.

In general, speech appears to be a useful and an easily 
accessible predictor for OSA, which can optimize traditional 
OSA screening and diagnosis. Nevertheless, it should be 
noted that the studies by Ding et al. (37,38) mainly focused 
on male patients, and thus it would be interesting to further 
clarify whether this method is suitable for testing the 

female population. Further research using different acoustic 
features, approaches, languages, or recording positions are 
expected to bring new insights into this field.

Snoring sounds and OSA

The generation of snoring sounds

Similar to speech, snoring is also generated in the vocal 
tract (39). However, there are also several dissimilarities 
between snoring and speech. The vibration and resulting 
sound of snoring are primarily attributable to the 
oscillations of the soft palate, pharyngeal walls, epiglottis, 
and tongue rather than to the vocal cords (40). Snoring 
occurs in sleep, during which the muscle tone decreases 
and the soft tissue collapses, resulting in the narrowing and 
increased resistance of the pharyngeal airway (41). This 
triggers tissue vibrations and turbulent flows as the air 
passes through, which in turn causes a breathing noise (23).  
Moreover, the driving pressure is directed interiorly, as 
snoring is predominantly linked to the act of inspiration.

The acoustic difference of snoring sound between simple 
snorers and patients with OSA 

Snoring serves as a significant clinical indicator of OSA. 
In cases where there are no apneas or hypopneas events 
during sleep and where the individual does not experience 
daytime symptoms, the respiratory noise is classified as 
simple snoring (42). However, if the snoring is accompanied 
by an AHI of ≥5 per hour and excessive daytime sleepiness, 
it is identified as OSA (3). The first study regarding the 
acoustic differences between these snoring phenotypes 
was conducted by Perez-Padilla et al. (43), who conducted 
the initial research on acoustic distinctions. Their study 
involved the analysis of snoring sounds emitted by  
10 individuals identified as non-apneic heavy snorers and 
9 patients diagnosed with OSA. The results showed that 
the initial snore following an apnea episode predominantly 
consists of broad-spectrum white noise, with a relatively 
higher power at higher frequencies. Perez-Padilla et al. (43) 
thus proposed utilizing the power ratio, specifically the ratio 
of power above 800 Hz to power below 800 Hz (PR800), as 
a means to differentiating individuals with OSA from those 
exhibiting simple snoring.

Fiz et al. (44) studied 10 patients with OSA and 7 simple 
snorers. The spectral analysis conducted on the snoring 
sounds revealed a significant decrease in the peak frequency 
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of snoring among patients diagnosed with OSA. In addition, 
a significant negative correlation was found between AHI and 
peak and mean frequencies of the snoring power spectrum. 
Sola-Soler et al. (45) reported that the formant frequency 
of OSA snorers was significantly different from of simple 
snorers. Ng et al. (46) conducted a study employing the 
Linear Predictive Coding (LPC) technique, which revealed 
that snores during apnea events exhibited higher formant 
frequencies compared to non-apneic snores, particularly the 
first formant frequency. In another experiment, fast Fourier 
transform (FFT) analysis was applied and indicated that 
individuals with primary snoring exhibited a peak intensity 
range of 100–300 Hz, whereas those with OSA displayed a 
peak intensity above 1,000 Hz (47). 

In addition to research focusing on the spectral 
parameters of snoring sounds, various other sound analysis 
techniques have also demonstrated discernible distinctions 
between individuals with apnea-related snoring and those 
with simple snoring (48,49). However, there is also a 
contrary opinion, in Alshaer’s (50) study, the snore index 
(calculated as the number of snores per hour of sleep) was 
found to have a weak relationship with AHI, indicating 
that the presence and frequency of snoring on its own 
is probably of limited usefulness in screening for the 
possibility of either OSA .

Overall, these findings suggest that alterations in the 
morphology of the upper airways manifest in the acoustic 
characteristics of snore signals, which can be used to reflect 
the existence and severity of OSA.

Automatic detection of OSA based on snoring sounds 

Based on the above-mentioned studies, it is reasonable 
to believe that snoring sounds contain a rich information 
regarding OSA status.

Table 3 presents an overview of the studies that have 
utilized snoring sounds in conjunction with machine 
learning techniques for the purpose of automating OSA 
detection.

Solà-Soler et al. (51) proposed a logistic regression 
model that utilizes various time and frequency parameters 
extracted from snoring signals, along with their variability, 
to classify patients with OSA and simple snorers. With the 
thresholds of AHI =10 events/hour, the classification of 
patients yielded a sensitivity exceeding 93% and a specificity 
ranging from 73% to 88%. Similarly, in a study conducted 
by Karunajeewa et al. (52), pitch and total airway response 
(TAR) extracted from snore sounds were exploited in the 

diagnosis of OSA with a logistic regression model, yielding 
a sensitivity of 89.3% and a specificity of 92.3%. Cavusoglu 
et al. (53) conducted an analysis of snoring sounds obtained 
from 18 individuals with simple snoring and 12 patients 
diagnosed with OSA. PCA was implemented to transform 
the feature vectors from snoring episodes in a two-
dimensional space, and robust linear regression was applied 
to classify snores and non-snores. An accuracy of 90.2% was 
obtained when the dataset included both simple and OSA 
snores. Mesquita et al. (54) found that there was shorter 
time interval between regular snores in patients with severe 
OSA. Thus, they imported features derived from the time 
interval between snores to a Bayesian classifier for the 
identification of patients with OSA, achieving classification 
accuracies of 88.2% and 94.1% for AHI severity cutoff 
severities of 5 and 30 hour−1, respectively.

To mitigate potential  issues arising from high-
dimensional features that could induce overfitting during 
model training, Jiang et al. (55) employed a feature selection 
algorithm that leveraged random forest. This algorithm 
was used to identify the top 6 significant features from a 
total of 10 traditional acoustic features that were extracted. 
Subsequently, five distinct machine learning models were 
employed to assess the effectiveness of the selected feature 
subset. The findings highlighted that the logistic regression 
model, in conjunction with the top six features, delivered 
enhanced accuracy for evaluating OSA while also exhibiting 
lower computational complexity.

To enhance the classification performance in OSA 
detection, researchers have incorporated deep learning 
techniques. Kim et al. (56) conducted a study in which 132 
dimensional features derived from various feature parameters 
were selected. These features were used to classify the severity 
of OSA via multiple machine learning techniques, including 
logistic regression, SVM, and deep neural networks (DNNs). 
The classifier that demonstrated the highest performance in 
terms of accuracy was simple logistic regression, achieving 
an accuracy rate of 92.5% when evaluated against the AHI 
thresholds of 15 and 30. As discussed by Kim et al. (56), 
the relative lower classification effect of deep learning may 
be due to the number of samples being insufficiently high, 
as only 120 participants were examined. This sample size 
has been deemed somewhat inadequate for the optimal 
learning and training of DNNs. Shen et al. (57) compared 
the classification differences for OSA between three-feature 
extraction methods [mel-frequency cepstral coefficients 
(MFCCs), LPCC, and linear prediction MFCC (LPMFCC)] 
and three neural networks [convolutional neural network 
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Table 3 Summary of the research on the automatic detection of OSA based on snoring sounds

First author/year Population characteristics Audio features
Classification 
model

Classification performance

Solà-Soler/2007 
(51)

25 participants (AHI <10: 12 males 
and 5 females, mean age 46 years, 
mean BMI 27.1 kg/m2; AHI ≥10:  
13 males and 6 females, mean age 
51 years, mean BMI 32.3 kg/m2)

The time parameters 
characterized by the period 
of the sound vibrations 
or pitch; The frequency 
parameters calculated via 
power spectral density

LR The AUCs were between 0.913 
and 0.950, the sensitivities were 
between 82.3% and 94.1%, and 
the specificities were between 
73.7% and 89.5%

Karunajeewa/2011 
(52)

41 participants (AHI <10: 5 males 
and 8 females, mean age 45 years, 
mean BMI 33.5 kg/m2; AHI ≥10:  
23 males and 5 females, mean age 
54 years, mean BMI 34.5 kg/m2)

Pitch and total airway 
response

LR AUC: 0.96; sensitivity: 89.3%; 
specificity: 92.3%

Cavusoglu/2007 
(53)

30 participants (AHI <10: 16 males 
and 2 females, mean age 46.92 
years, mean BMI 27.66 kg/m2; AHI 
≥10: 12 males, mean age 53.26 
years, mean BMI 32.76 kg/m2)

Subband energy 
distributions

LR Accuracy: 90.2%

Mesquita/2012 (54) 34 participants (AHI <30: 7 females 
and 9 males, mean age 50 years, 
mean BMI 26.32 kg/m2; AHI ≥30:  
1 female and 17 males, mean age 
52 years, mean BMI 30.43 kg/m2)

The time interval between 
regular snores in short 
segments

BC With the thresholds of AHI =5 
and AHI =30, the accuracies 
were 88.2% and 94.1%, 
respectively

Jiang/2021 (55) 12 participants (AHI <5: 4 males; 
AHI >5: 2 females and 6 males). 
Age and BMI were not reported

10 acoustic features, 
including MFCC, 800 
Hz power ratio, spectral 
entropy, and LPC

LR, SVM, 
Gaussian 
Bayesian, KNN, 
and ANN

For the top 6 features, the 
overall accuracies were between 
91.67% and 100%

Kim/2018 (56) 120 participants were classified 
into four groups, with 30 patients 
in each group: AHI <5, mean age 
44.1 years, mean BMI 23.0 kg/m2; 
5≤ AHI <15, mean age 54.8 years, 
mean BMI 24.4 kg/m2; 15≤ AHI 
<30, mean age 53.9 years, mean 
BMI 26.9 kg/m2; AHI ≥30, mean age 
50.3 years, mean BMI, 27.3 kg/m2

132 audio features, 
including MFCC, spectral 
flux, and zero crossing rate

Simple logistics, 
SVM, and DNN

Simple logistics showed the best 
performance: the accuracy was 
92.5% under the AHI thresholds 
of 15 and 30

Shen/2020 (57) 32 participants (16 healthy 
individuals and 16 patients with 
OSA). Age and BMI were not 
reported

MFCC, LPCC, and 
LPMFCC

CNN and LSTM The MFCC feature extraction 
method combined with the 
LSTM model had the highest 
accuracy rate of 87%

Jiang/2020 (58) 15 participants (AHI <5: 1 female 
and 3 males, mean age 37.5 years, 
mean BMI 25.6 kg/m2; AHI ≥5:  
5 females, 6 males, mean age  
45.3 years, mean BMI, 27.4 kg/m2)

The time-domain waveform, 
spectrum, spectrogram, 
mel spectrogram, and 
constant Q transform 
spectrogram

CNNs-DNNs, 
CNNs-LSTMs-
DNNs, and 
DNNs

The mel-spectrogram can better 
reflect the differences between 
OSA patients and simple 
snorers, with an AUC of 0.977 
and 0.978, respectively

OSA, obstructive sleep apnea; AHI, apnea hypopnea index; BMI, body mass index; LR, logistic regression; AUC, area under the curve; 
BC, Bayesian classifiers; MFCC, mel-frequency cepstral coefficients; LPC, linear predictive coefficients; SVM, support vector machines; 
KNN, k-nearest neighbour; ANN, artificial neural network; DNN, deep neural network; LPCC, linear prediction cepstral coefficients; 
LPMFCC, linear prediction MFCC; CNN, convolutional neural network; LSTM, long short-term memory; CNNs, convolutional neural 
networks; LSTMs, long short-term memory networks.
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Data collection

Speech/snore recording Audio
pre-processing

Audio feature 
extraction
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selection and
dimensionality

Training with
artificial

intelligence
algorithms

Testing of
predictive

performance

Labelled dataset with AHI

Resampling,
normalization,
noise reduction,
framing...

The temporal domain, 
frequency domain, 
cepstral domain 
features...

Principal component 
analysis, linear 
discriminant analysis, 
random forests...

SVM, LR, 
decision tree, HMM, 
KNN, CNN, DNN...

Cross-validation, 
out-of-bootstrap 
validation,
external validation...

Data processing Data analysis

Figure 1 The general process of OSA detection by speech/snoring sounds. AHI, apnea hypopnea index; SVM, support vector machines; 
LR, logistic regression; HMM, hidden Markov model; KNN, k-nearest neighbor; CNN, convolutional neural network; DNN, deep neural 
network; OSA, obstructive sleep apnea.

(CNN), recurrent neural network (RNN), long short-term 
memory (LSTM)]. The experimental results showed that 
the optimal performance for OSA detection was achieved by 
using a combination of MFCC and LSTM, which yielded a 
classification accuracy of 0.87. 

Spectral maps encompass a wealth of valuable data, 
including elements such as formant frequencies, spectral 
energy, fundamental frequency, and other relevant features. 
Jiang et al. (58) assessed the performance of different 
snoring sound maps (the time-domain waveform, spectrum, 
spectrogram, mel-spectrogram, and CQT-spectrogram) 
in distinguishing patients with OSA patients and simple 
snorers. CNN, LSTM, and DNNs were used to construct 
two types of classifiers [CNNs-DNNs and CNNs-
long short-term memory networks (LSTMs)-DNNs]. 
Meanwhile, fewer network layers were used to prevent 
overfitting caused by the small sample size of the study. 
The findings indicated that the mel-spectrogram exhibited 
superior discriminatory power in distinguishing between 
patients with OSA and simple snorers, with an AUC of 0.977 
and 0.978, respectively. 

In summary, the snoring-based technique seems to be a 
promising tool for the detection of OSA. Snore sounds have 
the significant advantage of being conveniently acquired 
with low-cost, noncontact equipment (59,60). In addition, 
this method allows participants suspected of having OSA 
to circumvent the need for a comprehensive overnight 
polysomnographic or a respiratory study conducted in 
a hospital setting. Furthermore, this approach opens 
the possibility of using common devices equipped with 
microphones, such as smartphones, as a screening tool for 
identifying OSA outside of specialized facilities. However, 
it is important to acknowledge that snoring sounds exhibit 

considerable variation among individuals, and further 
studies with large target populations are needed to verify the 
proposed method before this approach can be introduced in 
everyday clinical practice. 

Summary of the general process of OSA 
detection by speech/snoring sounds

Below is an overview of the typical process of utilizing 
speech or snoring sounds for OSA detection (Figure 1). 
Initially, snoring sounds are typically captured as part 
of PSG using a PSG-embedded microphone. Speech 
recordings can be categorized into two main types: short 
sentences and vowels/syllables. Pre-processing of the 
audio involves steps such as resampling, normalization, 
noise reduction, framing, and windowing the data. Various 
methods have been proposed in the literature for audio 
feature extraction, encompassing temporal, frequency, 
and cepstral domains (Table 4). Dimensionality reduction 
techniques like PCA and LDA may be employed to 
transform features and facilitate data visualization. 
Subsequently, after feature selection, machine learning or 
deep learning algorithms such as SVM, HMMs, and CNNs 
can be trained to automatically predict OSA. To ensure 
reliable performance estimates, cross-validation and out-
of-bootstrap validation techniques are commonly utilized. 
Evaluation of models typically involves metrics such as 
accuracy, specificity, sensitivity, F-measure, and AUC.

Key challenges in future research

Audio characteristics can effectively reflect the majority of 
relevant characteristics present in the original audio signals, 
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Table 4 Commonly used audio features in the automatic detection of OSA 

Audio features Definition

Time domain features (61) Time domain features shows the signal variation with respect to time

ZCR (61) The ZCR of an audio frame is defined as the rate of change of sign of the signal during the frame. ZCR is 
the number of times signal crosses the zero level in one second interval

STE (61) STE is defined as average energy per frame. The STE is low for unvoiced segments and high for voiced 
segments

Shimmer (62) Difference of the peak amplitudes of consecutive fundamental frequency periods, which indicates 
irregularities in voice intensity

Frequency domain features 
(61)

To analyze a signal in terms of frequency, the time-domain signal is converted into frequency domain signal 
by using Fourier transform or auto-regression analysis. Frequency domain analysis is a tool of utmost 
importance in audio signal processing

Formant (61) The spectral peaks (usually the first three) of the sound spectrum

Fundamental frequency (61) The fundamental frequency is the lowest frequency of a periodic waveform

Bandwidth (61) Spectral bandwidth is the second order statistical value the determines the low bandwidth sounds from the 
high frequency sounds

HNR (62) Ratio between fundamental frequency and noise components, which indirectly correlates with perceived 
aspiration. This may be due to reducing laryngeal muscle tension resulting in a more open, turbulent glottis

Jitter (62) Deviations in individual consecutive fundamental frequency period lengths, which indicates irregular closure 
and asymmetric vocal-fold vibrations

Spectral slope (61) It is the measure of slope of the amplitude of the signal and it is computed by linear regression. This feature 
is used in speech analysis and in identifying speaker from a speech signal

PR800 (61) The ratio of spectral energy above 800 Hz to that below 800 Hz

Cepstral domain features (61) A cepstrum is obtained by taking the inverse Fourier transform of the logarithm of the spectrum of the 
signal

LPC (61) Coefficients that best predict the values of the next time point of the audio signal using the values from the 
previous n time points, which is used to reconstruct filter properties

LPCC (61) LPC are too sensitive to numerical precision, hence it is desirable to transform the LPC to the cepstral 
domain. The resultant transformed coefficients are called as LPCCs

MFCC (62) The coefficients derived by computing a spectrum of the log-magnitude Mel-spectrum of the audio 
segment. The lower coefficients represent the vocal tract filter and the higher coefficients represent periodic 
vocal fold sources. MFCC is widely and successfully used in speech recognition

OSA, obstructive sleep apnea; ZCR, zero crossing rate; STE, short time energy; HNR, harmonic-noise ratio; LPC, linear predictive coding; 
LPCC, linear prediction cepstral coefficients; MFCC, mel-frequency cepstral coefficients.

eliminating the need for using the entire signal. Therefore, 
feature extraction is a crucial step in the automatic OSA 
assessment process regardless of whether speech or snoring 
sounds are used. However, the extracted features used in 
this type of research vary from study to study, which makes 
interstudy comparison difficult. In addition, it should be 
noted that not all of the extracted features have been proven 
beneficial for detecting OSA in every participant, as some 
of them exhibited no significant differences across different 
patient groups. Consequently, it is essential to validate 

the utility of each feature in classifying OSA. The results 
of the classification task demonstrated that incorporating 
only the selected features offered notable advantages in 
terms of both performance and computational efficiency 
compared to utilizing statistical values of all audio features. 
Therefore, feature selection and dimension reduction may 
be a promising direction of future research in this field.

In this review, we mainly focused on speech- or 
snoring-based methods. We believe that in the future, 
other noninvasive features, including demographic  



Cao et al. Speech and snoring sounds for OSA detection2664

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(4):2654-2667 | https://dx.doi.org/10.21037/jtd-24-310

characteristics (63), symptoms (64), and facial images (65), 
can be combined for better identification of OSA. However, 
it is important to note that more does not always mean 
better in the concatenation of features. In addition, any 
proposed models should be as simple as possible so as to 
facilitate their wider application. 

It is worth noting that the criteria for OSA was based 
on both AHI and associated symptoms. Although easy to 
calculate, AHI can only obtain limited information from 
the rich PSG data (66). Therefore, the AHI may not fully 
reflect the severity of OSA, and there are OSA patients with 
low AHI but with as many OSA symptoms as in patients 
with high AHI (67,68). Thus, the different phenotypes of 
OSA should be taken into account in these new ways of 
diagnosing OSA.

Besides, it is crucial to recognize the common limitations 
that might have contributed to overly optimistic outcomes 
when employing machine learning techniques for diagnostic 
purposes. A limited size of training and validation dataset 
can lead to compromised performance of predictive models. 
External validation is still rare in the literature. When 
feature selection techniques are applied to a large number of 
variables with only limited training data available, there is a 
risk of overfitting. Therefore, it is crucial for future research 
to involve a significantly larger sample size of participants 
to validate the methodology before clinical implementation.

Last but not least, there is no standard protocol for 
voice analysis to identify OSA. How to select appropriate 
corpora, which audio features are more valuable, and which 
AI algorithms are more effective are all worthy of further 
in-depth research in the future.

Conclusions

Research on snoring or speech for OSA diagnosis has 
emerged as a recent research trend. We believe that this 
review can help to clarify the predictive value of snoring 
sounds and speech for OSA status and guide further 
research on the detection of OSA based on snoring sounds 
or speech. Although this innovative approach currently 
does not have the potential to completely replace the 
conventional diagnosis procedure of OSA involving PSG 
analysis and comprehensive clinical evaluation, it does offer 
significant improvements in OSA management and can 
contribute to conserving medical resources.
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