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Poaching of protected 
wolves fluctuated seasonally 
and with non‑wolf hunting
Francisco J. Santiago‑Ávila* & Adrian Treves

Poaching is the main cause of mortality for many large carnivores, and mitigating it is imperative for 
the persistence of their populations. For Wisconsin gray wolves (Canis lupus), periods of increased risk 
in overall mortality and poaching seem to overlap temporally with legal hunting seasons for other 
large mammals (hunting wolves was prohibited). We analyzed monitoring data from adult, collared 
wolves in Wisconsin, USA (1979–2012, n = 495) using a competing-risk approach to test explicitly if 
seasons during which it was legal to train hunting hounds (hounding) or hunt other large mammals 
(hunting) affected wolves’ hazard of cause-specific mortality and disappearance. We found increases 
in hazard for disappearances and documented (‘reported’) poaching during seasons with hunting, 
hounding or snow cover relative to a season without these factors. The ‘reported poached’ hazard 
increased > 650% during seasons with hunting and snow cover, which may be due to a seasonal surge 
in numbers of potential poachers or to some poachers augmenting their activities. Snow cover was 
a major environmental factor contributing to poaching, presumably through increased detection of 
wolves. Our study suggests poaching is by far the highest mortality hazard for wolves and reinforces 
the need for protections and policies targeting poaching of protected populations.

Humans threaten the survival of large carnivores and the viability of their populations through habitat loss, killing 
and prey depletion1. Consequently, the contraction, depletion and extirpation of large carnivores has contributed 
to simplification of trophic structures linked to both lower biodiversity and degraded ecosystem functions1–3, 
suggesting the elimination of large carnivores “is one of the most significant anthropogenic impacts on nature”1,3. 
Moreover, there is a growing concern for the wellbeing and claims of individual nonhuman animals and large 
carnivores within conservation4–6. Increased consideration of nonhuman claims demands robust assessments 
of how anthropogenic activities, including those aimed at other species, impact risk of harm, including death7,8.

Importantly, poaching, both reported and cryptic, is the main form of anthropogenic mortality for various 
regions’ carnivores9–14; including four US wolf (Canis lupus, Canis rufus, Canis lupus baileyi) populations15–18. 
Here, we distinguish between these two poaching variants by their detection on the landscape, following12,15,17,18: 
while ‘reported poaching’ refers to the component of total poaching that is reported, evidenced and thus detected 
by management agencies, ‘cryptic poaching’ refers to poaching that remains concealed and thus undetected. 
The concealment of poaching (its cryptic component) contributes to its systematic underestimation12,15,17–19, 
increasing concerns over the viability of large carnivore populations subject to additional sources of anthro-
pogenic mortality20–23. Given both its prevalence and cryptic nature, mitigating poaching seems imperative for 
the persistence of many large carnivore populations, including endangered ones that are not subject to hunting 
seasons10,11,16–18,24.

For wolf populations in the US, recent research has explored the effect of reducing protections for the spe-
cies on cause-specific mortality, including poaching and its cryptic variant. Invariably, such studies have found 
an increase in poaching risk or incidence during policy time periods when species protections are reduced; 
i.e., when targeted lethal management by agency personnel, rather than unselective public hunting seasons, is 
sanctioned17,18. For Wisconsin wolves, results are largely consistent with research detecting unmeasured mortal-
ity necessary to account for the slowdown in population growth during periods of reduced protections in that 
population25–27. Relative to full protection periods, wolves in Minnesota also face an increased risk of overall 
anthropogenic mortality and poaching once protections are reduced, including public hunting, even if protec-
tions are later reinstated28.

Research on intra-year mortality risk for Wisconsin wolves also found that periods of increased risk in overall 
mortality and poaching overlapped with hunting seasons for other large mammals, such as white-tailed deer 
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(Odocoileus virginianus) and black bear (Ursus americanus), and hypothesized such increases in poaching risk 
were in part attributable to the surge of hunters on the landscape during those periods14,18,29. Similarly, in Min-
nesota, Nov–Apr is the period of highest overall anthropogenic and illegal killing of wolves, with the authors 
again pointing to the overlap with firearm season for white-tailed deer28. Critically endangered red wolves in 
the Southeastern US also face increased risk of anthropogenic mortality (mostly attributable to gunshot) and 
disappearances during fall and winter hunting seasons for other large mammals16,24.

The estimated increases in anthropogenic and illegal killing of wolves during other large mammal hunting 
seasons is also supported by social science research on hunter motivations and inclinations to poach wolves. 
Various surveys of Wisconsin residents spanning over a decade, and two qualitative focus groups, revealed rising 
inclinations to poach after federal protections were reduced and the state sanctioned lethal management30–32. 
Treves et al.30 found that increased inclination to poach wolves was correlated with perception of competition 
over deer, rather than fear or loss of domestic animals. Moreover, a quarter of bear hunters in that study said 
they would poach a wolf. Subsequent focus group research revealed that bear hunters generally hold negative 
attitudes towards wolves and wolf management, and that they “…believe that bear hunters, in general, sanction 
the illegal killing of wolves”31, p. 6. Farmers’ attitudes toward wolves did not differ significantly from those of 
hunters, and they believed that most farmers “approved, or were at least tolerant, of illegally killing wolves” (p. 
6) The same study revealed deer hunters hold a range of attitudes towards wolves, significantly more positive 
than farmers or bear hunters, yet with some endorsement or participation in their illegal killing. Later survey 
research by Hogberg et al.32 highlighted a continuing negative trend in attitudes among male respondents and 
hunters living in wolf range before and after the state’s first legal hunt in 2012. All studies found net shifts towards 
agreement with the perception that wolves threaten deer hunting opportunities.

In this study, we analyze monitoring data from adult, collared wolves in Wisconsin, USA (1979–2012, n = 495 
collared adults) to test explicitly if seasons during which it was legal to train hunting hounds (hounding) or 
hunt other large mammals (hunting wolves was prohibited; see “Methods” section) affected wolves’ hazard of 
cause-specific mortality and disappearance (endpoints hereafter). Our explicit modelling of intra-wolf-year 
anthropogenic and natural seasons allows us to explore any interactions between endpoints within seasons, as 
well as interactions between anthropogenic and natural landscape conditions (e.g., simultaneous hunting and 
snow cover). Our results suggest poaching hazard, both cryptic and reported, is substantially higher during 
seasons with hunting and snow cover relative to seasons without these factors. Our methods can promote the 
conservation and consideration of wild animals through improving the evaluation of anthropogenic impacts 
on their mortality and disappearances, as well as the effectiveness of policies aimed at protecting them and 
mitigating poaching.

Results
Estimating unconditional, endpoint‑specific hazards.  We built 3 stratified (by endpoint and protec-
tion period [lib_kill]), joint Cox models (see model statistics in Supplementary Material Table 3). We present 
results by endpoint for our best model (Table  1), following our model selection criteria (see Supplementary 

Table 1.   Hazard ratio (HR) point estimates from the stratified (by endpoint and protection period) joint Cox 
Model 3 (our best performing model, see Supplementary Material Tables 3–7 for model statistics, diagnostics 
and other models) for n = 495 monitored adult wolves, by endpoint and season (LTF = ‘lost to follow-up’, 
defined in Methods). We present HRs and compatibility intervals (95 CI) for all endpoint-season interactions 
relative to a baseline season. *p < 0.10, **p < 0.05, ***p < 0.01.

Season Hunt/hound Hunt/hound/snow Snow

Endpoint HR (se) 95 CI HR (se) 95 CI HR (se) 95 CI

LTF
1.18 0.72 1.95 1.19 0.65 2.19 1.52 0.90 2.55

(− 0.30) (− 0.37) (− 0.40)

Legal
1.78 0.79 4.05 0.72 0.11 4.71 0.00 0.00 0.00

(− 0.75) (− 0.69) (.)

Reported poached
1.23 0.52 2.91 7.58*** 3.19 17.99 3.27*** 1.36 7.86

(− 0.54) (− 3.34) (− 1.46)

Natural
238.98*** 8.61 6630.66 392.14*** 11.29 13,614.75 623.97*** 7.00 55,655.22

(− 405.19) (− 709.72) (− 1429.70)

Unknown
1.20 0.33 4.44 7671.73*** 15.11 3,894,537.72 0.66 0.13 3.32

(− 0.80) (− 24,384.75) (− 0.54)

Collision
2.61 0.49 14.06 0.23 0.02 3.00 1.17 0.19 7.27

(− 2.24) (− 0.30) (− 1.09)

tvc − (ln(t))

Natural
0.39*** 0.23 0.66 0.44*** 0.25 0.77 0.41** 0.20 0.82

(− 0.11) (− 0.13) (− 0.14)

Unknown
– – – 0.17*** 0.05 0.55 – – –

– (− 0.10) –
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Material Tables 4–6 for results from Models 1 and 2). Results, largely consistent across models (Table 1, Supple-
mentary Material Tables 4–6; and see Supplementary Material Table 7 for analogous ‘known-LTF’ model), reveal 
that both anthropogenic and natural seasons were associated with meaningful increases in the hazard of multiple 
endpoints for collared adult wolves, especially of reported poached.

Lost‑to‑follow‑up (LTF).  Hounding and hunting seasons without snow (hunt/hound; Jul–Nov 14th) were asso-
ciated with an 18% (HR 1.18, 95 CI 0.72–1.95) increase in hazard of LTF relative to the baseline period (April 
15th–June). Similarly, the hunting and snow season (hunt/hound/snow) increased the hazard of LTF by 19% 
(HR 1.19, 95 CI 0.65–2.19). The snow season outside hunting or hounding periods (snow) increased the relative 
hazard of a wolf going LTF by 52% (HR 1.52, 95 CI 0.9–2.55).

Legal.  Snowless hounding and hunting seasons (hunt/hound) were associated with a 78% increase in hazard of 
legal killing for wolves (HR 1.78, 95 CI 0.72–1.95), relative to the baseline season. On the other hand, hounding 
and hunting seasons with snow (hunt/hound/snow) decreased the hazard of a wolf being killed legally by 28% 
(HR 0.72, 95 CI 0.11–4.71). There were no records of wolves being killed legally during the snow season.

Reported poached.  The hunt/hound season increased the hazard of wolves being reported poached by 23% 
(HR 1.23, 95 CI 0.79–4.05). The hunt/hound/snow period was associated with the highest hazard of wolves 
being reported poached, with a substantial increase of 658% over the baseline season (HR 7.58, 3.19–17.99). 
The snow season without hounding or hunting (snow) was associated with another substantial, albeit lower 
than with hunting, increase in hazard for wolves being poached and reported, this time by 227% (HR 3.27, 95 
CI 1.36–7.86).

Natural, unknown and collision.  The hazard of a natural endpoint showed substantial initial increases in hazard 
relative to baseline for all seasons, but with considerable non-proportional decreases in hazard with monitoring 
time (Table 1). The natural endpoint saw higher increases in hazard during the snow (HR 623.97, tvc = 0.41) 
and hunt/hound/snow (HR 392.14, tvc = 0.44) seasons than for the snowless hunt/hound season (HR 238.98, 
tvc = 0.39). The hazard of an unknown endpoint increased during hunt/hound (HR 1.2), increased during hunt/
hound/snow seasons but with a considerable non-proportional decrease over time (HR 7671.73, tvc = 0.17), 
and decreased during the snow season (HR 0.66). The hazard of wolves dying by collisions increased during the 
hunt/hound (HR 2.61) and snow seasons (HR 1.17), and decreased during the hunt/hound/season (HR 0.23). 
The low number of events per variable (EPV, see Methods) for both the unknown and collision endpoints reduce 
our confidence in their results.

Analysis of cumulative hazards and incidences over monitoring time ’t’, by season.  Below we 
present results of constructed cumulative hazard curves (Fig. 1, Panels A–C) and CIFs (Fig. 2, Panels A–C) using 
our stratified joint Cox Model 3 (Table 1). Figure 1 illustrates how endpoint-specific hazards accumulate over a 
wolf ’s monitoring time, by season, and allow for comparing the magnitude (rather than HR) of each endpoint’s 
hazards. Figure 2 allows for discerning any interactions between endpoint hazards over time.

Baseline season (Figs. 1, 2, panels A–C).  LTF has by far the highest cumulative hazard and incidence of all 
endpoints throughout the season. Both hazard and incidence of other endpoints are much lower relative to LTF. 
The second highest cumulative hazard during the season belongs to reported poached until t = 600 (Fig. 1), when 
it is matched by the hazard of a natural endpoint (lower before) up to t = 1200 (Fig. 1). The hazard of a natural 
endpoint becomes the second highest cumulative hazard during the season at t > 1200 (Fig. 1), yet its incidence 
remains lower than reported poached until t = 2000, when it reaches similar levels (0.12, Fig. 2).

Hunt/hound season (Figs. 1, 2, panel A).  LTF remains the endpoint with the highest cumulative hazard and 
incidence of all endpoints (Figs. 1, 2) throughout the hunt/hound season, despite having the lowest HR increase 
(Table 1). The legal killing (during strict protection periods) and reported poached endpoints (both with HR > 1, 
Table 1) have the second largest, and similar, cumulative hazards up to t = 700 (Fig. 1), after which reported 
poached overtakes legal killing as the second largest cumulative hazard (despite the lower HR). However, both 
endpoints maintain similar levels of incidence throughout t. The increase in hazard of legal killing results in an 
increased incidence (0.12–0.085 = 0.35, t = 2000; Fig. 2) similar in magnitude to the observed decrease in cumu-
lative incidence of LTF (0.562 − 0.525 = 0.037, t = 2000; Fig. 2), which suggests the decrease in LTF incidence 
(HR > 1, Table 1) is influenced by the increase in hazard and incidence of legal killing. This increase in legal 
killing hazard may also preclude higher increases of incidence of the reported poached endpoint, despite the 
latter also having an HR > 1 (Table 1). The cumulative hazard of a natural endpoint becomes lower than during 
the baseline season by t < 450 (Fig. 1), and is the lowest cumulative hazard in the season throughout t. The inci-
dence of a natural endpoint equals that of legal killing and reported poached until t = 700 (Fig. 2), after which it 
becomes the lowest.

Hunt/hound/snow season (Figs. 1, 2, panel B).  Reported poached is the endpoint with the highest cumulative 
hazard throughout t, followed by LTF (Fig. 1). Indeed, the reported poached cumulative hazard is more than 1.5 
times the cumulative hazard of LTF by t = 750 (0.81/0.53 = 1.52) and until t > 1200 (Fig. 1). Reported poaching 
also has the highest incidence throughout t. Figure 2 shows how the magnitude of the reported poached hazard 
results in a substantial increase in incidence of the endpoint, but also suggests the reported poaching hazard may 
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play a role in the observed decrease in incidence of LTF (despite an HR > 1, Table 1). The third highest cumula-
tive hazard and incidence throughout the season belongs to the natural endpoint, which is only on average about 
a third of the LTF cumulative hazard (Fig. 1) and half its incidence (Fig. 2). Legal killing has the lowest cumula-
tive hazard throughout t.

Snow season (Figs.  1, 2, panel C).  LTF has the highest cumulative hazard and incidence throughout t. The 
second highest cumulative hazard belong to the reported poached endpoint, which amounts on average to half 
of the LTF cumulative hazard throughout t. The natural endpoint has the third highest cumulative hazard in 
the season but the second highest incidence, which is marginally higher than reported poached throughout t 
(Fig. 2). This increase in natural incidence relative to baseline, despite similar cumulative hazards, may be due in 
part to decreases in hazard of the unknown and legal endpoints (Table 1).

Discussion
Time-to-event models for wild animals generally model exposure of individuals to natural conditions that may 
affect the risk of mortality and disappearance. Most models neglect to consider seasons of high human activity 
that may affect such risks, or interactions between endpoint hazards (reflected in incidences) that may illuminate 
ecology. For many large carnivores, which suffer from low natural mortality yet are also subject to high risk of 
anthropogenic mortality and poaching, seasons of anthropogenic activity may be as important as natural ones 
in mediating cause-specific mortality and disappearance.

Importantly, such anthropogenic seasons of higher mortality need not be specific to the animals being stud-
ied, especially if the species is controversial and much mortality illegal: our anthropogenic seasons consist of 
state hunting and hounding seasons for species other than wolves (i.e., deer or bear hunting, and hounding; not 
wolf hunting), but that mediate human activity on the landscape during those seasons. Our results support the 
hypothesis that increases in poaching risk during hunting seasons may be attributable to the surge of individuals 
with inclination to poach on the landscape14,18,29. Alternatively, it could also suggest enhanced criminal activity of 
a few poachers during the same periods. We temper this increase in poaching risk by establishing snow cover as a 

Figure 1.   Endpoint-specific cumulative hazard over monitoring time (in days) during strict protection periods 
(lib_kill = 0) derived from endpoint-season specific hazards obtained from our preferred joint stratified Cox 
model (Model 3, Table 1) for n = 495 adult monitored wolves in Wisconsin, USA (1979–2012). Each panel 
corresponds to a season ((A) hunt/hound, (B) hunt/hound/snow, (C) snow) and illustrates the baseline (black 
curves) and seasonal (gray curves) cumulative hazards for our endpoints of interest: LTF (solid), reported 
poached (longdash), legal killing (dash-dot) and natural (dot).
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major environmental factor strongly associated with poaching. Moreover, our time-to-event analyses illuminate 
how to evaluate the effects that such anthropogenic seasons may have on risk of mortality and disappearance of 
monitored animals throughout their lifetime, and how considering such seasons may elucidate the mechanisms 
behind anthropogenic mortality and disappearance.

Additionally, our analysis period precedes and completely excludes any established public wolf hunting sea-
sons. Hence, our modeled anthropogenic seasons represent the periods of most relevant anthropogenic activity 
for wolves, as hypothesized by other studies14,29,33 and suggested by social science studies on inclinations to 
poach self-reported by both deer hunters and bear hunters, as well as acceptance of poaching by hunters and 
farmers30–32.

Our analyses show increases in the hazard of disappearances of collared wolves (LTF) relative to the baseline 
period (which excludes environmental and anthropogenic risks) for all seasons. The highest hazard of LTF occurs 
during the snow season, whereas increases in hazard are lower (and similar) for the two seasons that included 
hounding and hunting. LTF may experience changes in hazard due to changes in the hazard of any/all of its 
components: migration, collar failure, or cryptic poaching.

Constant and steep increases in LTF hazard throughout a wolf ’s lifetime suggests mechanisms other than 
migration regulating LTF hazard, given migration for adults is most frequent by yearlings and younger adults, 
around 1.5 to 2.2 years34–36. Moreover, only migration out of state would end monitoring, not routine extrater-
ritorial movements of radio-collared wolves. That our seasonal LTF curves depict the cumulative hazards more 
than doubling beyond those t generally associated with dispersal (~ t < 500, given wolves were collared as adults), 
and that such hazards remain high throughout a wolf ’s lifetime relative to other endpoints, suggests mechanisms 
behind LTF hazard that are additional to migration out of state. If migration had been the driving mechanism 
behind LTF hazard, we would also expect higher increases in hazard (more similar to the snow season) during 
other periods also associated with increased dispersal for adults, such as Oct–Nov36 within the hunt/hound and 
hunt/hound/snow seasons. Instead, during the latter seasons we observe smaller increases in LTF hazards, again 
suggesting mechanisms other than long-range movements out of state raising LTF hazard.

Figure 2.   Endpoint-specific cumulative incidence curves (CIFs) over monitoring time (in days) constructing 
using all endpoint hazards obtained from our preferred joint stratified Cox model (Model 3, Table 1) for n = 495 
adult monitored wolves in Wisconsin, USA (1979–2012). Each panel corresponds to a season ((A) hunt/
hound, (B) hunt/hound/snow, (C) snow) and illustrates the baseline (black curves) and seasonal (gray curves) 
cumulative incidences for our endpoints of interest: LTF (solid), reported poached (longdash), legal killing 
(dash-dot) and natural (dot).
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Although our study is unable to evaluate the contribution of collar failure to LTF hazard, we note that average 
and max time to LTF (t = 497, 2330 respectively) was similar to that of other anthropogenic endpoints (legal, 
t = 472, 2357; poached, t = 477, 2303) and much shorter than for other endpoints (collision, t = 590, 2235; natural, 
t = 655, 3051; unknown, t = 773, 2999) or censored observations (t = 882, 2833), which implicates causes other 
than battery or collar failure14.

As for the cryptic poaching component of the LTF hazard, the mechanism is consistent with the observed 
steep increase in hazard of LTF throughout a wolf ’s lifetime and seasons (contrary to the natural hazard), and 
with the similarities in time to endpoint between LTF and other anthropogenic, intentional killing (i.e., legal 
killing and reported poached).

The lower increases in LTF hazard during the hunt/hound and hunt/hound/snow seasons relative to the snow 
season show different patterns to that of the reported poached endpoint. We hypothesize the much higher relative 
cumulative hazard of the LTF endpoint for all seasons except hunt/hound/snow (for which reported poached 
is highest) may suggests a rate of cryptic poaching that increases not only due to more cryptic poaching activ-
ity than baseline during periods of more anthropogenic activity (hunt/hound and hunt/hound/snow seasons), 
but also due to decreased detection of poaching on the landscape given environmental conditions during the 
snow season33. This reduced detection of cryptic poaching which increases LTF hazard during the snow season 
does not translate to the hunt/hound/snow season (despite similar environmental conditions) due to a surge 
of individuals on the landscape that result in not only more, but detectable poaching, therefore increasing the 
reported poached rather than the LTF hazard. This seems to resemble the pattern reported in Santiago-Ávila 
et al.18 of an increase in the hazard of reported poached relative to that of LTF during a census period in which 
dozens of civilian wolf-trackers went out in snow months to count wolves. Therefore, search effort and visibility 
due to landscape conditions are important variables to consider when designing anti-poaching interventions.

The hazard of reported poached more than doubles during the snow season relative to the baseline season, 
and doubles again during the hunt/hound/snow season, during which wolves are simultaneously exposed to 
environmental and anthropogenic conditions. The reported poached cumulative hazard during the hunt/hound/
snow season is the highest of any across endpoint-seasons. These results implicate snow cover as a major factor 
mediating poaching activity (much lower hazard during snowless seasons), potentially by increasing wolf track 
detection. To those conditions, the hunt/hound/snow season may add more potential poachers or their increased 
killing, particularly during the (firearm) deer season, which more than doubles the snow season reported poached 
hazard. An important observation is that despite a decrease in incidence of LTF that season, in fact the LTF hazard 
increases, which points to this seasonal decrease in LTF incidence being an effect of the substantial increase in 
reported poaching hazard; i.e., the much higher rate of reported poached decreases LTF incidence despite an 
increased hazard of LTF. Therefore, we conclude that the reporting and documentation of poaching is improved 
when there are more people on the landscape, and worsened when there are fewer and snow cover is high.

For all anthropogenic and environmental seasons modelled, the natural endpoint shows an initial higher 
hazard but with a decrease in its seasonal hazard over time relative to baseline (i.e., non-proportional effects). 
The natural hazard is in general lowest during the hunt/hound season. For the hunt/hound/snow and snow 
seasons, the natural hazard is substantially lower than the LTF or reported poached endpoints. Moreover, the 
deceleration in the increase in natural hazards relative to the baseline period is suggestive of wolves learning 
to mitigate some seasonal natural hazards over their lifetime (e.g., intraspecific strife, starvation). We do not 
observe such a pattern with the LTF or reported poached endpoints, for which increases in hazard continue 
unabated over time. The difference in patterns between natural and anthropogenic endpoints suggests wolves 
may have difficulty and limited success in mitigating the hazard of anthropogenic killing, which is also by far 
the highest hazard overall. We also note that the natural hazard is lower than that for reported poached during 
the snow season, despite the marginally higher natural incidence, suggesting the latter could be an effect of the 
interaction of the natural hazard with lowered hazards from other, less prevalent endpoints (e.g., unknown, 
legal). The higher hazard of poaching (cryptic, through LTF, and reported) relative to other endpoints makes any 
possible interactions (compensatory or depensatory) among the other hazards (e.g., between natural death and 
legal killing) seem marginal and possibly influenced by (correlated to) fluctuations in the hazard of poaching. 
Hence, we caution researchers looking for compensatory or depensatory mechanisms to account for the role of 
poaching, including its cryptic component, first and foremost.

Our results also indicate different seasonal patterns of hazard for our natural and unknown endpoints, which 
suggests they should be analyzed separately (contra29). Failure to do so would inflate estimates of anthropogenic 
mortality and exaggerate the sustainability of lethal management programs that base predictions on estimates 
of human-caused mortality (e.g.37). Results for endpoints of lower prevalence, such as unknown, collisions, and 
(to a lesser extent) legal killing when implemented as in Wisconsin (by government agents removing suspected 
predators of livestock primarily), should be considered preliminary given their respective lower numbers of 
events per modeled covariate than those recommended to ensure accurate estimation38,39.

The increase in hazard of reported poached and LTF during the hunt/hound/snow season makes this sea-
son the deadliest for wolves throughout most of their adult lives (see Supplementary Material Fig. 3). The high 
hazards of LTF and reported poached, which are higher than all other endpoints for most seasons (hunt/hound, 
hunt/hound/snow and snow) and throughout t, also confirm poaching as by far the highest mortality hazard for 
collared adult wolves in Wisconsin throughout their lifetimes14,18.

Furthermore, given attitudes toward wolves became more negative among relevant demographics after wolf 
hunts were implemented in Wisconsin in 201232, the general hazard of poaching (cryptic and reported, for all 
seasons) may have increased relative to our study period (when wolf hunts were not legal) despite possibly result-
ing in a relatively lower incidence due to the magnitude of the increase in legal killing (e.g., Wisconsin February 
2021 wolf hunt40). Moreover, the ‘facilitated poaching’ hypothesis suggests further increases in poaching after 
permitting wolf hunting, trapping, and hounding (2012–2014, 2021–) relative to only permitting selected legal 
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killing (our study period)17,18,25. Such an effect of public wolf-hunts would hypothetically be mediated by a policy 
signal that further devalues wolves or suggests overabundance.

We are not aware of effective efforts by the WDNR to mitigate poaching hazard, neither through increased 
enforcement nor through public education initiatives. Rather, WDNR efforts have been focused on ‘tolerance 
hunting’ through reducing protections, despite multiple lines of evidence pointing to such actions not decreasing 
and potentially increasing total (cryptic and reported) poaching hazard14,18,25,31,32. In other jurisdictions, such 
‘tolerance killing’ is viewed skeptically as a management tool both scientifically and legally13,41–43. Our results 
underscore the need for increased protections and anti-poaching interventions to improve the wellbeing of 
wolves and their populations, and to reduce illegal exploitation of the public trust.

Methods
Data sources and preparation.  We analyzed data acquired from the Wisconsin Department of Natu-
ral Resources (WDNR) which includes all collared, adult wolves monitored via telemetry (consisting almost 
entirely of VHF transmitters) in Wisconsin, USA between 1979 and April 14, 2012, published previously in 
Treves et al.14 and Santiago-Ávila et al.18 (n = 495). The dataset includes 487 collared wolves captured and moni-
tored by the WDNR and agents, in addition to 8 wolves initially captured in MI with full monitoring history.

For those wolves monitored until death (n = 242, 49% of monitored individuals), the recorded endpoint clas-
sifies their cause of death by one of 5 mutually exclusive causes (following14,18): collision (with vehicles; n = 24, 
5%), legal (lethal control by agency personnel; n = 32, 6%), reported poached (illegal killings reported to and 
evidenced by the agency; n = 88, 18%), natural (unrelated to humans, such as disease or intraspecific strife; n = 77, 
16%) or unknown (uncertain cause of death; n = 21, 4%). Dead wolves were recovered via the mortality signal 
emitted from collars; legal killing by agents; or after reports by private citizens. We defined the date of endpoint 
for wolves monitored until death as their agency-recorded date of death.

In addition to wolves monitored until death, the data includes 213 wolves (43% of monitored individuals) 
with a ‘lost-to-follow-up’ (LTF) endpoint. LTF may occur because: (a) collars stop transmitting (i.e., mechanical 
failure); (b) permanent migration out of monitoring range; or, (c) cryptic poaching (i.e., concealed and unde-
tected poaching)17,18. The WDNR assigned an LTF endpoint to a wolf if agency personnel was unable to detect 
the collar signal after various months of aerial or ground telemetry (although effort was not quantified)14,18. 
We defined the date of endpoint for LTF wolves as the last date of telemetry contact with them. There were 33 
LTF wolves (15% of LTF and 7% of collared) that were later recovered, a third of them poached (n = 11). Our 
main results classify these as LTF, but we include results for a separate endpoint classification of these 33 wolves 
as ‘known-LTF’ in supplementary materials. We censored those individuals that survived until the end of the 
monitoring period (April 15, 2012, n = 40). Our LTF endpoint is conservative given we censored, rather than 
impute (as in Santiago-Ávila et al. 2020), the fates of n = 26 wolves that disappeared sometime between December 
31st, 2011 and April 14th, 2012 and lacked subsequent monitoring or endpoint data in reports between 2012 
and 2013 (see Supp Data S2 in Ref.18). Simulations suggest at least some of these latter wolves may have gone 
LTF in the winter of 2011–201218.

We include two external time-dependent covariates in our statistical models (see below), which are variables 
that change value at specific dates due to external events, such as a change in season or policy. To include those 
variables, we split each wolf ’s monitoring history into time intervals at each specific date of change of that vari-
able so that its value remains constant for each interval. Therefore, each time interval reflects the type of period 
each wolf was exposed to, and the specific dates during which s/he was exposed.

Our main covariate of interest, risk_season, is a four-level categorical variable defining intra-wolf-year periods 
(wolf-year = April 15th to April 14th) characterized by specific anthropogenic (i.e., hounding and hunting seasons 
for deer and black bear) and environmental (i.e., snow cover) factors, their overlap, and absence (Table 2). We 
used specific dates to split each wolf-year in our study period (1979–2012) into four distinct seasons. Our baseline 
period (risk_season = 0) refers to April 15th to June 30th (or to July 9th from 1991 to 2012) and is characterized 
by the absence of the anthropogenic and environmental conditions present in the other variable levels (i.e., no 
hounding, no white-tailed deer or black bear hunting, no snow cover). Our hounding and hunting season with-
out snow cover (risk_season = 1, ‘hunt/hound’), runs from July 1st (July 10th from 1991 to 2012) to Nov 14th. 
In WI, use of hounds for bear hunting was legalized in 1963 and bear dog training was allowed starting July 
(1st or 10th) until August 31st. Deer and bear seasons start soon thereafter, in early to mid-September, with the 
deer season running through the first Sunday in January for most counties (in some counties, the deer season 
extends to January 31st). Our hounding and hunting season with snow cover (risk_season = 2, ‘hunt/hound/
snow’) starts Nov 15th and runs through the first Sunday in January, when deer hunting season ends for most 

Table 2.   Intra-wolf-year (April 15th–April 14th) seasons (risk_season) characterized by the absence (baseline 
level), presence or overlap of anthropogenic and environmental factors mediating endpoint-specific risk.

Season starts Season ends Season (risk_season)

April 15th June 31st (pre–1991) or July 9th (1991 
onward) ‘Baseline’; no hounding/hunting/snow (0)

July 1st (pre–1991) OR July 10th (1991 
onward) November 14th ‘Hunt/hound’ (1)

November 15th 1st Sunday in January ‘Hunt/hound/snow’ (2)

Monday after 1st Sunday in January April 14th ‘Snow’ (3)
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counties in WI. Average annual duration of snow cover extends to > 140 days along Lake Superior (http://​aos.​
wisc.​edu/), and most occupied wolf range is in northern Wisconsin. To this data, we added statewide monthly 
average snowfall (1975–2011) from the WI State Climatology Office, modeling snow cover to include months 
with an average snow cover of > 1 inch (November through May). Considering both data sources, starting the 
period on November 15th (average 5.31 in; October, 0.63 in) allowed us to model 151 days of snow cover up 
to April 14th (average 2.88 in; May, 0.19 in), the end of the wolf-year. Lastly, our snow cover season without 
hounding or hunting (risk_season = 3, ‘snow’) runs from the Monday after the first Sunday in January (when deer 
season closes for most WI counties), until April 14th, as per our snow cover modeling. A breakdown of events 
per endpoint and time at risk by season is provided in Supplementary Material Table 2.

We also model policy protection periods following Santiago-Ávila et al.18 (lib_kill, where 1 = reduced pro-
tections, i.e., liberalized killing; and 0 = full protection), and include it as a stratifying variable in our statistical 
models, given evidence of endpoint-specific and sometimes non-proportional effects. In WI, gray wolves were 
exposed exclusively to full protections under the Endangered Species Act (ESA) from 1979 to March 31, 2003. 
From April 2003 to 2012, wolves in WI (and MI) were exposed to 11 alternating, sequential and mutually exclu-
sive periods of reduced and restored protections that liberalized and restricted wolf-killing, respectively (Ref.44, 
Supplementary Material Table 2). Periods of reduced protections and liberalized killing (including periods during 
which permits for ‘take’ were issued, as well as periods of ‘down-’ and ‘de-listing’ from the ESA) were character-
ized by an announcement of policy change reducing constraints for managers or landowners to kill wolves in 
response to perceived or actual conflicts, most notably wolf predation on domestic animals.

Statistical tests.  Our methods exploit the survival history of collared, monitored adult wolves, measured in 
days (t), from date of capture and collaring to date of endpoint (i.e., death by multiple causes (see “Data sources 
and preparation” section) or disappearance). Survival analysis estimates ‘time-to-event’ functions; i.e., the prob-
ability of observing a time interval (T), from beginning of monitoring to endpoint, greater than some stated 
value ‘t’, S(t) = P(T > t) . Such techniques also allow for estimating (endpoint-specific) hazard functions, hk(t) ; 
the instantaneous rate of occurrence of an endpoint (k) conditional on not experiencing any endpoint until that 
time45–47. Semi-parametric, Cox proportional hazard models allow for the estimation of how endpoint-specific 
hazards change as a function of survival (i.e., monitoring) time and a set of covariates S(t) = e−hk(t,x,β) , where 
x refers to a vector of covariates and β to its parameter estimates. Cox models estimate these covariate effects 
on endpoint-specific hazard(s) as hk(t) = h0k(t)e

(β1x1+···+βjxj) , where h0k(t) is an unestimated baseline hazard 
function (i.e., semi-parametric), and βj represent the estimates of HRs for each covariate xj (HR > 1 is interpreted 
as an increase, and HR < 1 as a decrease, in hazard).

We employed the Lunn and McNeil48 data augmentation technique (by k endpoints) to build stratified (by 
endpoint) joint Cox proportional hazard models to simultaneously estimate endpoint-specific changes in HRs 
for each endpoint-season interaction. In using a Cox model, we assume that the endpoint and time-to-endpoint 
for each wolf is independent of other wolves’ (i.e., one wolf ’s monitoring history and endpoint does not inform 
others). Because we split the monitoring history of wolves into ‘spells’ for inclusion of time-dependent covari-
ates (see “Data sources and preparation” section), we cluster analyses by following49. We also assume censor-
ing is independent of other endpoints, as we explicitly account for LTF as a separate endpoint given evidence 
it contains an unaccounted-for source of mortality14,17,18,29. We evaluate compliance with our proportionality 
assumptions using Schoenfeld residuals46,47,50. We control for non-proportionality of endpoint-season interac-
tions, when necessary, through the inclusion of time-varying coefficients (tvc) for the respective interaction(s). 
A tvc is an interaction of a parameter with a function of analysis time (t), in our case, ln(t) , to model the change 
in the main endpoint-season parameter’s effect over time. We selected the preferred Cox model considering 
Akaike’s Information Criterion (AIC) and weights, Bayesian Information Criterion (BIC), and compliance with 
Cox model assumptions.

We then proceed with a competing risk approach by using endpoint-season specific parameter estimates from 
the best stratified joint Cox model to construct cumulative incidence curves (CIFs) for each endpoint and season. 
Competing risk approaches focus on the estimation of endpoint-specific CIFs, defined by the failure probability 
Prob(T ≤ t, D = k) ; i.e., the cumulative probability of an endpoint, k, occurring over time in the presence of 
all other competing endpoints45,51,52. These analyses account for the CIF of any endpoint being a function of all 
endpoint-specific hazards, hk(t) , thus accounting for the rate of occurrence of that endpoint in addition to how 
other endpoints influence it53. Thus, joint analysis of hazards and incidence is essential for discerning interactions 
between endpoint hazards and how they are reflected on each endpoint’s incidence.

Consistent with rigorous approaches to competing risk analyses, we present and discuss results for our best 
performing stratified joint Cox model, by endpoint and season, as well as endpoint-specific CIFs, by season, 
and synthesize findings39,45,51,53. We conducted all statistical analyses in Stata 16 (StataCorp LLC, College Sta-
tion, TX, 2019).
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