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ABSTRACT: Therapeutic peptides and proteins derived from either
endogenous hormones, such as insulin, or de novo design via display
technologies occupy a distinct pharmaceutical space in between small
molecules and large proteins such as antibodies. Optimizing the
pharmacokinetic (PK) profile of drug candidates is of high importance
when it comes to prioritizing lead candidates, and machine-learning
models can provide a relevant tool to accelerate the drug design
process. Predicting PK parameters of proteins remains difficult due to
the complex factors that influence PK properties; furthermore, the data
sets are small compared to the variety of compounds in the protein space. This study describes a novel combination of molecular
descriptors for proteins such as insulin analogs, where many contained chemical modifications, e.g., attached small molecules for
protraction of the half-life. The underlying data set consisted of 640 structural diverse insulin analogs, of which around half had
attached small molecules. Other analogs were conjugated to peptides, amino acid extensions, or fragment crystallizable regions. The
PK parameters clearance (CL), half-life (T1/2), and mean residence time (MRT) could be predicted by using classical machine-
learning models such as Random Forest (RF) and Artificial Neural Networks (ANN) with root-mean-square errors of CL of 0.60
and 0.68 (log units) and average fold errors of 2.5 and 2.9 for RF and ANN, respectively. Both random and temporal data splittings
were employed to evaluate ideal and prospective model performance with the best models, regardless of data splitting, achieving a
minimum of 70% of predictions within a twofold error. The tested molecular representations include (1) global physiochemical
descriptors combined with descriptors encoding the amino acid composition of the insulin analogs, (2) physiochemical descriptors
of the attached small molecule, (3) protein language model (evolutionary scale modeling) embedding of the amino acid sequence of
the molecules, and (4) a natural language processing inspired embedding (mol2vec) of the attached small molecule. Encoding the
attached small molecule via (2) or (4) significantly improved the predictions, while the benefit of using the protein language model-
based encoding (3) depended on the used machine-learning model. The most important molecular descriptors were identified as
descriptors related to the molecular size of both the protein and protraction part using Shapley additive explanations values. Overall,
the results show that combining representations of proteins and small molecules was key for PK predictions of insulin analogs.

1. INTRODUCTION
Optimizing pharmacokinetic (PK) properties of lead candidates
is an important aspect of the multiobjective drug design
challenge.1,2 Prediction models of PK parameters can accelerate
the drug development process and potentially reduce the
number of labor-intensive and costly in vivo experiments.3

While several published studies describe the PK prediction of
small molecules,4−6 less is published for proteins or peptides.7

Strategies to protract the PK properties of protein therapeutics
include conjugation to larger proteins, e.g., fragment crystalliz-
able (Fc) region or lipidation, by attaching small molecules such
as fatty acid side chains.8,9 Examples for the latter include long-
acting insulin analogs such as degludec (Figure 1) or GLP-1
analogs such as semaglutide.10 The presence of conjugated
proteins or added fatty acid side chains creates a practical
challenge for machine-learning models as commonly used
encoding mechanisms for biologics series are not applicable. For

instance, sequence-based descriptors that encode the physical−
chemical properties of amino acids on the residue level do not
capture chemical modifications such as fatty acid acylations. In
turn, global physical−chemical properties such as molecular
weight and charge might not capture underlying sequential
information from the amino acid residues.
In the field of small molecules, machine learning provides a

cardinal tool for various molecular property predictions,11 and
several studies describe the prediction of PK parameters, using
different encodings.4,5,12−14 Ye et al.5 used extended con-

Received: February 23, 2023
Accepted: June 6, 2023
Published: June 22, 2023

Articlehttp://pubs.acs.org/journal/acsodf

© 2023 The Authors. Published by
American Chemical Society

23566
https://doi.org/10.1021/acsomega.3c01218

ACS Omega 2023, 8, 23566−23578

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kasper+A.+Einarson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kristian+M.+Bendtsen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kang+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+Thomsen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Niels+R.+Kristensen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ole+Winther"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Simone+Fulle"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Simone+Fulle"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Line+Clemmensen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hanne+H.F.+Refsgaard"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c01218&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01218?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01218?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01218?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01218?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01218?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/8/26?ref=pdf
https://pubs.acs.org/toc/acsodf/8/26?ref=pdf
https://pubs.acs.org/toc/acsodf/8/26?ref=pdf
https://pubs.acs.org/toc/acsodf/8/26?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c01218?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


nectivity fingerprints (ECFPs) along with eight mainly
physiochemical descriptors, while Wang et al.12 employed the
Molecular Operating Environment (MOE) software15 for
calculation of molecular representation. Wang et al.13 in turn
used Morgan and Molecular ACCess System (MACCS)16

fingerprints, an embedding of Simplified Molecular-Input Line-
Entry System (SMILES) as well as a molecular graph
representation to predict PK-related properties such as aqueous
solubility, lipophilicity, and membrane permeability.17

For biologics, such as proteins, encoding of the amino acid
sequence,18 graph representation,19 and representation using
protein-embeddings have been used to predict biological
properties.20 Examples of PK-related end points include a
deep-learning approach by Khurana et al.21 for sequence-based
solubility classification of proteins using Convolutional Neural
Networks (CNN). Additionally, fully connected layers were
used to incorporate physiochemical and structural information
from numeric molecular descriptors. A recent approach utilizes
Graph Convolutional Networks to perform slightly better than
other sequence-based models when classifying solubility of a
protein.19 A large comparison between machine-learning and
deep-learning models on experimentally observed properties of
proteins, carried out by Xu et al.,22 suggested that sequence-
based amino acid property-related descriptors modeled with a

1D-CNN is a suitable setup for protein design tasks. The effects
of using different representations of molecules along with
different machine-learning models have thus been widely
investigated for both small-molecule drugs and proteins.
However, to our knowledge, representing molecules as a
combination of proteins and small molecules for downstream
machine-learning modeling tasks is not described in the
literature. In this work, molecular representations were
investigated for proteins using a comprehensive PK data set
from Novo Nordisk of a diverse set of insulin analogs. We
combined knowledge from small-molecule literature and recent
developments on protein−drug design and property prediction
using machine learning to investigate the best representation
methods for PK parameter prediction of therapeutic proteins.

2. MATERIALS AND METHODS
2.1. Data. The PK data set in this analysis consists of 640

unique insulin analogs tested in rats by intravenous (iv) injection
and the following PK parameters: Cl (clearance), T1/2
(elimination half-life), and MRT (mean residence time). The
historical data originate from 16 different discovery projects at
Novo Nordisk from 2008 to 2021 and consist of mutation
variants in the insulin backbone and attached extensions via
either fatty acid side chains (∼50%), peptides (∼25%), or

Figure 1. Examples of insulin analogs. Insulin Aspart (a) has a single substitution compared to human insulin in which proline is replaced with aspartate
at position B28. Insulin Degludec (b) in which threonine is deleted at position B30 and 16-carbon fatty diacid is added via a glutamic acid linker.
Insulin-0327 (c) has an arginine substitution at B29, removed threonine at B30, added lysine at A22, and a 20-carbon fatty acid added via a glutamic
acid linker. Color red indicates amino acid residues which have been removed compared to human insulin (gray). Green refers to items added
compared to human insulin. Solid lines represent disulfide bonds. See the Supporting Information (Tables S1 and S2) for descriptors and PK
parameters for the analog-dosed iv in rat.
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fragment crystallizable (Fc) region attachment (∼10%) (Table
1).
Generally, insulin analogs with no attachments have a fast PK

with short half-life (mean = 0.41 h), short MRT (mean = 0.34
h), and high Cl (23.5 min/mL/kg). All other groups provided
modifications to the analog that protracted the PK resulting in
longer half-life and MRT and lower Cl. This is especially
pronounced for analogs with Fc region attachments to the
insulin. The modifications to insulin provide a highly diverse
data set in terms of molecular sequences as well as kinetics.
Figure 1 shows the structure of three insulin analogs that have

different kinetics. Figure 1a illustrates insulin Aspart23 which
belongs to the group of insulin analogs without any attachments
(Table 1). This analog has a single amino acid substitution
compared to human insulin. Two examples of analogs with a
small-molecule protractor (acylation) are given in Figure 1b and
Figure 1c with insulin Degludec24 and insulin-0327,25

respectively. These three insulin analogs, together with human
insulin, have publicly available iv PK data in rat which is
provided in the Supporting Information (Table S1) along with
the molecular descriptors used in this analysis (Tables S1 and
S2).
2.2. PK Parameters. The following three PK parameters

were selected for investigation: clearance (CL) (mL/min/kg),
elimination half-time (T1/2) (h), and mean residence time
(MRT) (h) from iv studies in rat. All three PK parameters were
(natural) log transformed and provided as mean estimates based
on noncompartmental analysis (NCA) of individual animal
concentration−time profiles applying WinNonlin (Certara, CA,
U.S.). The calculation of the area under the plasma
concentration−time curve extrapolated to infinity (AUC) was
based on the “linear-up log-down”26 method, and uniform
weighting was used for estimation of the terminal rate constant.
MRT extrapolated to infinity was calculated as the area under
the first moment curve (AUMC) extrapolated to infinity divided
by the AUC. The PK parameters are highly correlated as in
agreement with the general understanding of the three PK

parameters and their relations.27 The observed correlations were
0.95 between MRT and T1/2, −0.93 between CL and MRT,
and a correlation of −0.89 between CL and T1/2.
2.3. Molecular Representations and Encoding. The

descriptors were divided into four descriptor space categories
DS1−DS4, each describing either the amino acid backbone
(DS1 and DS3) or attached fatty acid side chain (DS2 and DS4)
components of the insulin analog (Table 2). DS1 and DS2 are
molecular descriptors, encoding the physical−chemical proper-
ties of the backbone and fatty acid side chain, respectively,
whereas DS3 and DS4 are learned embeddings based on the
amino acid backbone or chemical nature of the respective
molecule. DS1 contains 15 mainly physicochemical descriptors
calculated on themolecule, includingmolecular descriptors such
as size, charge, and hydrophobicity. DS2 consists of seven
physicochemical descriptors calculated solely on the fatty acid
side chain using the RDkit28 package in Python. An exhaustive
list of all descriptors from DS1 and DS2 is provided in the
Supporting Information (Tables S3 and S4). The extended-
connectivity fingerprint with bond diameter 4 (EFCP4)29 was
considered an alternative to descriptors in DS2 but with
comparable performance (Figure S1); DS2 was favored due to
more straightforward interpretation of physiochemical descrip-
tors.
DS3 utilizes the ESM-1b30 to encode from the sequence

backbone, using an embedding length of 1280. For this, the
sequence part of the insulin analog and attachments such as
peptide and antibody moieties are concatenated to one
sequence. Residue-based encoding such as one-hot and z-scales
was also considered but did not provide better performance
(Figure S2). DS4 encoded the fatty side chain utilizing a natural
language processing approach called mol2vec,31 originally
developed for small molecules. Here, the SMILES representa-
tion of the fatty acid side chain is encoded using mol2vec and an
embedding length of 100. For examples of DS3 and DS4
encodings, see the Supporting Information (Figure S3).

Table 1. Insulin Analogs in Groups According to Protraction Modificationsa

backbone mutationsb CL (min/mL/kg) T1/2 (h) MRT (h)

group name n 0−1 2−3 4−5 ≥6 mean [SDc] mean [SDc] mean [SDc]

no attachments 9 1 5 3 0 23.5 [6.51] 0.41 [0.19] 0.34 [0.14]
acylation 338 20 182 107 29 0.43 [0.17] 7.53 [0.89] 9.10 [0.99]
peptide attachment 154 9 29 62 54 0.26 [0.054] 6.08 [0.63] 7.37 [0.78]
amino acid extension 35 30 1 0 4 2.7 [0.43] 2.14 [0.35] 1.04 [0.38]
Fc region attachments 60 5 7 8 40 0.06 [0.011] 47.7 [6.51] 50.2 [6.26]
others 44 23 9 8 4 7.8 [2.09] 2.55 [0.61] 2.12 [0.46]

aMean and standard deviation (SD) of all three PK parameters, clearance (CL), half-life (T1/2), and mean residence time (MRT) are calculated
for each of the insulin groups along with the number of backbone mutations. bNumber of backbone mutations compared to human insulin.
cEstimated standard deviations (SD) by the square-root of mean of variances.

Table 2. Different Descriptor Spaces (DS) Used to Represent the 2D Structure of Insulin Analogsa,b

name type of descriptors examples
descriptor space

dimension

DS1 overall numeric molecular descriptors calculated from the entire sequence of the insulin analogs size, charge, hydrophobicity 15
DS2 physiochemical molecular descriptors of the fatty acid side chain (acylation group) surface area, LogP, molecular

weight
7

DS3 NLP embedding approach ESM-1b,30 encoding the entire backbone sequence (insulin and attached
amino acids/sequences)

GIVEQCCTSICSL 1280

DS4 SMILES representation of the fatty acid side chain Mol2Vec31 used for embedding of SMILES NC(C)C(�O)O 100
aAbbrevations: NLP, Natural Language Processing; ESM, Evolutionary Scale Modeling; SMILES, Simplified Molecular-Input Line-Entry System.
bFor more details on descriptors, see Supporting Information Table S3, Table S4, and Figure S3.
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All possible combinations of the molecular representations
DS1−DS4 (15 in total) were investigated. Below, e.g., DS1234 is
used as a notation for the ML model utilizing representations
from all sources, i.e., DS1, DS2, DS3, and DS4.
2.4. Models. Two different machine-learning models were

explored to predict PK parameters: Random Forest (RF)32 and
Artificial Neural Network (ANN).33

2.4.1. Random Forest (RF). RF is an ensemble of decision
trees using a selected number of randomly sampled variables in
each decision split. A total of 200 decision trees were trained on
subsamples of data using bootstrapping, and the outputs were
averaged to fit into a regression task. The number of features
(maxf) in each split and the minimum number of observations in
a leaf node (minleaf) were considered hyperparameters and
tuned by evaluating all combinations of a prespecified search
space provided in the Supporting Information (Table S5). To
include information from amino acid sequences (DS3) and
SMILES representations (DS4) in RF, a principal component
analysis (PCA) was performed on the embedding space, and the
top 20 principal components for each type of descriptor were
included as features. The effects of using PCA on the
embeddings are considered in the Supporting Information
(Figure S4), indicating that the RF model performance
benefited from the PCA reduction.

2.4.2. Artificial Neural Network (ANN). Fully connected
layers were used for the numerical descriptors DS1 and DS2,
while one-dimensional convolutional neural networks (1D-
CNN) were used for the sequential amino acid and SMILES
representations with two CNN layers (DS3 and DS4). The
number of fully connected layers (Fc) to model the numerical
molecular descriptors was determined in the hyperparameter
search allowing for one or two fully connected layers. The
models were trained using the Adam optimizer with L2
regularization on the loss function. All ANN models were
trained with a max epoch of 200 with early stopping. Batch-
normalization, dropout, and ReLU activation34 were used
between all layers excluding the final output layer. The output
layer size was set to three, one for each of the PK parameters.
The information from the CNNfilters was converted to numeric
format using a fully connected layer before being parsed to the
output layer. Dropout, L2 regularization, batch size, learning
rate, and the sizes of the fully connected hidden layers were
considered hyperparameters and tuned using the optuna
implementation of the Tree-Structured Parzen Estimator
(TPE)35 for 30 iterations. Due to the large embedding size of
ESM-1b, max-pooling was applied between CNN layers of DS3
with a kernel size equal to the kernel filter size. When molecular
descriptors contained both a numeric and a sequential
representation, e.g., DS13, the fully connected layers from the
different representations were concatenated before the output
layer. A table of the optimal hyperparameters and the search
space can be found in Table S5 (Supporting Information).
2.5. Model Evaluation. Model evaluation and selection

were performed in a nested cross-validation (CV) setup with five
folds with random splits. Thus, the five test sets contain 128
analogs each, and the remaining 512 analogs are used for
training/validation in each fold. The data splits were identical for
RF and ANN to ensure model evaluation on the exact same data.
Once the optimal hyperparameter setting for each fold was
found, the model was retrained on the entire training/validation
data set and evaluated on the test set for that fold. The root-
mean-square error (RMSE) was used to evaluate the model

performance on the five test sets as well as model selection
during the hyperparameter search and is defined as

N
y yRMSE

1
( )

i

N

i i
1

2=
= (1)

where N is the number of insulin analogs, yi is the ith (log)
prediction, and yi is the ith (log) measured PK value.
Fold error (FE) and average fold error (AFE) are calculated

with

AFE 10 N1/ log(FE )i
N

i1= =

where y yFE /i i i= if y yi i> and y yFE /i i i= if y yi i< .
Additionally, the modeling was carried out with temporal data

splits to evaluate the prospective modeling performance.36 In
this way, the model was trained on data acquired before a
specific date and tested solely on data after that date. The
temporal data splits can be seen in the Supporting Information
(Figure S5). An overview of the full process from molecular
representation to modeling and evaluation can be seen in Figure
2.

2.5.1. Extraction of Feature Importance via Shapley
Additive Explanations. SHapley Additive exPlanations
(SHAP) values were used to identify the most important
features for the PK parameter predictions.37 The method
provides explanations for contributions of the descriptors as well
as the contribution of each observation on all three PK
parameters. For ANN, the DeepExplainer37 was used to
approximate the conditional expectations of SHAP whereas
the Tree Shap implementation38 was used for Random Forest.
SHAP values were calculated by retraining the model on the full
data set and evaluating SHAP values for all data. The
hyperparameters for this model were set to the median of the
best hyperparameters learned from the nested cross-validation
procedure; see Table S5 (Supporting Information) for exact
hyperparameters. Because we combined many molecular
descriptors from different sources, correlation between some
of the descriptors was inevitable. Evaluation of SHAP values for
correlated features is an active research field39,40 with no ”golden
standard” framework. In this work, we grouped highly correlated

Figure 2. Overview of the modeling flow for PK parameter prediction.
The insulin analogs were represented using four different descriptor
spaces, scaled and fed to the machine-learning models Random Forest
(RF) and Artificial Neural Network (ANN). Evaluation was done using
fivefold nested cross-validation.
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descriptors and summed up the SHAP values within those

groups as suggested by the main author of SHAP.41 Correlation

structures for the numeric descriptors DS12 as well as the full

descriptor space DS1234 can be seen in the Supporting

Information (Figures S6 and S7).

2.5.2. Evaluation Using Paired t Test. For comparison of
model performance, we employ a paired t test on RMSE values
of the outer test sets from the nested CV procedure. This
approach assumes independent test scores, which is well-known
not to be completely true when using cross-validation.42 The
effects of different evaluation methods are investigated in

Figure 3.Model performance on clearance (CL) measured as root-mean-square error (RMSE) on test sets on all combinations of descriptors using
both Random Forest (RF) and Artificial Neural Network (ANN). Random data splits are seen in (a) and temporal splits in (b). Standard deviation of
CL observations was used to define a region of experimental error while a mean predictor model defines the lowest model performance threshold.
Zoomed in areas (black box) of the best performing models can be seen as the bottom two figures. For descriptor space categories, see Table 2.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c01218
ACS Omega 2023, 8, 23566−23578

23570

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c01218/suppl_file/ao3c01218_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01218?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01218?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01218?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01218?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01218?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Dietterich et al. (1998),43 and it is found that paired t tests on the
same data folds are feasible but slightly optimistic in finding a
difference between models. The p-values were subject to
Benjamini−Hochberg (BH) correction for multiple testing44

with a false discovery rate of 5%.
2.5.3. Mean Predictor Model and Experimental Error. The

model RMSE values were compared to experimental error
(highest achievable model performance) and a simple mean
predictor model using the mean of training data as predictions
on the test set (lowest model performance). Each PK
observation is a mean value of repeated experiments of the
same analog in different rats. Using the standard deviations
associated with each PK observation, we can calculate the
variance in log space.45

i
k
jjjjj

y
{
zzzzzyf

y2
2

where f is the natural logarithm function, y is the PK observation,
and σy is the standard deviation of each PK observation. Taking
the mean of the variances and subsequent square root yields the
mean standard deviation in log space which we denote
“experimental error”. A 95% confidence interval is also provided
assuming normality of the standard deviations around the mean
estimate.

3. RESULTS
PK parameters (Cl, T1/2, and MRT) measured in rats could be
predicted by machine-learning models based on molecular
representations of insulin analogs all with RMSE in the 0.5−1
range with both random and temporal data splits (Figure 3).
The two data-splitting strategies overall gave comparable results
with a slight increase in median and variance of the test set
RMSE values for temporal data splits. The lowest median RMSE
for the five test folds is found using DS124 (RF) and DS1234
(ANN) for both random and temporal splits. Due to highly
correlated PK parameters, the following results highlight only
clearance (CL) while results for T1/2 and MRT can be seen in
the Supporting Information.
Predicting PK using only molecular descriptors from DS1

gave a solid baseline performance that outperformed all other
combinations of representations that did not include DS1.
Figure 3 shows a boxplot of the outer test scores from the cross-
validation procedure for CL for all combinations of molecular

representations for both RF and ANN models. See the
Supporting Information (Figures S8 and S9) for T1/2 and
MRT, respectively. The region of experimental error, measured
in log RMSE, was between 0 and 0.29 for CL, between 0 and
0.38 for T1/2, and between 0 and 0.24 for MRT. The mean
predictor model gave a median log RMSE of 1.38 for CL, 1.44
for T1/2, and 1.42 for MRT using random data splits. The
equivalent mean predictor model performances for temporal
splits were 1.44 for CL, 1.48 for T1/2, and 1.45 for MRT.
Clearly, using representations exclusively from the backbone
amino acid sequence (DS3) or protractor (DS2 or DS4)
exhibited inferior performance for both the RF and ANN. For
this reason, Figure 3 also shows a zoomed in area of the selected
groups of descriptor sets that provided the lowest test errors (all
including DS1).
Prediction accuracy measured in fold-error is provided in

Table 3 for the best performing descriptor sets DS124 and
DS1234 for RF and ANN, respectively. The percentage
distribution of fold errors between RF and ANN is similar
across although the average fold error for RF, ranging from 1.9 to
3.3 depending on PK parameter and splitting strategy, is lower
compared to the 2.2−3.5 for ANN. Model performance was
seen to drop for temporal data splits compared to random splits
but still has a minimum 70% of data points predicted within
twofold error.
The model performances between descriptor sets for random

and temporal splitting are similar, Therefore, the following
results focus only on random splitting.
3.1. Comparison between Models. We compared the

performance of the two different models for each descriptor set.
In the following, we only consider the seven descriptor sets
which include DS1 as these are clearly seen to be the most
interesting molecular representation combinations (Figure 3a).
Generally, RF and ANN performed on par with only DS13 being
significantly different (p-value = 0.03). The other descriptor sets
had no significant difference in performance between RF and
ANN, all with p-values above 0.07. The lowest median test
RMSE score was found for DS124 for RF and DS1234 for ANN.
3.2. Comparison of Descriptor Sets. The performance

difference was pronounced depending on the choice of
molecular representation. Figure 4 shows all p-values from
paired t test for both RF (upper triangle) and ANN (lower
triangle) where black boxes highlight the significant p-values
after Benjamini−Hochberg correction.

Table 3. Prediction Accuracy for Random Forest (DS124) and ANN (DS1234) Models for Both Random and Temporal Data
Splits for All Three PK Parameters

model parameter average fold error within twofold error (%) within threefold error (%) within fivefold error (%)

random splits
RF(DS124) CL 2.5 84 91 95

T1/2 1.9 90 95 97
MRT 1.9 90 95 97

ANN(DS1234) CL 2.9 83 90 93
T1/2 2.2 86 92 95
MRT 2.2 86 92 95

temporal splits
RF(DS124) CL 3.3 70 84 92

T1/2 2.5 79 90 96
MRT 2.5 82 89 95

ANN(DS1234) CL 3.5 70 80 88
T1/2 2.6 73 84 90
MRT 2.6 74 84 91
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For ANN, Figure 4 shows that DS124 and DS1234 both
performed significantly better than DS1 and DS12 only (p-value
= 0.018 and 0.0098, respectively). This indicates that the model
benefited from encodings of both DS3 and DS4 compared to
purely numeric descriptors in DS12. However, no significant
difference between DS1234 and the other well performing
descriptor sets was observed after BH correction for multiple
testing: DS124 (p-value = 0.12) and DS14 (p-value = 0.05). For
RF models, only DS124 with the lowest median test score was
significantly better than baseline DS1 (p-value = 0.011).
However, no significant difference between DS124 and models
with similar median test scores was observed: DS1234 (p-value
= 0.11), DS12 (p-value = 0.12), DS134 (p-value = 0.23), and
DS14 (p-value = 0.21). The hyperparameters for ANN using
DS1234 and RF using DS124 can be seen in Table S5
(Supporting Information). The gain in performance on test sets
for these twomodels compared toDS1 is visualized as observed/
predicted scatter plot on PK parameter clearance in Figure 5.
Here, it is seen how the mean RMSE of the five test sets drops
substantially from 0.9 to 0.68 for ANN and from 0.74 to 0.60 for
RF. The four insulin analogs with publicly available rat iv data
are highlighted in Figure 5 and show better prediction error for
all compounds except insulin-0327 for RF and insulin Degludec
for ANN when compared to baseline DS1. Figures for PK
parameters T1/2 and MRT can be seen in Figures S10 and S11
(Supporting Information).
3.3. Model Performance on Individual Insulin Groups.

Random Forest models on descriptor DS124 were also trained
on the individual groups from Table 1 and compared to the RF
models trained on all data. The models were evaluated on data
from the individual groups, and the results can be seen in Table
4.
Acylation, amino acid extension, and Fc region attachment

groups all showed similar performance for training on all data
versus training only on the specific group whereas a small
decrease was seen the peptide attachment group when trained
on this group only. Group “other” clearly benefited from training
on all data compared to training on this group only with an
improvement of RMSE of 0.29, 0.20, and 0.17 for the PK

parameters CL, T1/2, and MRT, respectively. Similar results
were observed for the ANN model on DS1234 (Supporting
Information Table S6).
3.4. Molecular Features for PK Predictions. Having

established RF with DS124 and ANN with DS1234 as the two
best performingmodels, we proceed to investigate the individual
molecular descriptor contributions to the PK parameter
predictions by calculating SHAP values.
With highly correlated PK parameters, it was expected that

many of the important molecular descriptors were the same
across the PK parameters. Therefore, the SHAP values for
clearance (CL) are shown in Figure 6, and those for T1/2 and
MRT are shown in the Supporting Information (Figures S12
and S13). Generally, for both models, descriptors related to the
molecular size of both the backbone as well as the attached fatty
acid are among the top SHAP features. It was seen that large
insulin analogs, with large fatty acids attached, provided a lower
clearance. The average molecular weight for insulin with fatty
acid attachments was 6329 g/mol and 16 315 g/mol for peptide
attachment analogs, and Fc-attached analogs had an average
weight of 59 473 g/mol. Thus, the data set clearly reflected a
wide range of conjugations that sought to minimize clearance
with the increased size of both the backbone and the small-
molecule attachments being the most influential descriptors.
SHAP dependence plots in Figure 6c, 6d, and 6e shows SHAP
values for selected descriptors against the descriptor values for
the RF model on descriptor set DS124. Results for human
insulin and insulin Aspart are left out of Figure 6e,
DS2_mollogp, as these analogs do not have protractors. It is
seen from Figure 6d, DS2_num, that analogs without attach-
ments generally have higher clearance, while it is evident from
Figure 6c and 6e that low negative charge of backbone amino
acids and high lipophilicity of the protractor result in lower
clearance.

4. DISCUSSION
4.1. Model Extrapolation. Given the standard random-

splitting strategy described in the Materials and Methods
section, the developed models were not supposed to make
predictions for very different types of proteins but rather to
predict on new variants within the explored chemical space.
Temporal data splits are known to better reflect true prospective
model performance.36 Therefore, temporal data splits were
calculated to create a more challenging modeling setup and to
ensure the proposed models and descriptors to be practically
applicable in drug discovery. From Figure 3 it is seen that the
RMSE remained between 0.5 and 1 log units for temporal splits,
and DS124 and DS1234 still had the lowest median RMSE test
score for RF and ANN, respectively. As expected, a small
decrease in performance for all combinations of molecular
descriptors was observed for the temporal data split compared to
random. This indicates that predicting outside of a known
chemical space is a difficult problem, and it is likely that larger
data sets as well as methods that handle distribution shifts better
are required to achieve models that, ideally, extrapolate to new
compounds. Although numerous such high-quality public PK
data sets exist for small molecules,3 only a few exists for protein/
peptides,46,47 while no public data sets incorporate in vivo PK
parameters for proteins with chemical modifications as
presented in this analysis.
For the best RF model, an average fold error of 2.5 for CL

predictions is comparable to Physiologically Based Pharmaco-
kinetic (PBPK) modeling and allometric scaling on small

Figure 4. P-values from paired t test between descriptor sets. Results
from Random Forest (RF) models in the upper triangle (blue color
scale) and results from Artificial Neural Network (ANN) models in the
lower triangle (red color scale). Black boxes indicate a significant p-
value after Benjamini−Hochberg (BH) correction.
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molecules along with 84% of predictions within twofold, which
is also considered reasonable performance in PBPK liter-
ature.48,49 Figure 5 shows good performance (R2 = 0.82) of
clearance predictions although the models underpredict high-
clearance analogs. Such analogs are underrepresented in the data
set, as seen fromTable 1, and a part of these belong to the “other
group” which is the most diverse of the insulin analog groups.
Furthermore, high-clearance analogs, with half-life values of a
few minutes, are generally more difficult to measure accurately.
From small-molecule clearance predictions, better RMSE values
on test sets have been obtained12 (with bias on low CL
observations), and Figure 3a suggests that further improvements
could be expected given the margin from the best models
(RMSE around 0.5−0.6) to the experimental error range.
However, with reasonable model performance even on a diverse
data set of insulin analogs, we are confident that the presented

model and descriptors carry practical value for the drug design
processes.
Additional experiments were carried out by training the

models on individual groups from Table 1 rather than the entire
data set as seen throughout this analysis (Table 4). Training on
all groups provided on par performance compared to training on
the insulin groups “acylation”, “amino acid extensions”, and ”Fc-
region attachments”. The ”other” group represented a diverse
set of insulin analogs conjugated to, e.g., poly(ethylene glycol)
(PEG) or complex carbohydrates or small-molecule albumin
binders. RMSE for this group was lower when training on all data
compared to the individual group, thus indicating that
prediction on such a diverse group of insulin analogs benefited
from information in the full data set. In order to reassure that the
proposed machine-learning models learned from the sequential
information, we compared RF and ANN with a K-Nearest-
Neighbor (KNN) model only on the backbone embedding

Figure 5.Observed against predicted data from all test sets during nested cross-validation for the PK parameter clearance. Red dashed line for twofold
error in log space. Comparison of baseline descriptor set (left) versus optimal descriptor set (right) for both RF (top row) and ANN (bottom row).
The four insulin analogs with publicly available rat iv PK data are highlighted by color/symbol (see Supporting Information Tables S1 and S2 for
descriptors and rat PK data). Figures for half-life and mean resident time can be seen in the Supporting Information (Figures S9 and S10).
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space (DS3). This resulted in inferior performance compared to
ANN and RF on DS3 (Figure S14) as well as on the best
performing descriptor sets (Figure S15), thereby indicating that
the proposed methods learned information beyond sequence
similarity.
4.2. Best Molecular Representations for Each Ma-

chine-Learning Model. In our study, the best Random Forest
and the best ANN model did not show significantly different
model performance, which is in agreement with previous PK
studies for small-molecules drugs.4 Figure 3a shows that PK
parameter prediction on highly diverse protein data sets requires
comprehensive combinations of information from different
sources. Combining information from all four sources (DS1234)
produced the lowest test RMSE error using the neural network
approach. On the other hand, Random Forest performed the
best when excluding information from the backbone amino acid
embedding (DS124). We hypothesize that this could be due to
the large embedding space produced by ESM-1b not being able
to remain meaningful in a much smaller, PCA reduced, space.
For ANN, the sequential nature of 1D-CNN was able to utilize
the information from the backbone amino acid embedding and
left DS1234 as the representation with the lowest median RMSE
test score. Thus, regardless of modeling choice, a good
generalization to unseen insulin analogs was best achieved
with a comprehensive set of molecular descriptors combining
both protein and small-molecule descriptors. Modeling
performance using a baseline descriptor set, DS1, was compared
to EFCP4 descriptors from the domain of small molecules.
Results are summarized in Figure S16 where modeling
performance using DS1 is shown to perform on par with
ECFP4 descriptors. This reassures DS1 as a valid baseline
descriptor set while being more interpretable for proteins
compared to atomic-based descriptors such as ECFP4.
4.3. Practical Implications of Feature Importance. The

feature importance analyses based on SHAP values revealed that
molecular size related features like molecular weight of both the
protein part and the small-molecule/protractor part together
with lipophobicity features such as polar surface area (tPSA) and
(mollogp) for the fatty acid were important for clearance

predictions in both the Random Forest and Artificial Neural
Network models. Larger protein part and longer fatty acid result
in lower clearance and longer T1/2 and MRT. The results go
well with the general understanding of insulin receptor affinity
and PK for insulin analogs.50,51 For design directions, feature
importance, such as, e.g., SHAP analysis, can be applied to
identify which feature(s) are important for the predictions. The
model trained on all data can be used to investigate feature
importance as a general guidance; e.g., less negative charge for
the amino acids in the insulin backbone or more lipophobicity in
the protractor leads to lower CL, as presented in Figure 6. Thus,
knowledge on feature importance can be used to design
mutations and protractors for new analogs. The partial
dependence plots in Figure 6c, d, and e are examples of the
dependence between clearance response and a set of input
features of interest, marginalizing over the values of all other
input features (the “complement” features). Intuitively, we can
interpret the partial dependence as the expected clearance
response as a function of the input features of interest, and such
plots can be used for design guidance for chemists. For example,
for a new insulin analog where we use the presented model, we
can see what features that are main contributors for changing of
clearance (e.g., the lipophilicity and number of protractors), and
then we can focus on those features and design the next
molecules accordingly to further improve their PK properties.
4.4. Protraction Mechanisms for Insulin Analogs.

Three main protraction mechanisms have been applied for the
insulin analogs in the present data set: acylation or lipidation,8,52

covalent conjugation of proteins, peptides, or repeats of selected
polar amino acids,53,54 and conjugation/fusion to long-lived
macromolecules like fragment crystallizable (Fc) regions.55,56

Especially the insulin analogs with Fc attachments had high
molecular weight (mean 60 000 g/mol; almost 10 times higher
than for the acylated insulin analogs), and the increased size
leads to reduced renal clearance and increased half-life by
cellular recycling via the Fc receptor; this group had the lowest
mean clearance (Table 1). More than half of the analogs in the
data set had fatty acid protractors, and fatty acids are widely used
to prolong the half-life for therapeutic peptides and protein;8

e.g., the acylated insulin analog for once weekly dosing, Icodec,
has a C20 diacyl acid protractor together with three backbone
mutations, and for this analog a half-life of 196 h is observed in
humans.51 Important features from the fatty acid side chain were
in addition to size, lipophobicity and confirming the general
understanding that longer fatty acid protractor results in lower
clearance and longer half-life. For example, changing from a C16
to C20 fatty acid on the same insulin backbone results in
decreased receptor affinity and increased iv half-life in rat from
1.3 to 12 h50 compared to ca. 15 min iv half-life for human
insulin in rat57 (Supporting Information, Table S1). Insulin is
known to have receptor-mediated clearance,58 and for most
analogs there will therefore be high correlation between in vitro
insulin receptor affinity and in vivo clearance. For receptor
affinity, solvent-exposed residues, B12, B13, and B16, of the
insulin B-chain alfa helix were the positions most affected by
substitutions.59 Applying the ESM-1b embedding does not
allow an exact mapping between position in embedding space
and amino acid residues in the insulin backbone.30 ESM-1b
embedding was employed due to the alignment-free nature60

and because the approach showed no significant difference in
performance compared to One-Hot-Encoding (OHE) and Z-
scale encoding (Supporting Information, Figure S2). However,
for a better understanding of the effects of mutations in exact

Table 4. Mean of the Five Test RMSE from Nested Cross-
Validation Procedure for RF-DS124 on Each PK Parameter,
Clearance (CL), Half-life (T1/2), and Mean Residence Time
(MRT)a

CL T1/2 MRT

group n
all
data

only
group

all
data

only
group

all
data

only
group

acylation 338 0.48 0.50 0.45 0.45 0.46 0.47
peptide
attachments

154 0.57 0.52 0.34 0.32 0.42 0.34

amino acid
extensions

35 0.55 0.51 0.69 0.65 0.56 0.52

Fc region
attachments

60 0.53 0.50 0.41 0.36 0.50 0.50

other 44 1.09 1.38 0.70 0.90 0.71 0.88
all groups 640 0.59 0.48 0.49
aThe model was trained on all data (all data) as well as purely on the
individual group (only group) and evaluated on data from the
individual groups in both cases. For fair comparison, the test sets in
the “only group” evaluation were a subset of the test sets in the ”all
data” evaluation. Group ”no attachments” was not included due to the
very low number of observations (n = 9). For results on ANN-
DS1234, see the Supporting Information (Table S6).
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locations such as before-mentioned B-chain residues, one would
have to use other embeddings, e.g., sequence alignment followed
by OHE.
4.5. Future Work. Receptor-mediated clearance for insulin

analogs61 makes it natural to describe the clearance and related
PK parameters through the molecular structure as shown in this
analysis. It would therefore be interesting to explore the ability of
the molecular descriptors from this study to generalize to other
therapeutic proteins which have a different clearance mecha-
nism. Furthermore, generalization to proteins attached with
small molecules other than fatty acid side chains would be of
great interest. Insulin receptor affinity in vitro data is expected to
be of key importance for in vivo PK prediction of the receptor-
mediated clearance for insulin analogs. To investigate a

combination of in silico features and in vitro receptor affinity
data for improvement of the here-presented PK prediction
models is therefore an obvious next step.

5. CONCLUSION
Molecular representations of insulin analogs with small-
molecule attachments have been investigated for the purpose
of predicting iv PK parameters in rats. Descriptors contained
classical physiochemical molecular descriptors as well as
embeddings of amino acid and SMILES sequences. This
resulted in four different data sources for each insulin analog
that together provided a comprehensive molecular representa-
tion for therapeutic proteins with different protraction schemes.
In order to evaluate the importance of each descriptor

Figure 6. Top 10 SHAP values for clearance (CL) on the best performing model for both Random Forest using DS124 (a) and Neural Network using
DS1234 (b). Each point is an observation placed on the x-axis according to SHAP value. Colors indicate magnitude of the original feature value with
dark colors for low feature values and light colors for high feature values. Correlated features are grouped together, and the SHAP values are summed.
Further details on the descriptors can be found in the Supporting Information (Tables S3 and S4). Parts (c), (d), and (e) present SHAP dependence
plots to interpret selected important descriptors for CL prediction using RF on DS124. Four insulin analogs with publicly available rat iv PK data are
given in color and symbol.
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component, all combinations of descriptor sets were compared
using both Random Forest and neural networks on PK
parameter predictions. This study shows that, by including
information frommultiple sources of the molecule, we were able
to obtain significantly better performance compared to standard
physiochemical molecular descriptors. Fold errors highlighted
that the best models achieved 83−90% and 70−82% of
predictions within twofold error for random and temporal
data splits, respectively. We found that including a mol2vec
embedding of the SMILES representation of the fatty acid side
chain enhanced model prediction performance of the Random
Forest model. For neural networks, a 1D-CNNon both an ESM-
1b embedding of amino acid sequence as well as the mol2vec
embedding of SMILES representation of the attached small
molecules provided significantly better prediction performances
compared to the standard numeric protein descriptors. From a
drug design perspective, the longest half-life protraction and
lowest clearance of the mechanisms in the present data set are
achieved by attaching the large fragment crystallization (Fc)
region. For the acylation protraction group, large and multiple
fatty acid attachments with high lipophobicity provide the
longest half-life. Overall, we highlight the importance of the
representation of therapeutic proteins when employing
machine-learning-based PK parameter prediction.
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