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Abstract
Mediation analysis in high-dimensional settings often involves identifying poten-
tial mediators among a large number of measured variables. For this purpose,
a two-step familywise error rate procedure called ScreenMin has been recently
proposed. In ScreenMin, variables are first screened and only those that pass
the screening are tested. The proposed data-independent threshold for selection
has been shown to guarantee asymptotic familywise error rate. In this work, we
investigate the impact of the threshold on the finite-sample familywise error rate.
We derive a power maximizing threshold and show that it is well approximated
by an adaptive threshold of Wang et al. (2016, arXiv preprint arXiv:1610.03330).
We illustrate the investigated procedures on a case-control study examining the
effect of fish intake on the risk of colorectal adenoma. We also apply our proce-
dure in the context of replicability analysis to identify single nucleotide polymor-
phisms (SNP) associated with crop yield in two distinct environments.

KEYWORDS
familywise error rate, high-dimensional mediation, multiple testing, partial conjunction
hypothesis, screening

1 INTRODUCTION

Mediation analysis is an important tool for investigating the role of intermediate variables lying on the path between
an exposure or treatment (𝑋) and an outcome variable (𝑌) (VanderWeele, 2015). Recently, mediation analysis has been of
interest in emerging fields characterized by an abundance of experimental data. In genomics and epigenomics, researchers
search for potential mediators of lifestyle and environmental exposures on disease susceptibility (Richardson et al., 2019);
examples include mediation by DNA methylation of the effect of smoking on lung cancer risk (Fasanelli et al., 2015) and
of the protective effect of breastfeeding against childhood obesity (Sherwood et al., 2019). In neuroscience, researchers
search for the parts of the brain that mediate the effect of an external stimulus on the perceived sensation (Chén et al.,
2017; Woo et al., 2015). In these and other problems of this kind, researchers wish to investigate a large number of putative
mediators, with the aimof identifying a subset of relevant variables to be studied further. This problemhas been recognized
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as transcending the traditional confirmatory causalmediation analysis andhas been termed exploratorymediationanalysis
(Serang et al., 2017).
Within the hypothesis testing framework, the problem of identifying potential mediators among 𝑚 variables 𝑀𝑖 , 𝑖 =

1, … ,𝑚, can be formulated as the problem of testing a collection of𝑚 union hypotheses of the form

𝐻𝑖 = 𝐻𝑖1 ∪ 𝐻𝑖2, 𝐻𝑖1 ∶ 𝑀𝑖 ⟂⟂ 𝑋, 𝐻𝑖2 ∶ 𝑀𝑖 ⟂⟂ 𝑌 ∣ (𝑋,𝐌−𝑖)
⊤, (1)

where 𝐌−𝑖 = (𝑀1,… ,𝑀𝑖−1,𝑀𝑖+1, … ,𝑀𝑚). Since 𝑚 is typically large with respect to the study sample size, it might be
challenging to make inference on the conditional independence of𝑀𝑖 and 𝑌 given 𝑋 and the entire (𝑚 − 1)-dimensional
vector 𝐌−𝑖 . To circumvent this issue, researchers often perform exploratory analysis in which each putative mediator is
considered marginally (Sampson et al., 2018). In that case, 𝐻𝑖2 is formulated as𝑀𝑖 ⟂⟂ 𝑌 ∣ 𝑋. The goal is to reject as many
false union hypotheses𝐻𝑖 as possible while keeping the familywise error rate below a prescribed level 𝛼 ∈ (0, 1), and this
is the problem that we address in this article.
Assume we have valid 𝑝-values, 𝑝𝑖𝑗 , for testing hypotheses 𝐻𝑖𝑗 . They would typically be obtained from two para-

metric models: a mediator model that models the relationship between 𝑋 and 𝐌, and an outcome model that models
the relationship between 𝑌 and 𝑋 and 𝐌. Then, according to the intersection union principle, 𝑝𝑖 = max{𝑝𝑖1, 𝑝𝑖2} is a
valid 𝑝-value for 𝐻𝑖 (Gleser, 1973). A simple solution to the considered problem consists of applying a standard mul-
tiple testing procedure, such as Bonferroni or Holm (1979), to a collection of 𝑚 maximum 𝑝-values {𝑝𝑖, 𝑖 = 1, … ,𝑚}.
Unfortunately, due to the composite nature of the considered null hypotheses, 𝑝𝑖 will be a conservative 𝑝-value for
some points of the null hypothesis 𝐻𝑖 . For instance, when both 𝐻𝑖1 and 𝐻𝑖2 are true, 𝑝𝑖 , will be distributed as the
maximum of two independent standard uniform random variables, and thus stochastically larger than the standard
uniform. As a consequence, the direct approach tends to be very conservative in most practical situations. Indeed,
when only a small fraction of hypotheses 𝐻𝑖𝑗 is false, which is a plausible assumption in most applications considered
above, the actual familywise error rate can be shown to be well below 𝛼 (Wang et al., 2016), resulting in a low-powered
procedure.
To attenuate this issue, we have recently proposed a two-step procedure, ScreenMin, in which hypotheses are first

screened on the basis of the minimum, 𝑝
𝑖
= min{𝑝𝑖1, 𝑝𝑖2}, and only hypotheses that pass the screening are tested:

Procedure 1 (ScreenMin (Djordjilović et al., 2019)). For a given 𝑐 ∈ (0, 1), select 𝐻𝑖 if 𝑝
𝑖
≤ 𝑐, and let 𝑆 = {𝑖 ∶ 𝑝

𝑖
≤ 𝑐}

denote the selected set. The ScreenMin adjusted 𝑝-values are

𝑝∗
𝑖
=

{
min

{|𝑆|𝑝𝑖, 1
}

if 𝑖 ∈ 𝑆,

1 otherwise,
(2)

where |𝑆| is the size of the selected set.
In other words, ScreenMin is a procedure with two thresholds, a screening threshold 𝑐, set by the user, and a testing

threshold 𝛼∕|𝑆|, which is a function of the (random) number of hypotheses that pass the screening. It has been proved
that, under the assumption of independence of all 𝑝-values, the ScreenMin procedure provides asymptotic familywise
error rate control, while significantly increasing the power to reject false union hypotheses. The recommended default
threshold for screening is 𝑐 = 𝛼∕𝑚 (Djordjilović et al., 2019).
In this work, we investigate the crucial role of the threshold. Clearly, there is an inherent trade-off associated to 𝑐: low

values lead to fewer hypotheses passing the screening and a reduced multiplicity issue in the testing stage. On the other
hand, since only hypotheses that pass the screening are tested, low values of 𝑐 also reduce the number of hypotheses
that can be rejected. Here, we try to answer a question of how should one choose 𝑐 to balance out this trade-off and
maximize the power to reject false hypotheses. We show that the optimal value of 𝑐 depends on the characteristics of the
data distribution, that are often at least partially unknown.We thus introduce a data-dependent threshold that in practice
approximates the optimal threshold very well.
We start by showing that the ScreenMin procedure does not guarantee nonasymptotic familywise error rate control for

all thresholds 𝑐 ∈ (0, 1). We derive the upper bound for the finite-sample familywise error rate, and then investigate the
optimal threshold, where optimality is defined in terms of maximizing the power while guaranteeing the finite-sample
familywise error rate control. We formulate this problem as a constrained optimization problem. The original problem
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requires optimizing the expected value of a nonlinear function of |𝑆|, we thus resort to an approximation and solve it
under the assumption that the proportion of false hypotheses and the distributions of the nonnull 𝑝-values are known.
We show that the solution is the smallest threshold that satisfies the familywise error rate constraint, and that the data-
dependent version of this oracle threshold leads to a special case of an adaptive threshold proposed recently in the context
of testing general partial conjunction hypotheses by Wang et al. (2016). In their work, Wang et al. (2016) show that the
proposed heuristic threshold guarantees familywise error rate control; our results provide further theoretical justification
by showing that it is also (nearly) optimal in terms of power.
Recently, methodological issues pertaining to high-dimensional mediation analysis have received increasing attention

in the literature. Most proposed approaches focus on dimension reduction (Chén et al., 2017; Huang and Pan, 2016) or
penalization techniques (Song et al., 2018; Zhang et al., 2016; Zhao and Luo, 2016), or a combination of the two (Zhao
et al., 2020). The approach most similar to ours is a multiple testing procedure proposed by Sampson et al. (2018). The
authors adapt to the mediation setting the procedures proposed by Bogomolov and Heller (2018) within the context of
replicability analysis. Indeed, since the problem of identifying replicable findings across two independent studies can be
formulated as a problem of testingmultiple partial conjunction hypotheses (Benjamini &Heller, 2008), our procedure can
be applied in this setting as well. As an illustration of a replicability analysis, we apply our method to crop trial data, to
identify genetic loci in maize that are associated with yield in two distinct environments. We also apply our method in a
classical mediation setting to identify metabolites acting as potential mediators of the protective effect of fish intake on
the risk of colorectal adenoma. Data and code for reproducing all reported results are provided as Supplementarymaterial
available online.

2 NOTATION AND SETUP

As already stated, we consider a collection  of 𝑚 null hypotheses of the form 𝐻𝑖 = 𝐻𝑖1 ∪ 𝐻𝑖2. For each hypothesis pair
(𝐻𝑖1, 𝐻𝑖2), there are four possible states, {(0, 0), (0, 1), (1, 0), (1, 1)}, indicating whether respective hypotheses are true (0)
or false (1). Let 𝜋0 denote the proportion of (0,0) hypothesis pairs, that is, pairs in which both component hypotheses are
true; 𝜋1 the proportion of (0,1) and (1,0) pairs in which exactly one hypothesis is true, and 𝜋2 the proportion of (1,1) pairs
in which both hypotheses are false. In mediation, (1,1) hypotheses are of interest, and our goal is to reject as many such
hypotheses as possible, while controlling familywise error rate for.
We denote by 𝑝𝑖𝑗 the 𝑝-value for𝐻𝑖𝑗 and whether we refer to a random variable or its realization will be clear from the

context. We assume that the 𝑝𝑖𝑗 are continuous and independent random variables. We further assume that the distribu-
tion of the null 𝑝-values is standard uniform, that the density of the nonnull 𝑝-values is strictly decreasing, and that 𝐹
denotes its cumulative distribution function. This will hold, for example, when the test statistics are normally distributed
with a mean shift under the alternative; we will use this setting for illustration purposes throughout. We further let 𝑝𝑖 (𝑝𝑖

)
denote the maximum (the minimum) of 𝑝𝑖1 and 𝑝𝑖2.
For a given threshold 𝑐 ∈ (0, 1), let the selection event be represented by a vector 𝐺 = (𝐺1, … , 𝐺𝑚) ∈ {0, 1}𝑚, so that

𝐺𝑖 = 1 if 𝑝
𝑖
≤ 𝑐 and 𝐺𝑖 = 0 otherwise. The size of the selected set is then |𝑆| = ∑𝑚

𝑗=1
𝐺𝑗 .

3 FINITE-SAMPLE FAMILYWISE ERROR RATE

Validity of the ScreenMin procedure relies on the maximum 𝑝-value, 𝑝𝑖 , remaining an asymptotically valid 𝑝-value after
selection. We are thus interested in the distribution of 𝑝𝑖 conditional on the selection 𝐺. We first look at the distribution
of 𝑝𝑖 conditional on the event that the 𝑖th hypothesis has been selected.

Lemma 1. If (𝐻𝑖1, 𝐻𝑖2) is a (0,1) or a (1,0) pair, then the distribution of 𝑝𝑖 conditional on hypothesis𝐻𝑖 being selected is

P(𝑝𝑖 ≤ 𝑢 ∣ 𝑝
𝑖
≤ 𝑐) =

⎧⎪⎪⎨⎪⎪⎩
𝑢𝐹(𝑢)

𝐹(𝑐) + 𝑐 − 𝑐𝐹(𝑐)
, for 0 < 𝑢 ≤ 𝑐 ≤ 1

𝑐𝐹(𝑢) + 𝑢𝐹(𝑐) − 𝑐𝐹(𝑐)

𝐹(𝑐) + 𝑐 − 𝑐𝐹(𝑐)
, for 0 < 𝑐 ≤ 𝑢 ≤ 1.

(3)
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F IGURE 1 Conditional 𝑝-value of the true union hypothesis: 5% quantile as a function of a signal-to-noise ratio of a possibly false
component hypothesis. Solid, dotted, and dot-dash curves correspond to the threshold 𝑐 = 5 × 10−4, 2.5 × 10−2, and 5 × 10−2, respectively.
Dotted horizontal line 𝑦 = 0.05 is added for reference

If (𝐻𝑖1, 𝐻𝑖2) is a (0,0) pair, then

P(𝑝𝑖 ≤ 𝑢 ∣ 𝑝
𝑖
≤ 𝑐) =

⎧⎪⎨⎪⎩
𝑢2

𝑐(2 − 𝑐)
, for 0 < 𝑢 ≤ 𝑐 ≤ 1

2𝑢 − 𝑐

2 − 𝑐
, for 0 < 𝑐 ≤ 𝑢 ≤ 1.

(4)

The proof is in Section A.1. The 𝑝-value in (3) will play an important role in the following considerations. Since it is a
function of both the selection threshold 𝑐 and the testing threshold 𝑢, we will denote it by 𝑃0(𝑢, 𝑐).
Consider now the distribution of 𝑝𝑖 conditional on the entire selection event 𝐺 (where we are only interested in selec-

tions for which 𝐺𝑖 = 1). Given the independence of all 𝑝-values,

P
(
𝑝𝑖 ≤ 𝑢 ∣ 𝐺

)
= P

(
𝑝𝑖 ≤ 𝑢 ∣ 𝐺𝑖

)
= 𝑃0(𝑢, 𝑐) (5)

for any fixed 𝑢 ∈ (0, 1). However, in the ScreenMin procedure we are not interested in all 𝑢; we are interested in a data-
dependent threshold 𝛼∕|𝑆|. Nevertheless, we can still use expression (3), since

P

(
𝑝𝑖 ≤

𝛼|𝑆| ||| 𝐺
)

= P

(
𝑝𝑖 ≤

𝛼

1 +
∑

𝑗≠𝑖
𝐺𝑗

||| 𝐼[𝑝𝑖
≤ 𝑐],

∑
𝑗≠𝑚

𝐺𝑗

)
= 𝑃0

(
𝛼|𝑆| , 𝑐

)
, (6)

where the first equality follows from observing that when the 𝑖th hypothesis is selected we can write |𝑆| = 1 +
∑

𝑗≠𝑖
𝐺𝑗;

and the second from the independence of 𝑝𝑖 and
∑

𝑗≠𝑖
𝐺𝑗 .

Screening on the basis of theminimum 𝑝
𝑖
, would ideally leave 𝑝𝑖 a valid 𝑝-value. Recall that a random variable is a valid

𝑝-value if its distribution under the null hypothesis is either standard uniform or stochastically greater than the standard
uniform. For a given 𝑐, for the𝑝-value in (3), we should thus have 𝑃0(𝑢, 𝑐) ≤ 𝑢 for 𝑢 ∈ (0, 1). Although this has been shown
to hold asymptotically (Djordjilović et al., 2019), the following analytical counterexample shows this might fail to hold in
finite samples.

Example 1. Let 𝐻𝑖 be true, and let the test statistics for testing 𝐻𝑖1 and 𝐻𝑖2 be normal with a zero mean and a mean in
the interval [0, 5], respectively, with unit variance. We refer to the mean shift associated to𝐻𝑖2 as the signal-to-noise ratio
(SNR). Figure 1 plots a 5% quantile of the conditional 𝑝-value distribution, 𝑃0(0.05, 𝑐), as a function of the SNR associated
to𝐻𝑖2 for three different values of 𝑐 ∈ {5 × 10−4, 2.5 × 10−2, 5 × 10−2}. These values of 𝑐 correspond to a default ScreenMin
procedure with 𝛼 = 0.05 and𝑚 = 100, 2, 1, respectively. Although with increasing SNR the quantile under consideration
converges to 0.05 (in line with the asymptotic ScreenMin validity), for small values of SNR and low selection thresholds
𝑐, the conditional quantile surpasses 0.05.
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According to Example 1 and expression (6), there are realizations of |𝑆| so that 𝑃0(𝛼∕|𝑆|, 𝑐) is not bounded by 𝛼∕|𝑆|. This
implies that the ScreenMin procedure will not always guarantee finite-sample familywise error rate control conditional on|𝑆|; however, it could still guarantee familywise error rate control on average across all |𝑆|. To investigate this hypothesis,
we first derive the upper bound for the unconditional familywise error rate for a given 𝑐. Proof is in Section A.2.

Proposition 1. Let 𝑉 denote the number of true union hypotheses rejected by the ScreenMin procedure. For the familywise
error rate, we then have

P(𝑉 ≥ 1) ≤ E

([
1 −

{
1 − 𝑃0

(
𝛼|𝑆| , 𝑐

)}|𝑆|]
𝐼[|𝑆| > 0]

)
, (7)

with equality holding if and only if 𝜋1 = 1.

We use this result to illustrate in the following analytical counterexample that ScreenMin does not guarantee uncondi-
tional finite-sample familywise error rate control for arbitrary thresholds.

Example 2. Let 𝑚 = 10, and let all pairs (𝐻𝑖1, 𝐻𝑖2) be (0,1) or (1,0) type, so that 𝜋0 = 𝜋2 = 0 and 𝜋1 = 1. Let the test
statistics of all false𝐻𝑖𝑗 be normal with mean 2 and variance 1, and consider one-sided 𝑝-values. If the level at which fam-
ilywise error rate is to be controlled is 𝛼 = 0.05, the default ScreenMin threshold for selection is 𝑐 = 𝛼∕𝑚 = 5 × 10−3. The
probability of selecting𝐻𝑖 is then 𝑃𝑠𝑒𝑙 = 𝐹(𝑐) + 𝑐 − 𝑐𝐹(𝑐) ≈ 0.29. In this case, the size of the selected set is a binomial ran-
dom variable Bi(𝑚, 𝑃𝑠𝑒𝑙). The conditional probability of rejecting a𝐻𝑖 when |𝑆| > 0, that is, 𝑃0(𝛼∕|𝑆|, 𝑐) = P(𝑝𝑖 ≤ 𝛼∕|𝑆| |
𝐼[𝑝

𝑖
≤ 𝑐], |𝑆|), can be evaluated for each value of |𝑆| according to (3). The conditional distribution of the number of false

rejections 𝑉 given |𝑆| is also binomial with parameters |𝑆| and 𝑃0(𝛼∕|𝑆|, 𝑐). In this case, the exact familywise error rate,
obtained from (7), is Pr(𝑉 ≥ 1) = 0.055 > 𝛼, so that the actual familywise error rate of the ScreenMin procedure exceeds
the nominal level 𝛼.

4 ORACLE THRESHOLD FOR SELECTION

According to the previous section, not all thresholds for selection lead to finite-sample familywise error rate control.
In this section, we investigate the threshold that maximizes the power to reject false union hypotheses while ensuring
finite-sample familywise error rate control. The following proposition gives the power to reject a false union hypothesis
conditional on the number of hypotheses that pass the screening.

Proposition 2. Let 1 ≤ 𝑖 ≤ 𝑚 and suppose that𝐻𝑖 is false. Then the probability of rejecting𝐻𝑖 conditional on the size of the
selected set |𝑆| is

P

(
𝑝𝑖 ≤

𝛼|𝑆| , 𝑝𝑖
≤ 𝑐

||| |𝑆|
)

=

⎧⎪⎨⎪⎩
2𝐹(𝑐)𝐹

(
𝛼|𝑆|
)
− 𝐹2(𝑐) for 𝑐 |𝑆| ≤ 𝛼;

𝐹2
(

𝛼|𝑆|
)

for 𝑐 |𝑆| > 𝛼
(8)

for |𝑆| > 0, and 0 otherwise. The unconditional probability of rejecting a false hypothesis is then obtained by taking the expec-
tation over |𝑆|.
See Section A.3 for the proof. Note that the distribution of 𝑆, as well as the distribution of 𝑉, depend on 𝑐, and in

the following we emphasize this by writing 𝑆(𝑐) and 𝑉(𝑐). The threshold that maximizes the power while controlling
familywise error rate at 𝛼 can then be found through the following constrained optimization problem:

max
0<𝑐≤𝛼

E

[
P

(
𝑝𝑖 ≤

𝛼|𝑆(𝑐)| , 𝑝𝑖
≤ 𝑐

)
𝐼[|𝑆(𝑐)| > 0]

]
subject to P(𝑉(𝑐) ≥ 1) ≤ 𝛼. (9)

Both the objective function (the power) and the constraint (the familywise error rate) are expected values of nonlinear
functions of the size of the selected set |𝑆|, the distribution of which is itself nontrivial. To circumvent this issue, instead
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F IGURE 2 Approximated power and familywise error rate of the ScreenMin procedure as a function of 𝑐. Solid curve represents power;
dashed curve represents familywise error rate. Dotted horizontal line 𝑦 = 0.05 represents the nominal familywise error rate. Dotted vertical
line 𝑥 = 𝑐∗ represents the oracle threshold, that is, the solution to the optimization problem (10). Dot-dash line representing the power of the
standard Bonferroni procedure is added for reference

of (9), we consider its approximation based on the upper bound of Proposition 1 and exchanging the order of the function
and the expected value:

max
0<𝑐≤𝛼

P

(
𝑝𝑖 ≤

𝛼

E|𝑆(𝑐)| , 𝑝𝑖
≤ 𝑐

)
subject to P̂(𝑉(𝑐) ≥ 1) ≤ 𝛼, (10)

where

P̂(𝑉(𝑐) ≥ 1) = 1 −

{
1 − 𝑃0

(
𝛼

E|𝑆(𝑐)| , 𝑐
)}E|𝑆(𝑐)|

. (11)

When 𝜋0, 𝜋1, 𝜋2, and 𝐹 are known, (10) can be solved numerically. We denote its solution by 𝑐∗, and refer to it as the oracle
threshold in what follows. We illustrate the constrained optimization problem of (10) in the following example.

Example 3. Consider an example featuring 𝑚 = 100 union hypotheses with proportions of different hypotheses being
𝜋0 = 0.7, 𝜋1 = 0.25, and 𝜋2 = 0.05. Let the test statistics be normal with a zero mean for true null hypotheses and a mean
shift (SNR) of 1.5, 2, or 3 for false null hypotheses with variance equal to 1 in both cases. As before we consider one-sided𝑝-
values. Plots in Figure 2 show the approximated power and the constraint from (10) as functions of the selection threshold
for three different values of the signal strength.
We first note that for very small values of 𝑐, the familywise error rate constraint is not satisfied. In all three cases, the

value of the threshold that maximizes the unconstrained objective function is low and does not satisfy the constraint
(dashed line is above the nominal familywise error rate level set to 0.05).

In the above example, the power maximizing selection threshold is the smallest threshold that satisfies the familywise
error rate constraint. This can be shown to hold in general under mild conditions (see Section A.4 for details).
For a threshold to satisfy the familywise error rate constraint in (10), it needs to be at least as large as the solution to

1 −

{
1 − 𝑃0

(
𝛼

E|𝑆(𝑐)| , 𝑐
)}E|𝑆(𝑐)|

= 𝛼. (12)

If𝑚 is large, we can consider a first-order approximation of the left-hand side leading to

𝑃0

(
𝛼

E|𝑆(𝑐)| , 𝑐
)

≈
𝛼

E|𝑆(𝑐)| . (13)

The intuition corresponding to (13) is straightforward: for a given 𝑐, the probability that a conditional null 𝑝-value is less
or equal to the “average” testing threshold, that is, 𝛼∕E|𝑆(𝑐)|, should be exactly 𝛼∕E|𝑆(𝑐)|. Finally, when 𝑚 is large, the
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solution to (13) can be closely approximated by the solution to

𝑐 E|𝑆(𝑐)| = 𝛼 (14)

(see Section A.4) so that the constrained optimization problem in (10) can be replaced with a simpler problem of finding
a solution to Equation (14).

5 ADAPTIVE THRESHOLD FOR SELECTION

Solving Equation (14) is easier than solving the constrained optimization problemof (10); however, it still requires knowing
𝐹, 𝜋0, and 𝜋1. To overcome this issue one can try to estimate these quantities from data in an approach similar to the one
of Lei and Fithian (2018) who employ an expectation-maximization algorithm.
Another possibility is to consider the following strategy. Instead of searching for a threshold optimal on average, we can

adopt a conditional approach and replace E|𝑆(𝑐)| in (14) with its observed value 𝑆(𝑐). Since 𝑆(𝑐) takes on integer values,
𝑐 |𝑆(𝑐)| has jumps at 𝑝

1
, … , 𝑝

𝑚
and might be different from 𝛼 for all 𝑐. We therefore search for the largest 𝑐 ∈ (0, 1) such

that
𝑐 |𝑆(𝑐)| ≤ 𝛼. (15)

Let 𝑐𝑎 be the solution to (15). This solution has been proposed in Wang et al. (2016) in the following form:

𝛾 = max
{
𝑐 ∈

{ 𝛼

𝑚
,… ,

𝛼

2
, 𝛼

}
∶ 𝑐 |𝑆(𝑐)| ≤ 𝛼

}
. (16)

Obviously, due to a finite grid, 𝛾 need not necessarily coincide with 𝑐𝑎; however, they lead to the same selected set 𝑆 and
thus to equivalent procedures. Interestingly, in their work, Wang et al. (2016) search for a single threshold that is used
for both selection and testing, and define it heuristically as a solution to the above maximization problem. Their proposal
is motivated by the observation that when the two thresholds coincide, 𝑃0(𝑐, 𝑐) is bounded by 𝑐 for all 𝑐 ∈ (0, 1) (from
Equation 3), and it is straightforward to show that the familywise error rate control is maintained for the data-dependent
threshold 𝑐 = 𝛾. Our results show, that in addition to providing nonasymptotic familywise error rate control, this threshold
is also nearly optimal in terms of power.

6 FINITE-SAMPLE PER-FAMILY ERROR RATE (PEFR)

So far we have focused on familywise error rate control. Other types of error quantification can also be of interest. For
example, it is common to estimate the false discovery rate, which is the expected fraction of false positives among all
findings (Storey, 2002). Similarly, one may want to simply estimate the expected number of false positive findings. We
now show that this is possible in our setting.
Consider a data-independent thresholds 𝑐 ∈ (0, 1) and suppose 𝑐 is used for the selection in the first stage and as the

threshold in the second stage. The expected number of false positive findings, E(𝑉) is called the per-family error rate.
Considering the PFER can have certain advantages over only considering the familywise error rate (FWER), as discussed
in, for example, Lawrence (2019). We have the following result.

Theorem 1. Define 𝑃𝐹𝐸𝑅 = |𝑆(𝑐)|𝑐. Then 𝑃𝐹𝐸𝑅 is an unbiased (or upward biased) estimate of E(𝑉), that is,

E(𝑉) ≤ E(𝑃𝐹𝐸𝑅). (17)

The proof is provided in A.5.
To control (rather than only estimate) the PFER, we might choose 𝑐 data-dependently in such a way that 𝑃𝐹𝐸𝑅 is low.

In that case, the unique threshold for screening and testing

𝑐𝑘 = max

{
𝑐 ∈

{
𝑘

𝑚
,… ,

𝑘

2
, 𝑘

}
∶ 𝑐 |𝑆(𝑐)| ≤ 𝑘

}
(18)

ensures that PFER is bounded by 𝑘.
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Theorem 2. Let 𝑐𝑘 in (18) be a data-dependent threshold used for selection in the first stage and testing in the second stage.
Then E(𝑉) ≤ 𝑘.

The proof is provided in A.6.

7 SIMULATIONS

We used simulations to assess the performance of different selection thresholds. Our data-generating mechanism is as
follows. We considered a small, 𝑚 = 200, and a large, 𝑚 = 10, 000, study. The proportion of false union hypotheses, 𝜋2,
was set to 0.05 throughout. The proportion of (1,0) hypothesis pairs with exactly one true hypothesis, 𝜋1, was varying in
{0, 0.1, 0.2, 0.3, 0.4}. Independent test statistics for false 𝐻𝑖𝑗 were generated from 𝖭(

√
𝑛𝜇𝑗, 1), where 𝑛 is the sample size

of the study, and 𝜇𝑗 > 0, 𝑗 = 1, 2, is the effect size associated with false component hypotheses. Test statistics for true
component hypotheses were standard normal. For 𝑚 = 200, the SNR,

√
𝑛𝜇𝑗 , was either the same for 𝑗 = 1, 2 and equal

to 3, or different and equal to 3 and 6, respectively. For 𝑚 = 10, 000, the SNR was set to 4, and in case of unequal SNR it
was set to 4 and 8. 𝑝-Values were one-sided. Familywise error rate was controlled at 𝛼 = 0.05. We also considered settings
under positive dependence: in that case the test statistics were generated from a multivariate normal distribution with a
compound symmetry variance matrix with the correlation coefficient 𝜌 ∈ {0.3, 0.8} (results not shown).
The familywise error rate procedures considered were (1) ScreenMin procedure with the oracle threshold 𝑐∗ found as

the solution to (10) assuming𝐹, 𝜋1, 𝜋2 to be known; (2) ScreenMin procedurewith the adaptive threshold 𝛾; (3) ScreenMin
procedure with a default threshold 𝑐 = 𝛼∕𝑚; 4) the familywise error rate procedure proposed in Sampson et al. (2018);
and (5) the classical one stage Bonferroni procedure.
When applying the procedure of Sampson et al. (2018), we used the implementation in the MultiMed R package (Boca

et al., 2018)with the default threshold𝛼1 = 𝛼2 = 𝛼∕2.Wenote that the threshold for this procedure can also be improved in
an adaptive fashion by incorporating plug-in estimates of proportions of true hypotheses among𝐻𝑖1, and𝐻𝑖2, 𝑖 = 1, … ,𝑚,
as presented in Bogomolov and Heller (2018). Implementation of the remaining procedures, along with the reproducible
simulation setup, is available at http://github.com/veradjordjilovic/screenMin.
For each setting, we estimated familywise error rate as the proportion of generated data sets in which at least one true

union hypothesis was rejected. We estimated power as the proportion of rejected false union hypotheses among all false
union hypotheses, averaged across 1000 generated data sets.
Results under independence are shown in Figure 3. All considered procedures successfully control familywise error

rate. When most hypothesis pairs are (0,0) pairs and 𝜋1 is low, all procedures are conservative, but with increasing 𝜋1

their actual familywise error rate approaches 𝛼. The opposite trend is seen with the power: it reaches its maximum for
𝜋1 = 0 and decreases with increasing 𝜋1. When the SNR is equal (columns 1 and 3), both ScreenMin with the oracle and
adaptive threshold outperform the rest in terms of power. Interestingly, the adaptive threshold is performing as well as
the oracle threshold which uses the knowledge of 𝐹, 𝜋0, and 𝜋1. Under unequal SNR, the oracle threshold is computed
under a misspecified model (assuming the SNR is equal for all false hypotheses) and in this case the default threshold
ScreenMin outperforms the other approaches. The procedure of Sampson et al. (2018) performs well in this setting and its
power remains constant with increasing 𝜋1.
Results under positive dependence are shown in Figure 4. Familywise error rate control ismaintained for all procedures.

All procedures are more conservative in this setting than under independence, especially when the correlation is high,
that is, when 𝜌 = 0.8. With regards to power, most conclusions from the independence setting apply here as well. When
the SNR is equal, ScreenMin oracle and adaptive thresholds outperform competing procedures. Under unequal SNR,
the default threshold performs best, and the procedure of Sampson et al. (2018) performs well with power constant with
increasing 𝜋1. In the high-dimensional setting (𝑚 = 10, 000), the power is higher than under independence for 𝜋1 = 0,
but it is rapidly decreasing with increasing 𝜋1 and drops to zero when 𝜋1 = 0.4.
We further considered the following simulation setting. As before we set𝑚 = 200, but now 𝜋0 = 0, 𝜋2 = 0, and 𝜋1 = 1,

so that all union hypotheses have exactly one false component hypothesis, and thus no union hypothesis is false.We varied
the SNR in the range 3.1 and 3.9 and simulated 20,000 data sets. For each considered method, we estimated FWER and
compared it with the target nominal rate of 5%. Table 1 displays the results.
It is evident that in this setting ScreenMin with the default threshold exceeds the target error rate (the range of the

estimated error rates is 5.09–5.62). This empirical result is in line with the theoretical result presented in Example 3.4

http://github.com/veradjordjilovic/screenMin
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F IGURE 3 Estimated familywise error rate (first row) and power (second row) as a function of 𝜋1 based on 1000 simulated data sets.
The proportion of false union hypotheses is 𝜋2 = 0.05. In columns 1 and 2:𝑚 = 200, in column 3𝑚 = 10, 000. Signal-to-noise ratio (SNR) is 3
for all false component hypotheses in column 1; 3 for𝐻𝑖1 and 6 for𝐻𝑖2 in column 2, 4 in column 3. Methods are ScreenMin with the oracle
threshold (square), the adaptive threshold (cross), and the default threshold (triangle); the method of Sampson et al. (2018) (circle) and the
classical Bonferroni (diamond). Monte Carlo standard errors of the estimates of power and familywise error rate are 1.6 × 10−2 and 7 × 10−3,
respectively
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F IGURE 4 Estimated familywise error rate (first row) and power (second row) under dependence based on 1000 simulated data sets.
Methods and signal to noise ratio are as in Figure 3

(with 𝑚 = 200). Note that the difference with respect to the previously considered settings is in the proportions 𝜋0, 𝜋1,
and 𝜋2. The situation with 𝜋1 = 1 is the worst-case scenario for the default method.
The remainingmethodsmaintain error control as expected. Interestingly, when the SNR is equal to 3.7 or 3.9, the Oracle

ScreenMin method slightly exceeds the target error rate. This is likely due to an error of approximation employed when
deriving the value of the optimal threshold (see Section 4).
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TABLE 1 Estimated familywise error rate in percentages for the five methods: ScreenMin with the oracle threshold (Oracle SM), the
adaptive threshold (Adaptive SM), the default threshold (Default SM), the method of Sampson et al. (2018) (MCP_S), and classical Bonferroni
(Bonf)

SNR Oracle SM Adaptive SM Default SM MCP_S Bonf
3.1 4.98 4.86 5.62 2.04 1.8
3.3 5 4.86 5.4 2.22 2.16
3.5 5 4.93 5.24 2.32 2.6
3.7 5.15 4.96 5.26 2.42 2.97
3.9 5.07 4.94 5.09 2.48 3.43

8 APPLICATIONS

8.1 Navy Colorectal Adenoma study

The Navy Colorectal Adenoma case-control study (Sinha et al., 1999) studied dietary risk factors of colorectal adenoma,
a known precursor of colon cancer. A follow-up study investigated the role of metabolites as potential mediators of an
established association between red meat consumption and colorectal adenoma. While red meat consumption is shown
to increase the risk of adenoma, it has been suggested that fish consumption might have a protective effect. In this case,
the exposure of interest is daily fish intake estimated from dietary questionnaires; potential mediators are 149 circulating
metabolites; and the outcome is a case-control status. Data for 129 cases and 129 controls, including information on age,
gender, smoking status, and body mass index, are available in the MultiMed R package (Boca et al., 2018).
For each metabolite, we estimated a mediator and an outcome model. The mediator model is a normal linear model

with the metabolite level as outcome and daily fish intake as predictor. The outcome model is logistic with case-control
status outcome and fish intake andmetabolite level as predictors. Age, gender, smoking status, and body mass index were
included as predictors in bothmodels. To adjust for the case-control design, themediatormodel was weighted on the basis
of the prevalence of colorectal adenoma in the considered age group (0.228) reported in Boca et al. (2014).
Screening with a default ScreenMin threshold 0.05∕149 = 3.3 × 10−4 leads to 13 hypotheses passing the selection. The

adaptive threshold 𝛾 is higher (2.2 × 10−3) and results in 22 selected hypotheses. The testing threshold for the default
ScreenMin is then 0.05∕13 = 3.8 × 10−3. With the adaptive procedure, the testing threshold coincides with the screening
threshold and is slightly lower (2.2 × 10−3). Unadjusted 𝑝-values for the selected metabolites are shown in Table 2. The
lowest maximum 𝑝-value among the selected hypotheses is 8.3 × 10−3 (for DHA and 2-aminobutyrate) which is higher
than both considered thresholds, meaning that we are unable to reject any hypothesis at the 𝛼 = 0.05 level. Although we
are unable to identify any potential mediators while controlling familywise error rate at 5%, if we instead consider a more
lenient criterion of PFER and set 𝑘 = 1 (see Section 6), the obtained threshold 𝛾1 = 2.2 × 10−2 results in rejecting four
null hypotheses. In addition to three metabolites highlighted in Table 2, the null hypothesis of no mediation is rejected
for 3-hydroxyisobutyrate. Our results are in line with those reported in Boca et al. (2014), where the DHA was found to be
the most likely mediator although not statistically significant (familywise error rate adjusted 𝑝-value 0.06).
One potential explanation for the absence of significant findings at the level of 5% is illustrated in Figure 5. Figure 5

shows a scatterplot of the 𝑝-values for the association of metabolites with the fish intake (𝑝1) against the 𝑝-values for the
association of metabolites with the colorectal adenoma (𝑝2). While a significant number of metabolites shows evidence
of association with adenoma (cloud of points along the 𝑦 = 0 line), there seems to be little evidence for any association
with fish intake. In addition, data provide limited evidence of the presence of any total effect of fish intake on the risk
of adenoma (𝑝-value in the logistic regression model adjusted for age, gender, smoking status, and body mass index is
0.07). Findings reported in the literature regarding the effect of omega-3 fatty acids, such as DHA, on adenoma risk,
remain inconclusive. A protective effect was identified in a number of observational studies (Butler et al., 2009; Ghadimi
et al., 2008; Song et al., 2014), the potential mechanism of action was investigated in Cockbain et al. (2012), but a recent
intervention study (Song et al., 2020) found no effect of omega-3 supplementation on reducing the risk of adenoma in the
general population.
In this example, metabolites were considered one by one in the mediator and in the outcome model. Since metabolites

are almost surely dependent even after adjusting for available potential confounders, these marginal models are likely
misspecified. Nevertheless, they still prove useful in a preliminary exploratory analysis, such as the one reported here,
since they allow us to identify potential mediators and greatly reduce the number of metabolites to be studied further in
a joint model or by means of experimental methods.
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TABLE 2 𝑝-Values of the 22 metabolites that passed the screening with the adaptive threshold

Name 𝒑 𝒑 Min.Ind

1 2-hydroxybutyrate (AHB) 𝟏.𝟐 × 𝟏𝟎−𝟔 𝟏.𝟓 × 𝟏𝟎−𝟐 2
2 docosahexaenoate (DHA; 22:6n3) 𝟏.𝟗 × 𝟏𝟎−𝟔 𝟖.𝟑 × 𝟏𝟎−𝟑 1
3 3-hydroxybutyrate (BHBA) 7.8 × 10−6 2.2 × 10−1 2
4 oleate (18:1n9) 2.5 × 10−5 7.3 × 10−1 2
5 glycerol 3.9 × 10−5 8.4 × 10−1 2
6 eicosenoate (20:1n9 or 11) 5.9 × 10−5 4.1 × 10−1 2
7 dihomo-linoleate (20:2n6) 9.0 × 10−5 2.6 × 10−1 2
8 10-nonadecenoate (19:1n9) 9.4 × 10−5 5.4 × 10−1 2
9 creatine 1.7 × 10−4 9.2 × 10−1 1
10 palmitoleate (16:1n7) 1.7 × 10−4 6.3 × 10−1 2
11 10-heptadecenoate (17:1n7) 2.8 × 10−4 7.1 × 10−1 2
12 myristoleate (14:1n5) 2.9 × 10−4 8.2 × 10−1 2
13 docosapentaenoate (n3 DPA; 22:5n3) 3.0 × 10−4 2.9 × 10−1 2
14 methyl palmitate (15 or 2) 5.4 × 10−4 1.8 × 10−1 2
15 N-acetyl-beta-alanine 5.9 × 10−4 1.3 × 10−1 1
16 linoleate (18:2n6) 8.8 × 10−4 6.7 × 10−1 2
17 3-methyl-2-oxobutyrate 8.9 × 10−4 2.0 × 10−1 2
18 palmitate (16:0) 9.9 × 10−4 5.6 × 10−1 2
19 fumarate 1.4 × 10−3 5.0 × 10−1 2
20 2-aminobutyrate 𝟏.𝟒 × 𝟏𝟎−𝟑 𝟖.𝟑 × 𝟏𝟎−𝟑 2
21 linolenate [alpha or gamma; (18:3n3 or 6)] 1.6 × 10−3 5.4 × 10−1 2
22 10-undecenoate (11:1n1) 1.8 × 10−3 3.2 × 10−1 2

Note: Metabolites are sorted in an increasing order with respect to 𝑝. The top 13 metabolites passed the screening with the default ScreenMin threshold. The last
column (Min.Ind) indicates whether the minimum, 𝑝, is the 𝑝-value for the association of a metabolite with the fish intake (1) or with the colorectal adenoma (2).
Metabolites for which the null hypothesis was rejected when target PFER was set to 1 are highlighted.

8.2 Replicability of genome-wide association study (GWAS) findings across two crop
trials

In this section, we apply our method within the framework of replicability analysis to identify significant SNPs in two
genomewide studies. Data that we consider are from a large multiyear, multilocation study of 256 maize hybrids (Millet
et al., 2019) and are available in statgenGWAS R package (van Rossum and Kruijer, 2020).
We aimed to identify SNPs significantly associated to yield at two distinct environments considered in the study: in

Karlsruhe in Germany and Murony in Hungary. Both fields were treated with the same treatment (“Watered”) and data
are based on harvests from 2013. The analysis here is purely meant as an illustration, since we only use data from two
trials from this multiyear, multilocation study (Figure 6).
After removing duplicates we were left with 36,624 SNPs. We performed two separate GWAS analyses (with the

runSingleTraitGwas function of the statgenGWAS package) to compute𝑝-values for each SNP. All linearmodels include
a random effect for genotype to account for population structure. For further details on the fitted linear models, we refer
the interested reader to the statgenGWAS vignette.
With 𝛼 = 0.05, the ScreenMin default threshold is 1.36 × 10−6 and the adaptive threshold is 8.2 × 10−4. The default

threshold results in five SNPs passing the screening, but none of the filtered SNPs passes the testing threshold, that is, all
five adjusted 𝑝-values are above 0.05. With the adaptive threshold, one SNP on chromosome 3 (id: PUT-163a-148986271-
678) and one on chromosome 4 (id: PZE-104137686) have adjusted 𝑝-values of 2.2 × 10−2 and 3.5 × 10−2, respectively.
They are thus significant at the 5% level. On closer inspection, they are both strongly correlated with yield (Pearson
correlation coefficient with yield in Karlsruhe and Murony of 0.33 and 0.31 for PZE-104137686 and −0.31 and −0.36 for
PZE-104137686).
We further considered the adaptive threshold obtained when the target PFER is set to 𝑘 = 1. In this case, the threshold

equals 3.7 × 10−3 and results in six additional significant SNPs. The results are reported in Table 3.
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F IGURE 5 𝑝-Values for the association of 149 metabolites with the fish intake (𝑝1) and the risk colorectal adenoma (𝑝2). Each dot
represents a single metabolite. Shaded area highlights 𝑝-value pairs in which the minimum is below 𝛼 = 0.05

F IGURE 6 QQ-plots of GWAS 𝑝-values for Karlsruhe (left) and Murony (right)

9 DISCUSSION

In this article, we have investigated power and nonasymptotic familywise error rate of the ScreenMin procedure as a func-
tion of the selection threshold. We have found an upper bound for the finite-sample familywise error rate that is tight
when 𝜋1 = 1. We have posed the problem of finding an optimal selection threshold as a constrained optimization prob-
lem in which the approximated power to reject a false union hypothesis is maximized under the condition guaranteeing
familywise error rate control. We have called this threshold the oracle threshold since it is derived under the assumption
that the mechanism generating 𝑝-values is fully known. We have shown that the solution to this optimization problem is
the smallest threshold that satisfies the familywise error rate condition, and that it is well approximated by the solution
to the equation 𝑐E|𝑆(𝑐)| = 𝛼. A data-dependent version of the oracle threshold is a special case of the AdaFilter threshold
proposed byWang et al. (2016), for 𝑛 = 𝑟 = 2 in their notation. Our simulation results suggest that the performance of this
adaptive threshold is almost indistinguishable from the oracle threshold, and we suggest its use in practice.
The ScreenMin procedure relies on the independence of 𝑝-values. While independence between columns in the 𝑝-

value matrix is satisfied in the context of mediation analysis (under correct specification of the mediator and the outcome
model), independence within columns of the 𝑝-value matrix is likely to be unrealistic in a number of practical contexts.
A possible strategy to alleviate this issue is to adjust, when possible, mediator and outcome models for factors that are
likely, at least partially, responsible for dependence among potential mediators. An example is given by the adjustment
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TABLE 3 Replicated SNPs when target PFER is set to 1

Coefficient estimate
Name Chromosome Murony Karlsruhe 𝒑

1 PZE-101117779 1 0.54 (0.17) 0.77 (0.17) 1.9 × 10−3

2 PZE-101117823 1 0.52 (0.18) 0.76 (0.17) 3.1 × 10−3

3 SYN2051 1 0.31 (0.10) 0.33 (0.10) 2.4 × 10−3

4 PUT-163a-148986271-678 3 0.47 (0.13) 0.59 (0.13) 3.7 × 10−4

5 PZE-104137686 4 −0.43 (0.12) −0.39 (0.11) 5.7 × 10−4

6 ZM013389-0408 5 −0.36 (0.11) −0.38 (0.11) 9.8 × 10−4

7 SYN12761 8 −0.34 (0.11) −0.37 (0.11) 1.6 × 10−3

8 PZE-108011901 8 0.39 (0.13) 0.37 (0.12) 3.1 × 10−3

Note: Standard errors are reported in brackets; 𝑝-values are unadjusted.

for population structure in GWAS models, as we consider in our application in Section 8.2. In addition, our simulation
results show that familywise error rate control is maintained under mild and strong positive dependence within columns.
The challenge with relaxing the independence assumption lies in the fact that when 𝑝𝑖 is not independent of

∑
𝑗≠𝑖

𝐺𝑗 ,
the equality regarding conditional 𝑝-values (6) no longer necessarily holds. Finding sufficient conditions that relax the
assumption of independence while keeping the conditional distribution of 𝑝-values tractable is an open question.
When screening a large number of potential mediators, researchers often consider themmarginally. This choice is typ-

ically driven by the difficulty of the problem of high-dimensional statistical inference (Goeman & Böhringer, 2020), in
particular that of testing conditional independence of𝑀𝑗 and 𝑌 given 𝑋 and remaining𝑚 − 1 potential mediators when
𝑚 is large. Recently, two approaches that tackle this issue have been proposed. Chakrabortty et al. (2018) assumes that
an unknown directed acyclic graph describes the relationship between the exposure, the mediators and the outcome and
then extends the method IDA, previously proposed for identifying causal effects from observational data to identify newly
defined individual mediation effects. In addition, the authors provide high-dimensional consistency and distributional
results for the proposed method, which can be employed to obtain asymptotic confidence intervals for the individual
mediation effects. Shi and Li (2021) also assume a directed acyclic graphical structure, but introduce a slightly different
definition of the individual mediation effect which circumvents the problem of disjunctive effects cancelling each other
out and resulting in a zero mediation effect. The authors propose a novel method for testing mediation effects based
on the logic of Boolean matrices, which allows taking into account directed paths among mediators, and still obtain-
ing a tractable, limiting distribution of the test statistic under the null hypothesis. In addition, the authors combine the
test statistic with the ScreenMin-type screening to significantly improve power, while providing asymptotic type I error
control.
Theoretical considerations leading to the optimal screening threshold are based on the assumption that the null 𝑝-

values are standard uniform. In practice, conservative tests might result in 𝑝-values that are stochastically greater than the
uniform distribution. In that case, the threshold derived will still guarantee finite-sample error control, but might not be
the threshold thatmaximizes the power. In otherwords, the conservativeness of𝑝-valueswill translate to conservativeness
of the ScreenMin procedure.
Further important assumption underlying the optimality results presented in this work is that all nonnull 𝑝-values

have the same distribution 𝐹. In practice, associations between the exposure and mediators can be generally stronger (or
weaker) than those between mediators and the outcome. Results presented here can be extended to this setting by intro-
ducing two distinct distributions𝐹1 and𝐹2 pertaining to the false hypotheses among𝐻𝑖1 and𝐻𝑖2, 𝑖 = 1, … ,𝑚, respectively.
However, more importantly, the proposed adaptive threshold does not rely on any assumption regarding the distribution
of the nonnull 𝑝-values.
In this work, we have focused on familywise error rate, but it is tempting to consider combining screening based on 𝑝

𝑖
with a false discovery rate procedure such as Benjamini and Hochberg (1995). Unfortunately, analyzing nonasymptotic
false discovery rate of such two-step procedures is significantly more involved since their adaptive testing threshold is
a function of 𝑝1, … , 𝑝𝑚, as opposed to 𝛼∕|𝑆| in the two-stage Bonferroni procedure presented here. To the best of our
knowledge, the only method that has provable finite-sample false discovery rate control in this context has been proposed
by Bogomolov and Heller (2018), and further investigation into the problem of optimizing the threshold for selection in
this setting is warranted.
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APPENDIX: PROOFS AND TECHNICAL DETAILS

A.1 Proof of Lemma 1
Consider first the distribution of the minimum 𝑝

𝑖
(to simplify notation, we omit the index 𝑖 in what follows):

P(𝑝 ≤ 𝑐) = 1 − P(𝑝 > 𝑐) = 1 − P(𝑝1 > 𝑐, 𝑝2 > 𝑐) = 1 −

2∏
𝑗=1

P(𝑝𝑗 > 𝑐). (A1)
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The joint distribution of 𝑝 and 𝑝 is

P(𝑝 ≤ 𝑢, 𝑝 ≤ 𝑐) = P(𝑝 ≤ 𝑢) =

2∏
𝑗=1

P(𝑝𝑗 ≤ 𝑢) (A2)

for 0 < 𝑢 ≤ 𝑐 ≤ 1, and

P(𝑝 ≤ 𝑢, 𝑝 ≤ 𝑐) = P(𝑝 ≤ 𝑐) + P(𝑝 ≤ 𝑐, 𝑐 < 𝑝 ≤ 𝑢) (A3)

=

2∏
𝑗=1

P(𝑝𝑗 ≤ 𝑐) +

2∑
𝑗=1

P(𝑝𝑗 ≤ 𝑐)
{
P(𝑝−𝑗 ≤ 𝑢) − P(𝑝−𝑗 ≤ 𝑐)

}
for 0 < 𝑐 < 𝑢 ≤ 1, where 𝑝−𝑗 is 𝑝2 for 𝑗 = 1, and 𝑝1 for 𝑗 = 2.
The distribution of 𝑝 conditional on the hypothesis 𝐻𝑖 being selected is P(𝑝 ≤ 𝑢 ∣ 𝑝 ≤ 𝑐). If the hypothesis 𝐻𝑖 is true

then at least one of the 𝑝-values 𝑝1 and 𝑝2 is null and thus uniformly distributed. Without loss of generality, let 𝐻𝑖1 be
true, so that P(𝑝1 ≤ 𝑥) = 𝑥. Let 𝐹 be the distribution function of 𝑝2, so that P(𝑝2 ≤ 𝑥) = 𝐹(𝑥). Then from (A1)

P(𝑝 ≤ 𝑐) = 1 − (1 − 𝑐){1 − 𝐹(𝑐)} = 𝑐 + 𝐹(𝑐) − 𝑐𝐹(𝑐), (A4)

and similarly for the joint distribution from (A2) and (A3)

P(𝑝 ≤ 𝑢, 𝑝 ≤ 𝑐) =

{
𝑢𝐹(𝑢), for 0 < 𝑢 ≤ 𝑐 ≤ 1,

𝑢𝐹(𝑐) + 𝑐𝐹(𝑢) − 𝑐𝐹(𝑐), for 0 < 𝑐 < 𝑢 ≤ 1.
(A5)

From this expression (3) follows. To obtain the result of the (0,0) pair, it is sufficient to replace 𝐹(𝑥) with 𝑥 in the
above expression.

A.2 Proof of Proposition 1
Let 𝐼0 denote the index set of true union hypotheses, that is, the index set of (0,0), (0,1), and (1,0) pairs. Consider the
probability of making no false rejections conditional on the selection 𝐺. It is 1 if no hypothesis passes the selection, that
is, if

∑𝑚

𝑗=1
𝐺𝑗 = 0, and otherwise

P(𝑉 = 0 ∣ 𝐺) = P
⎛⎜⎜⎝

⋂
𝑖∶𝐺𝑖=1∧𝑖∈𝐼0

𝐼
⎡⎢⎢⎣𝑝𝑖 ≥

𝛼∑𝑚

𝑗=1
𝐺𝑗

⎤⎥⎥⎦ ||| 𝐺⎞⎟⎟⎠
≥ P

⎛⎜⎜⎝
⋂

𝑖∶𝐺𝑖=1

𝐼
⎡⎢⎢⎣𝑝𝑖 ≥

𝛼∑𝑚

𝑗=1
𝐺𝑗

⎤⎥⎥⎦ ||| 𝐺⎞⎟⎟⎠, (A6)

=
∏

𝑖∶𝐺𝑖=1

P
⎛⎜⎜⎝𝑝𝑖 ≥

𝛼∑𝑚

𝑗=1
𝐺𝑗

||| 𝐺⎞⎟⎟⎠
=

∏
𝑖∶𝐺𝑖=1

P

(
𝑝𝑖 ≥

𝛼

1 +
∑

𝑗≠𝑖
𝐺𝑗

||| 𝐺
)

=
∏

𝑖∶𝐺𝑖=1

P

(
𝑝𝑖 ≥

𝛼

1 +
∑

𝑗≠𝑖
𝐺𝑗

||| 𝐼[𝑝𝑖
≤ 𝑐],

∑
𝑗≠𝑖

𝐺𝑗

)
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=
∏

𝑖∶𝐺𝑖=1

{
1 − P

(
𝑝𝑖 ≤

𝛼|𝑆| ||| 𝐼[𝑝𝑖
≤ 𝑐], |𝑆|)}

≥

{
1 − 𝑃0

(
𝛼|𝑆| , 𝑐

)}|𝑆|
. (A7)

In (A6), equality holdswhen for a given𝐺, all selected hypotheses are true. This is true for all𝐺 if and only if 𝐼0 = {1, … ,𝑚}.
In (A7), equality holds if further all hypotheses are either a (0,1) or a (1,0) type. The conditional familywise error rate can
be found as Pr(𝑉 ≥ 1 ∣ 𝐺) = 1 − Pr(𝑉 = 0 ∣ 𝐺). The expression (7) for the unconditional familywise error rate is obtained
by taking the expectation over |𝑆|.
A.3 Proof of Proposition 2
To reject𝐻𝑖 , two events need to occur: 𝑝

𝑖
needs to be below the selection threshold 𝑐, and 𝑝𝑖 needs to be below the testing

threshold 𝛼∕|𝑆|. The probability of rejecting𝐻𝑖 conditional on |𝑆| is then:
P

(
𝑝
𝑖
≤ 𝑐, 𝑝𝑖 ≤

𝛼|𝑆|
)

= P(𝑝𝑖 ≤ 𝑐) + P

(
𝑝
𝑖
≤ 𝑐, 𝑐 < 𝑝𝑖 ≤

𝛼|𝑆|
)

= 𝐹2(𝑐) + 2𝐹(𝑐)

[
𝐹

(
𝛼|𝑆|

)
− 𝐹(𝑐)

]
, (A8)

if 𝛼∕|𝑆| ≥ 𝑐, and

P

(
𝑝
𝑖
≤ 𝑐, 𝑝𝑖 ≤

𝛼|𝑆|
)

= P

(
𝑝𝑖 ≤

𝛼|𝑆|
)

= 𝐹2

(
𝛼|𝑆|

)
, (A9)

if 𝛼∕|𝑆| < 𝑐.

A.4 Oracle threshold and familywise error rate constraint
Let 𝑃1(𝑐) denote the objective function and 𝑔(𝑐) ≤ 𝛼 the constraint of the optimization problem (10) in the main text. We
have

𝑃1(𝑐) = P

(
𝑝𝑖 ≤

𝛼

E|𝑆(𝑐)| , 𝑝𝑖
≤ 𝑐

)
=

⎧⎪⎨⎪⎩
2𝐹(𝑐)𝐹

(
𝛼

E|𝑆(𝑐)|
)
− 𝐹2(𝑐) for 𝑐 ∈ (0, 𝑐 ];

𝐹2
(

𝛼

E|𝑆(𝑐)|
)

for 𝑐 ∈ (𝑐, 1),
(A10)

where 𝑐 is the unique solution of the equation 𝑐 = 𝛼∕E|𝑆(𝑐)|, and
𝑔(𝑐) = 1 −

{
1 − 𝑃0

(
𝛼

E|𝑆(𝑐)| , 𝑐
)}E|𝑆(𝑐)|

, (A11)

where 𝑃0 is given in (3) in themain text.We show that the threshold thatmaximizes 𝑃1 under the constraint is the smallest
threshold that satisfies the familywise error rate constraint. First, we will show that 𝑐 satisfies the constraint if it belongs
to an interval (𝑐∗, 1), where 𝑐∗ is defined below. We will then show that 𝑐∗ is well approximated by 𝑐. But, since E|𝑆(𝑐)| is
a nondecreasing function of 𝑐, according to (A10), 𝑃1 is nonincreasing for 𝑐 > 𝑐, so that the threshold that maximizes 𝑃1

under the constraint is approximately 𝑐 ≈ 𝑐∗.
First-order approximation of the familywise error rate constraint in (A11) states:

E|𝑆(𝑐)|𝑃0

(
𝛼

E(𝑆(𝑐))
, 𝑐

)
≤ 𝛼. (A12)

It is straightforward to check that when 𝑐 is close to zero, (A12) does not hold, while for 𝑐 = 𝑐, where 𝑐 solves 𝑐 = 𝛼∕E|𝑆(𝑐)|,
the constraint is satisfied. Namely, for 𝑐 the selection threshold and the testing threshold coincide and according to (3) we
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have

𝑃0(𝑐, 𝑐) = 𝑐
𝐹(𝑐)

𝐹(𝑐) + 𝑐{1 − 𝐹(𝑐)}
≤ 𝑐 (A13)

for all 𝑐 ∈ (0, 1), with equality holding if and only if 𝐹(𝑐) = 1. Given the continuity of 𝑃0, this implies that there is a value
𝑐∗ in (0, 𝑐) such that the constraint holds with the equality. We now show that 𝑐∗ will be close to 𝑐.
Denote 𝑢𝑐 = 𝛼∕E|𝑆(𝑐)|. The equation 𝑃0(𝑢𝑐, 𝑐) = 𝑢𝑐 simplifies to 𝐹(𝑢𝑐) − 𝐹(𝑐) = 𝑢𝑐{1 − 𝐹(𝑐)} according to (3) since 𝑐 <

𝑢𝑐. When𝑚 is large, the interval (0, 𝑐)will be small, and if we assume that 𝐹 is locally linear in the neighborhood of 𝑐, we
can substitute 𝐹(𝑢𝑐) ≈ 𝐹(𝑐) + 𝑓(𝑐)(𝑢𝑐 − 𝑐), where 𝑓(⋅) is the density associated to 𝐹, to obtain

𝑢𝑐 ≈ 𝑐
𝑓(𝑐)

𝑓(𝑐) + 𝐹(𝑐) − 1
. (A14)

Since the density is strictly decreasing, for small values of 𝑐, |𝑓(𝑐)| ≫ |𝐹(𝑐) − 1|, so that the above equation becomes
𝑢𝑐 ≈ 𝑐 i.e. 𝛼∕E|𝑆(𝑐)| ≈ 𝑐. (A15)

Therefore, the smallest threshold that satisfies the familywise error rate constraint can be approximated by 𝑐.

A.5 Proof of Theorem 1
We have

E(𝑉) = E
∑
𝑖∈𝐼0

𝐼
[
𝑝𝑖 ≤ 𝑐

]
=

∑
𝑖∈𝐼0

P(𝑝𝑖 ≤ 𝑐) =
∑
𝑖∈𝐼0

P(𝑝𝑖 ≤ 𝑐, 𝑝
𝑖
≤ 𝑐)

=
∑
𝑖∈𝐼0

P(𝑝𝑖 ≤ 𝑐 ∣ 𝑝
𝑖
≤ 𝑐)P(𝑝

𝑖
≤ 𝑐) ≤

∑
𝑖∈𝐼0

𝑐P(𝑝𝑖 ≤ 𝑐)

= 𝑐E
∑
𝑖∈𝐼0

𝐼
[
𝑝
𝑖
≤ 𝑐

]
≤ 𝑐E

𝑚∑
𝑖=1

𝐼
[
𝑝
𝑖
≤ 𝑐

]
= 𝑐E|𝑆(𝑐)| = 𝑃𝐹𝐸𝑅. (A16)

A.6 Proof of Theorem 2
We have as in A.5

E(𝑉) = E
∑
𝑖∈𝐼0

𝐼
[
𝑝𝑖 ≤ 𝑐𝑘

]
=

∑
𝑖∈𝐼0

P(�̄�𝑖 ≤ 𝑐𝑘) =
∑
𝑖∈𝐼0

P(�̄�𝑖 ≤ 𝑐𝑘, 𝑝
𝑖
≤ 𝑐𝑘). (A17)

Define

𝑐𝑖
𝑘
= max

{
𝑐 ∈

{
𝑘

𝑚
,… ,

𝑘

2
, 𝑘

}
∶ 𝑐 (1 +

∑
𝑗≠𝑖

𝐼[𝑝
𝑗
≤ 𝑐]) ≤ 𝑘

}
. (A18)

Then, 𝑐𝑖
𝑘
≤ 𝑐𝑘 with equality if and only of 𝑝

𝑖
≤ 𝑐𝑖

𝑘
. Furthermore, 𝑐𝑖

𝑘
is independent of (𝑝

𝑖
, 𝑝𝑖). Let 𝐶 denote the set

{
𝑘

𝑚
, … ,

𝑘

2
, 𝑘}. We can then write:

E(𝑉) =
∑
𝑖∈𝐼0

∑
𝑐∈𝐶

P(𝑝𝑖 ≤ 𝑐𝑘, 𝑝
𝑖
≤ 𝑐𝑘, 𝑐𝑘 = 𝑐)

=
∑
𝑖∈𝐼0

∑
𝑐∈𝐶

P(𝑝𝑖 ≤ 𝑐𝑘, 𝑝
𝑖
≤ 𝑐𝑘, 𝑐

𝑖
𝑘
= 𝑐)
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=
∑
𝑖∈𝐼0

∑
𝑐∈𝐶

P(𝑝𝑖 ≤ 𝑐, 𝑝
𝑖
≤ 𝑐 ∣ 𝑐𝑖

𝑘
= 𝑐)P(𝑐𝑖

𝑘
= 𝑐)

=
∑
𝑖∈𝐼0

∑
𝑐∈𝐶

P(𝑝𝑖 ≤ 𝑐, 𝑝
𝑖
≤ 𝑐)P(𝑐𝑖

𝑘
= 𝑐)

=
∑
𝑖∈𝐼0

∑
𝑐∈𝐶

P(𝑝𝑖 ≤ 𝑐 ∣ 𝑝
𝑖
≤ 𝑐)P(𝑝

𝑖
≤ 𝑐)P(𝑐𝑖

𝑘
= 𝑐)

≤
∑
𝑖∈𝐼0

∑
𝑐∈𝐶

𝑐P(𝑝
𝑖
≤ 𝑐)P(𝑐𝑖

𝑘
= 𝑐)

=
∑
𝑐∈𝐶

𝑐
∑
𝑖∈𝐼0

P(𝑝
𝑖
≤ 𝑐)P(𝑐𝑖

𝑘
= 𝑐)

= E

(
𝑐𝑖
𝑘

∑
𝑖∈𝐼0

𝐼[𝑝
𝑖
≤ 𝑐𝑖

𝑘
]

)

≤ E

(
𝑐𝑘

∑
𝑖∈𝐼0

𝐼[𝑝
𝑖
≤ 𝑐𝑘]

)

≤ E

(
𝑐𝑘

𝑚∑
𝑖=1

𝐼[𝑝
𝑖
≤ 𝑐𝑘]

)
= E(𝑐𝑘|𝑆(𝑐𝑘)|) ≤ 𝑘, (A19)

where the second equality follows from the fact then when 𝑝
𝑖
≤ 𝑐𝑘 then 𝑐𝑘 = 𝑐𝑖

𝑘
.
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