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Abstract

Motivation: Growth phenotype profiling of genome-wide gene-deletion strains over stress condi-

tions can offer a clear picture that the essentiality of genes depends on environmental conditions.

Systematically identifying groups of genes from such high-throughput data that share similar pat-

terns of conditional essentiality and dispensability under various environmental conditions can elu-

cidate how genetic interactions of the growth phenotype are regulated in response to the

environment.

Results: We first demonstrate that detecting such ‘co-fit’ gene groups can be cast as a less well-

studied problem in biclustering, i.e. constant-column biclustering. Despite significant advances in

biclustering techniques, very few were designed for mining in growth phenotype data. Here, we pro-

pose Gracob, a novel, efficient graph-based method that casts and solves the constant-column

biclustering problem as a maximal clique finding problem in a multipartite graph. We compared

Gracob with a large collection of widely used biclustering methods that cover different types of algo-

rithms designed to detect different types of biclusters. Gracob showed superior performance on find-

ing co-fit genes over all the existing methods on both a variety of synthetic data sets with a wide

range of settings, and three real growth phenotype datasets for E. coli, proteobacteria and yeast.

Availability and Implementation: Our program is freely available for download at http://sfb.kaust.

edu.sa/Pages/Software.aspx.

Contact: xin.gao@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Under a standard lab condition, a vast majority of genes have little

to no effect on the normal growth of microorganisms (Korona,

2011). These so-called ‘dispensable’ genes account for over 90% in

E.coli and B.subtilis (Baba et al., 2006; Kobayashi et al., 2003),

while over 80% in yeast (Giaever et al., 2002; Kim et al., 2010).

A molecular-network level understanding of the cause of this gene

dispensability has important implications in evolution and systems

biology (Bochner, 2009).

One theory to explain this phenomenon is mutational robust-

ness, which argues that these genes are dispensable because the

genetic architecture has evolved to compensate for gene mutations

either by duplicate genes or by backup pathways (Gu et al., 2003;

Wagner, 2000). Another theory is environment-dependent genetic

interaction, which argues that these seemingly dispensable genes are

actually essential in other environments as the activation of genetic

interactions depends on environmental conditions (Papp et al.,

2004). Whereas both theories could explain dispensable genes, the
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latter was shown to provide explanations for a majority of dispensa-

ble genes in yeast (Hillenmeyer et al., 2008). To advance our knowl-

edge of environment-dependent genetic interactions, one key

question to address is how to find co-fit genes, which are defined to

be a group of genes that share similar patterns of conditional essen-

tiality and dispensability across various environmental conditions

(Deutschbauer et al., 2014; Hillenmeyer et al., 2010). The illustra-

tion in Figure 1(a) shows how similar phenotype patterns could help

reveal the underlying organization of the genetic interactions.

The recent development in genome-wide growth-phenotype (i.e.

fitness) profiling methods enabled the measurement of fitness scores

of a large number of gene-deletion strains over many stress condi-

tions (Bochner, 2009; Giaever et al., 2002; Hillenmeyer et al., 2008;

Nichols et al., 2011). Importantly, such growth phenotype data can

be used to assess the effects of a loss-of-function mutation of each

gene on fitness and detect which genes are essential and dispensable

under different stress conditions. That is, for a given environmental

condition, conditionally essential genes are defined to be those

whose loss-of-function mutations have very low fitness values, while

conditionally dispensable genes are defined to be those whose loss-

of-function mutations have very high fitness values. Thus, we can

use such growth phenotype data to systematically identify sets of co-

fit genes, allowing us to probe how the genetic interactions are

organized and how environmental conditions can change the genetic

interactions. Such environment-dependent genetic interactions have

been commonly analyzed using flux balance analysis (e.g. Harrison

et al., 2007; Papp et al., 2004; Segrè et al., 2005). While flux balance

analysis is a powerful method that can predict how metabolic activ-

ities may change given various environmental and genetic perturba-

tions, its accuracy depends on prior knowledge about the structure

of a given metabolic system and metabolic flux boundaries. Here,

we propose an alternative, data-driven approach that can be used

for analysis of environment-dependent genetic interactions. In this

approach, by representing a growth phenotype dataset by a two-

dimensional matrix, whose rows are the gene-deletion strains and

columns are the stress conditions, we transform a problem of finding

sets of co-fit genes into a constant-column biclustering problem (as

illustrated in Fig. 1(b)).

We argue that in growth phenotype data, finding constant-

column biclusters results in detecting more meaningful biclusters,

i.e. co-fit genes. There is a fundamental difference in the nature of

growth phenotype data and gene expression data, the latter of which

was the target for almost all existing biclustering methods. In gene

expression data, each row (i.e. a gene) has a reference value, which

is the expression level of this gene under the normal condition.

Thus, the reference values for different rows are different from each

other. Although data normalization or transpose can be done to

transform the problem of mining gene expression data into the

constant-column biclustering problem, mining other types of biclus-

ters, e.g. constant biclusters or coherent biclusters, is more prevalent

in mining gene expression data. In contrast, in growth phenotype

data, all rows (i.e. strains) have a same reference value, which is the

growth of the wild type (without any knock-out) under the normal

condition. Thus, detecting constant-column biclusters in such data

can identify co-fit genes because such a bicluster implies the deletion

of this group of genes has similar effects on fitness (i.e. similar values

in the same column imply similar changes to the reference value)

under a subset of stress conditions (as illustrated in Fig. 1).

This motivated us to develop a novel biclustering method,

Gracob, that is designed to identify constant-column biclusters in

growth phenotype datasets. To our knowledge, this is the first work

that develops and applies biclustering methods to mining co-fit genes

in growth phenotype data. The identification of co-fit genes by such a

method can be useful for gaining new insights into the functional

organization of genes, which has been commonly analyzed using the

pairwise correlation coefficient across all the conditions considered in

an experimental setup. This is because a co-fit gene measure can

detect a significant local fitness similarity under a subset of conditions,

while such strong signals can be diluted in the overall correlation coef-

ficient measure owing to the rest of the conditions.

We compared Gracob with 13 representative widely used meth-

ods that cover a wide spectrum of algorithms and types of biclusters

they can detect. When evaluated on a variety of synthetic datasets,

Gracob showed nearly perfect performance with respect to different

noise levels and overlapping degrees. We then applied Gracob to

three real growth phenotype datasets for E. coli, proteobacteria and

yeast. Gracob was able to identify maximal constant-column biclus-

ters while the existing methods failed to do so. Functional enrich-

ment analysis through KEGG pathways and GO terms

demonstrated that Gracob is on average more than twice as precise

as the other methods.

2 Related work

2.1 Previous biclustering methods
The biclustering problem was first proposed by Cheng and Church

(2000) to analyze gene expression data. Since then, extensive efforts

have been made in both computer science and statistics to develop

different types of biclustering methods (e.g. Bergmann et al. 2003;

Ben-Dor et al., 2003; Bozda�g et al., 2009; Cho et al., 2004; Gu and

Liu, 2008; Gusenleitner et al., 2012; Henriques and Madeira, 2014,

2015; Hochreiter et al., 2010; Huttenhower et al., 2009; Kluger

et al. 2003; Lazzeroni and Owen, 2002; Liu and Wang, 2003; Li

et al., 2009; Murali and Kasif, 2003; Pandey et al., 2009; Preli�c

et al., 2006; Serin and Vingron, 2011; Sheng et al., 2003; Tanay

et al., 2002, 2004; Turner et al., 2005; Yang et al., 2002, 2003;

Wang et al., 2002).
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Fig. 1. A minimalist example to illustrate environment-dependent genetic

interactions. (a): Conditionally essential and dispensable genes. The circle, tri-

angle and square symbols illustrate environmental inputs to the cell, for

example input metabolites and ligands. Red, gray and black arrows denote

active paths in wild type, inactive paths and active paths in each condition,

respectively. The wild type grows normally under each condition, while the

deletion of each gene has different effects on fitness under different condi-

tions. DX denotes the strain of deleting gene X (X 2 fA;B;Cg). ‘GR’ and ‘NG’

stand for normal growth and no growth, respectively. (b): The corresponding

growth phenotype data. Blue and red denote low and high fitness, respec-

tively. The constant-column bicluster in the green box captures co-fit genes,

A and B, which cannot be captured by any other constant biclusters
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Existing methods mainly deal with three types of biclusters

(Madeira and Oliveira, 2004), i.e. constant biclusters within which

the variation is low, constant-column (or constant-row) biclusters

within which the column-wise (or the row-wise) variation is low,

and coherent biclusters in which the data generally follow an addi-

tive or a multiplicative model. As shown in Figure 1(b), the prob-

lem of finding co-fit genes is equivalent to finding constant-column

biclusters in a growth phenotype data matrix. That is, we are inter-

ested in finding a group of genes that, under multiple conditions,

have similar fitness to each other. However, despite the success of

the existing biclustering methods to analyze gene expression data,

to the best of our knowledge, there are no other studies that devel-

oped and applied biclustering methods to mining growth pheno-

type data.

Here, we review 13 biclustering methods that are widely used in

various comparative studies (Eren et al., 2013; Henriques et al.,

2015; Preli�c et al., 2006), which will be later compared with our

method on both synthetic datasets and real growth phenotype data-

sets. These methods are CC (Cheng and Church, 2000), Plaid

(Lazzeroni and Owen, 2002; Turner et al., 2005), FLOC (Yang

et al., 2003), ISA (Bergmann et al., 2003), xMOTIFs (Murali and

Kasif, 2003), Spectral (Kluger et al., 2003), SAMBA (Tanay et al.,

2004), Bimax (Preli�c et al., 2006), BBC (Gu and Liu, 2008), QUBIC

(Li et al., 2009), CPB (Bozda�g et al., 2009), iBBiG (Gusenleitner

et al., 2012) and BicPAM (Henriques and Madeira, 2014). Since

most of the existing methods used different definitions of biclusters

and were reported to be general as they are not restricted to certain

types of data, it is difficult to clearly categorize them.

Here we first group these biclustering methods according to the

general types of biclusters such methods used for evaluation in their

papers or in comparative studies. A typical class of the existing

methods work with ‘constant’ biclusters. Here constant is often

defined to be the same value after discretizing the input data matrix

into 0’s and 1’s (e.g. Bimax and iBBiG). Another major class of the

existing methods have their own definitions of the biclusters they

are looking for, which do not directly correspond to constant-,

constant-column-, or coherent-biclusters. For example, CC uses the

mean squared residue to define a bicluster, which basically measures

the variance of the individual data points in the biclusters with

respect to the mean of the corresponding rows, the corresponding

columns and the entire bicluster. Plaid models the data matrix as a

sum of layers and minimizes the fitting error through optimization.

Similarly, BBC uses the plaid model of biclusters which defines a

bicluster as a combination of the main effect, the gene effect, the

condition effect and the noise. FLOC extends the CC algorithm by

using a probabilistic model to account for missing values in data.

ISA requests that the mean value of each row must be higher than a

threshold, and so does each column. CPB defines the biclusters in a

similar way, i.e. the Pearson correlation coefficient between columns

and rows must be higher than a threshold. Spectral tries to detect

checkerboard structures. Therefore, this class of methods can theo-

retically detect different types of biclusters. A number of methods

were developed to (preferably) detect constant-column (or equiva-

lently constant-row) biclusters. SAMBA discretizes the data into dif-

ferent bins and finds biclusters with each column belonging to the

same bin. Similarly, xMOTIFs attempts to find biclusters within

each of which genes have the same state under different samples.

The method picks up randomly sampled subsets over the conditions

and chooses the corresponding subsets of genes that satisfy this

requirement. However, when the number of conditions is large, the

chance of picking the proper subsets of conditions becomes very

low. QUBIC thresholds the extreme values (both positive and

negative) and detects constant-column and constant-row biclusters

on the discretized values only. Recently, BicPAM was proposed to

detect both additive and multiplicative coherent biclusters.

In terms of the techniques such methods use, they can be classi-

fied into iterative methods (i.e. CC, ISA, Bimax, CPB, Plaid, FLOC

and iBBiG), matrix decomposition-based methods (i.e. ISA and

Spectral), graph-based methods (i.e. SAMBA and QUBIC),

sampling-based methods (i.e. xMOTIFs and BBC) and pattern

mining-based methods (i.e. BicPAM). The iterative methods either

gradually grow biclusters from small seeds, or delete columns or

rows that cannot be a part of the biclusters from the original matrix.

The decomposition-based methods mainly use different variants of

singular value decomposition to reduce the dimensionality in order

to better detect biclusters. The graph-based methods model the

problem in a bipartite graph, and look for cliques or densely con-

nected subgraphs. The sampling-based methods try to control the

way of sampling to increase the probability of finding large biclus-

ters. The pattern mining-based methods rely on frequent itemset

mining or association rules to identify biclusters.

2.2 Co-fitness measurement with constant-column

biclustering
Co-fit genes are traditionally defined using the pairwise correlation

coefficient of two genes across all the stress conditions, and hier-

archical clustering is used to group co-fit genes together

(Deutschbauer et al., 2011; Hillenmeyer et al., 2008; Nichols

et al., 2011). However, as mentioned in Section 1, the use of corre-

lation coefficient to measure similarity could miss strong signals

detected in a subset of conditions owing to ‘correlation dilution’

through the rest of the conditions. To further elucidate this, let us

take the genes LSM2 and LSM3 of Saccharomyces cerevisiae

(Hillenmeyer et al., 2008) as an example. These two genes have a

low correlation value, r¼0.15, although they share many common

functions and high sequence similarity. Both genes are part of one

complex that binds to the 30 end of U6 snRNA, and are responsible

for its regulation and stability (Pannone et al., 2001). LSM2 and

LSM3 are required for pre-mRNA splicing and their mutations

inhibit mRNA decapping (Tharun et al., 2000). Another study

showed that LSM2 and LSM3 form many interactions with each

other (Mayes et al., 1999). The semantic similarity between their

cellular component GO terms is 0.95 as calculated using Wang

et al. (2007). Thus, these two genes are in the same functional

organization by definition. However, the correlation coefficient

measure cannot capture this. Our method, on the other hand, pre-

dicted them as co-fit genes since they were in the same constant-

column bicluster based on similar fitness values representing con-

ditional essentiality or dispensability. Specifically, our method

detected similar, extreme fitness values between the LSM2- and

LSM3-deletion strains for 51 out of 726 different stress conditions

in the yeast phenotype profiling data, showing statistically signifi-

cant association (P-value¼ 3:0� 10�6), and these deletion strains

have very high correlation (r¼0.99) over these 51 conditions.

Therefore, the co-fitness can only be detected by local measures

as they capture the similarity over a subset of conditions.

Furthermore, by using biclustering methods to find co-fit genes, it is

possible to explicitly identify which subset of genes shares similar

patterns of conditional essentiality and dispensability under which

subset of stress conditions. By definition of co-fitness, a bicluster of

co-fit genes should have similar values in each column of this biclus-

ter, but values across different columns can be very different, which

is the same definition as constant-column biclusters.
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3 Materials and methods

3.1 Gracob
The proposed method, GRAph-based Constant-cOlumn

Biclustering (Gracob), is a deterministic graph-based method that is

designed to find maximal constant-column biclusters in any given

data matrix (Fig. 2), where a maximal bicluster means that it is not

possible to extend the bicluster by either rows or columns while

keeping the same level of specified similarity. Although most inter-

esting variants of the biclustering problems are well known to be

NP-Complete (Tanay et al., 2002), the proposed method takes

advantage of the sparsity of biclusters. That is, compared to the size

of the input data matrix, the number of biclusters in the matrix is

small. For the sake of simplicity, here, we define that each row rep-

resents a gene-deletion strain and each column represents a

condition.

The main idea of Gracob is that once the users define how ‘con-

stant’ they want the biclusters to be column-wise in the preprocessed

data (Fig. 2(a)), Gracob looks at the subsets of strains that maxi-

mally satisfy this ‘constant’ requirement inside each independently

sorted column. Each of such subsets is defined to be a block, which

is a multi-row one-column vector in the corresponding sorted col-

umn. Consequently, any column in any potential bicluster is con-

tained by at least one of these blocks (Fig. 2(b) and (c)). We then

build a multipartite graph in which each node is a block and an edge

is created between two blocks from two different conditions if they

share a sufficient number of strains (Fig. 2(d)). This number is

defined to be the minimum number of strains in a desired bicluster.

For instance, if this number is set to be 1, then every single strain

constitutes a constant-column bicluster by definition; however, such

biclusters are most likely not of interest to the users. If there is a

bicluster of n conditions, there must exist in the graph a clique of m

(m � n) nodes that contain these n blocks (Fig. 2(e)). The problem

then becomes finding maximal cliques in this multipartite graph. We

propose an efficient method to solve this problem. The idea is to

divide the problem into smaller ones, and make use of the character-

istics of the data and the requirements of biclusters to search for sol-

utions in a reasonable amount of time (Fig. 2(f)). Finally, biclusters

are identified inside these cliques (Fig. 2(g)).

Here, we start by formulating the problem and then briefly

describing the main steps. The technical details can be found in

Supplementary Materials. Gracob consists of three main phases: (i)

the pre-processing phase, (ii) the graph creation phase and (iii) the

maximal clique finding phase.

3.1.1 Problem formulation

Let G be a set of n mutant strains, each of which is a single gene

knock-out mutation, and C be a set of m environmental stress condi-

tions. We denote aij as the elements of the growth phenotype data

matrix Aðn�mÞ where aij is a real value that represents the growth of

the ith mutant under the jth stress condition where i � n and

j � m.

To define a constant-column bicluster, the user has to specify

three parameters. The first one is the range threshold, d, to define

how ‘constant’ each column is in desired biclusters. For example, if

d is set to be 0, then the user is looking for biclusters within which

each column contains data with exactly the same value. The second

one is the row threshold, r, to define the minimum number of strains

(or genes) that each bicluster must have. If r is set to be 1, each row

becomes a trivial constant-column bicluster because each column

for the same row has 0 variance. The third one is the column thresh-

old, c, to define the minimum number of conditions each desired

bicluster must contain. If c is set to be 1, the biclusters will be a part

of a single column, but is not an interesting one.

Once the requirements are provided by the user, let I � G and

J � C, we say that I and J specify a desired constant-column biclus-

ter if the following conditions are satisfied:

jf ðai1 jÞ � f ðai2 jÞj � d; (1)

Fig. 2. Workflow of Gracob. (a): The data in each column are transformed using a cumulative distribution function, independently. (b): Data values in each column

are sorted independently from other columns while keeping track of the original row indexes. (c): Nodes are created for each consecutive row subset such that

the range of their values is at most d (user defined value for how ‘constant’ each column of desired biclusters should be). A row subset can overlap with other

row subsets but cannot be contained by others. (d): An edge is created between any pair of nodes if the nodes are from different columns and share at least r

(user defined threshold for the smallest number of strains in desired biclusters) rows (i.e. strains). (e): Nodes with degree less than c (user defined threshold for

the smallest number of conditions in desired biclusters) are deleted from the graph. (f): Each node is used to grow a clique with its connected nodes (orange

circles) while thresholds, r and c, are repeatedly checked to detect future failures as early as possible. (g): Row and column index information from each clique is

used to extract biclusters from the original data matrix
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jIj � r; (2)

jJj � c; (3)

where i1; i2 2 I and j 2 J. j:j denotes the cardinality of a set. f ð:Þ is a

transformation function that we will specify later. Eq. (1) ensures that

the values within each column of the bicluster are similar, whereas

Eq. (2) and (3) make sure only non-trivial biclusters are reported. The

objective is to find all I and J that satisfy these conditions, and there is

no I0 and J0 such that I � I0 and J � J0 that satisfies these conditions,

i.e. only maximal constant-column biclusters are returned.

3.1.2 Preprocessing phase

There are two major steps in this phase, i.e. transforming the data in

each condition based on a cumulative distribution and creating

blocks (nodes). The input growth phenotype data are often assumed

to follow a standard normal distribution where the data have been

z-score normalized inside each column (Nichols et al., 2011). As

most of the outlier data points are distributed along a long range of

values, they are considered to show similar phenotypes, i.e. growth

is extremely sensitive (negative outliers) or stable (positive outliers)

with respect to environment conditions. Thus, there is a need to

transform the data into another space which preserves the similarity

of these values. We chose to apply CDF (cumulative distribution

function) transformation to each column, independently, in the

input matrix. Consequently, data points in the tail of each side will

be assigned very close values, which satisfies our needs. The right

panel of Figure 2(a) shows the distribution of the values for a col-

umn after the CDF transformation.

The second step is to create blocks that are the nodes for the mul-

tipartite graph. The idea is to sort (Fig. 2(b)) and then linearly scan

each column to get all the blocks in which the range of values is at

most d. These blocks are used as the (unit) nodes for the following

phases (Fig. 2(c)). Detailed steps can be found in Section S1.2.

3.1.3 Graph creation phase

In this phase we create edges between the blocks (unit nodes). The

edges are not weighted but rather labeled by the shared subsets of

strains. There is no edge created between nodes from the same con-

dition, and the cardinality of the shared subset of an edge must be at

least r. The complexity of such a process is OðS2Þ where S is the total

number of nodes. With genome-wide growth phenotype data, S can

be in the order of millions and OðS2Þ runtime becomes infeasible.

Therefore, we propose a divide-and-conquer algorithm by repeat-

edly using the user defined thresholds c and r to reduce the search

space, and thus reduce the practical runtime. The main idea is that

we first merge all the blocks inside each column into a super-node

and create edges among all these super-nodes. Then we try to divide

these super-nodes into non-overlapping child nodes, each of which

is a subset of blocks and inherits the edges from its parent node,

unless the cardinality (i.e. number of genes) of the edge is below r,

which means this edge will never be a part of a meaningful bicluster.

If such a non-overlapping split is not feasible, then we split in the

middle. Meanwhile, we delete all the nodes that have degree below

c, which means the blocks in this nodes will never be a part of

bicluster with at least c stress conditions. We recursively do this

splitting until each node is a block. The detailed steps can be found

in Section S1.3.

Note that although the divide-and-conquer idea has been used in

biclustering methods, such as in Bimax (Preli�c et al., 2006), our

divide-and-conquer algorithm is very different from the ones devel-

oped in literature.

3.1.4 Maximal clique finding phase

The objective of this phase is to find and return all maximal cliques,

from which biclusters can be easily extracted. Unfortunately, exist-

ing general-purpose maximal clique finding algorithms do not scale

up well on our problem. We thus propose a tailored algorithm that

starts from each remaining unit node from the previous phase, and

sequentially grows cliques seeded from this node by gradually add-

ing connected nodes to the existing cliques. The main idea is to use

the minimum row and column thresholds, r and c, to detect future

failures as early as possible and to eliminate those cliques that have

no hope to grow to the required size. The details of our algorithm

can be found in Section S1.4.

It is noteworthy that Gracob is an exhaustive algorithm that

finds all maximal biclusters in the given growth phenotype dataset,

under the given thresholds, d, r and c. Neither the divide-and-

conquer algorithm used in the graph creation phase nor the early

detection of failures trick used in the maximal clique finding phase

affects the optimality of the search.

3.2 Validating Gracob on synthetic data
Following Preli�c et al. (2006); Li et al. (2009); Eren et al. (2013), we

validated Gracob by a variety of synthetic datasets, where different types

of implanted biclusters, different levels of noise, and different degrees of

bicluster overlaps were simulated (Section S2.1). Since the ground-truth

biclusters are known for the synthetic datasets, we used recall, precision

and F1-score to measure the performance (Section S2.2).

Our results (Supplementary Fig. S1) show that among the 14

compared methods, ISA, QUBIC, and Gracob are all able to detect

both constant biclusters and constant-column biclusters well. These

three methods can also tolerate noise. However, when the overlap-

ping degree of the implanted biclusters is high, Gracob is the only

method that can almost perfectly identify all the implanted biclusters

(Section S2.3).

We conducted the sensitivity analysis on Gracob with respect to

the parameters r (minimum number of rows for biclusters) and c

(minimum number of columns), and Gracob shows strong robust-

ness to these parameters (Supplementary Fig. S1(9a)). We further

tested the three best performing methods with respect to the increas-

ing size of the input data matrix. In terms of F1-score, Gracob is

very stable whereas ISA and QUBIC are less (Supplementary Fig.

S1(9b)). In terms of the runtime, Gracob has a similar runtime to

QUBIC, while both are faster than ISA (Supplementary Fig. S1(9c)).

3.3 Growth phenotype data
To comprehensively evaluate the performance of Gracob, we used

three recently measured growth/fitness phenotype datasets.

The first one is the genome-wide growth phenotype dataset of E.

coli (Nichols et al., 2011). This dataset consists of fitness data for

3979 mutant strains, each of which was measured under 324 differ-

ent stress conditions. Each fitness value in the data matrix represents

the relative growth rate of a given gene-knockout strain under a

given stress condition, which is normalized column-wise to follow

the unit normal distribution (Nichols et al., 2011). Figure 3(1)

shows this growth phenotype dataset.

The second one is the DNA tag-based pooled fitness assay dataset

for Shewanella oneidensis MR-1, a Gram-negative c-proteobacterium

(Deutschbauer et al., 2011). The dataset contains the mutant fitness

for 3355 nonessential genes under the 195 pool fitness experiments.

The third one is the growth response dataset for Saccharomyces

cerevisiae (Hillenmeyer et al., 2008). The dataset contains 5337 het-

erozygous gene deletion strains over 726 conditions.
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3.4 Performance measures
The real growth phenotype data do not have known ground-truth

biclusters. Thus, to measure the performance of biclustering meth-

ods on the real data, we defined four performance measures. Since

each biclustering method can discover a large number of biclusters

in a given dataset, our measures consider the performance based on

multiple biclusters. If the number of predicted biclusters is smaller

than 100, we keep all of them. Otherwise, we keep the top 100 larg-

est biclusters for evaluation. In order to reduce the bias caused by

highly overlapping biclusters in evaluation, we sorted all the

returned biclusters by their size in a descending order. We then

applied a greedy approach to go down the list and keep only the

biclusters that share less than 30% of the size of this bicluster with

any previously selected bicluster, until we selected 100 biclusters.

The first measure is the average column-wise standard deviation.

We first calculated the mean of the column-wise standard deviation

for each bicluster, and then calculated the average of this value over

all the predicted biclusters. The second measure is the average size

of the predicted biclusters, where the size of a bicluster is measured

by the number of rows times the number of columns. Thus, a

method that simultaneously reports a small average standard devia-

tion and a large average bicluster size is considered to be useful.

Furthermore, each bicluster is subject to two enrichment analy-

ses, using pathway information from the KEGG database (Kanehisa

and Goto, 2000) and gene ontology (GO) terms, respectively. For

each of the predicted biclusters of a method, we found the set of

genes that correspond to the strains of this bicluster, and searched

for all the annotated pathways that contain at least one gene from

this gene set. Then, we calculated the probability, i.e. P-value, of

randomly finding these genes for each pathway with the hypergeo-

metric calculation (Li et al., 2009). The precision of a method is the

ratio of biclusters which have at least one significant pathways (i.e.

P-value smaller than a given threshold, e.g. 10�7; 10�6; 10�5; 10�4

or 10�3) to the total number of selected biclusters for that method.

The number of selected biclusters for any method is at most 100 as

explained above. The same procedure was done for the GO term

enrichment analysis, and the GO-level precision for different meth-

ods is reported as the fourth measure.

4 Results and discussions

We compared Gracob with the 13 representative widely used biclus-

tering methods introduced in the related work. For each experiment,

the input data were transformed and preprocessed following the

requirements of different methods. The parameter settings for the 13

methods were searched and optimized based on the recommended

use from their papers.

4.1 Performance on growth phenotype datasets
Some representative biclusters predicted by 11 methods on the

E.coli dataset are illustrated in Figure 3(2)-(12). BBC and FLOC

failed to detect any bicluster on these large growth phenotype data-

sets in 3 hours, and Plaid only predicted less than three biclusters

and thus is not included in the analysis for the sake of fair compari-

son. It is clear that the biclusters detected by Bimax are ‘purely’

Fig. 3. Heatmap visualization of the E. coli growth phenotype data and the representative biclusters detected by the 11 methods. (1): The capped data matrix for

the E. coli growth phenotype dataset with 3979 strains and 324 stress conditions. All the values bigger than 3.0 are capped as 3.0 and all the values smaller than -

3.0 are capped as -3.0, for visualization purposes. (2)–(12): The representative biclusters detected by BicPAM, Bimax, CC, CPB, iBBiG, ISA, QUBIC, SAMBA,

Spectral, xMOTIFs and Gracob, respectively. For each method, the predicted biclusters that have consistent patterns which appear many times in the results of

this method are selected. For visualization purposes, rows and columns of each bicluster are organized by hierarchical clustering (Eisen et al., 1998). That is,

genes with similar values are clustered on the Y-axis and conditions with similar values are clustered on the X-axis

2528 M.Alzahrani et al.
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constant, whereas the ones detected by CPB, iBBiG, ISA and

SAMBA tend to have relatively constant columns, although they are

still far less constant than the ones detected by BicPAM and Gracob.

Among these four methods, CPB and iBBiG have relatively lower

column-wise standard deviation, whereas ISA and SAMBA tend to

detect bigger biclusters. It is worth noting that biclusters predicted

by Bimax are not only smaller than those predicted by Gracob, but

they also contain only large positive values. This is due to the

required binary discretization step in Bimax. Among the biclusters

returned by Gracob, about 62% consists of only conditionally essen-

tial genes (i.e. biclusters in the blue color), 20% consists of only con-

ditionally dispensable genes (i.e. biclusters in the red color), and

18% consists of genes that are essential under certain conditions but

dispensable under some other conditions (i.e. biclusters with mixed

colors).

In terms of the average column-wise standard deviation, as

expected, Bimax and Gracob have the lowest column-wise variance,

followed by BicPAM (Fig. 4(1a)-(3a)). However, the average biclus-

ter size of Gracob is one order of magnitude bigger than that of

Bimax (Fig. 4(1b)-(3b)). Although ISA, Spectral and xMOTIFs can

return large biclusters, they are very impure. Overall, Gracob has a

remarkably strong ability to discover maximal constant-column

biclusters. As shown in Figure 4(1c)-(3c), Gracob has the highest

percentage of significantly enriched KEGG pathways among all the

11 methods, under almost all the different significance levels. The

only exception is for the E. coli dataset, when the significance

threshold is below 1E-7, the precision of Gracob is slightly lower

than that of Spectral. The average precision of Gracob under the

five significance thresholds (10�3; 10�4; 10�5; 10�6 and 10�7) are

0.90, 0.82, 0.75, 0.64 and 0.53, respectively, whereas that of the

second best method are 0.56 (Bimax), 0.44 (Bimax), 0.32 (QUBIC),

0.27 (QUBIC) and 0.24 (QUBIC), respectively. These results show

that for this analysis Gracob is at least 61%, 86%, 134%, 137%

and 121% more precise than any other biclustering method in terms

of KEGG pathways under the five significance levels, respectively.

Similar conclusions can be drawn on the GO term-level precision.

Gracob is clearly more precise than all the other methods under

almost all the situations (Fig. 4(1d)-(3d)), except for the yeast data

when the significance level is 10�3, the GO-level precision of Gracob

(0.89) is slightly lower than that of BicPAM (0.91). The average preci-

sion of Gracob over the three datasets under the five significance lev-

els are 0.93, 0.84, 0.76, 0.62 and 0.54, which show that for this

analysis Gracob is 26%, 71%, 105%, 88% and 108% more precise

than the second best method, which are BicPAM (0.74), BicPAM

(0.49), QUBIC (0.37), QUBIC (0.33) and SAMBA (0.26).

We further analyzed the enrichment over the three branches of

GO terms (Biological Process, Cellular Component and Molecular

Function). Our results revealed that the highest percentage of

enriched GO terms among the co-fit genes detected by Gracob

biclusters belong to the Cellular Component (CC) branch in all the

analyzed species (Supplementary Fig. S2). This is in agreement with

the findings in Hillenmeyer et al. (2010) that co-fitness is a powerful

tool to predict cellular functions.

We conducted parameter sensitivity analysis of Gracob over the

E.coli dataset. Gracob is very stable with respect to the changes of

parameters r and d, while less so when c increases (Supplementary

Section S4 and Figs S3 and S4).

4.2 Case study on E. coli growth phenotype data
We now focus on the largest bicluster (Fig. 3(12a)) that Gracob

detected in the E. coli growth phenotype dataset. The bicluster
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Fig. 4. Performance comparison of the 11 methods on the E. coli, proteobacteria and yeast growth phenotype datasets. (1a)–(3a): The average column-wise stand-

ard deviation on the three datasets, respectively. (1b)–(3b): The average size of the returned biclusters on the three datasets, respectively. (1c)–(3c): The KEGG

pathway-level precision under five significance levels on the three datasets, respectively. (1d)–(3d): The GO term-level precision under five significance levels on

the three datasets, respectively
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groups 79 gene knock-out strains under 10 stress conditions

(see Tables S1&S2 for details). The knock-out of any of these

79 genes leads to significantly reduced cell growth under these

10 conditions, although none of them is an essential gene. The

10 conditions consist of seven carbon-source conditions, one

nitrogen-source condition and two ferrous sulfate-source condi-

tions. These sources are known to be transported and metabolized

by pathways that require amino acids, purines, pyrimidines and

cofactors to be synthesized (Kim and Copley, 2007). Thus, dele-

tions of genes involved in such pathways are expected to impact

the cell growth under these conditions (Gottschalk, 1986).

Among the 79 genes, there are 74 enzyme coding genes (Section

S5). We found that 72 of them are closely connected through KEGG

pathways as can be seen in Supplementary Figure S5. In fact, 70

genes (88.6% of the genes in this bicluster) are involved in

‘Metabolic pathways’. This is statistically significant because only

15.2% of the total 3979 genes are known to be involved in meta-

bolic pathways (see Tables S3 and Section S5 for details). The sec-

ond and third most significant KEGG pathways in this bicluster are

‘Biosynthesis of secondary metabolites’ and ‘Biosynthesis of amino

acids’, in which 44 and 41 of the genes are involved, respectively.

This is interesting because secondary metabolites generally do not

play a role in growth under the normal condition. However, it is dis-

covered that they can be important in survival of organisms because

they are involved in physiological functions like stress-response

(Price-Whelan et al., 2006).

Growth phenotype data can be used not only to analyze condi-

tional essentiality and dispensability of genes for specific environ-

mental settings (Hillenmeyer et al., 2008; Nichols et al., 2011), but

also to facilitate computational analysis to gain new insights into the

functional organization of genes (Deutschbauer et al., 2011; Giaever

et al., 2002; Lee et al., 2005; Nichols et al., 2011). Since about one-

third of the protein-coding genes are still uncharacterized (i.e.

orphan genes) even in E. coli (Blattner et al., 1997; Hu et al.,

2009)—one of the most well-known biological systems—such analy-

sis is crucial to unraveling how the interplay of genetic and environ-

mental factors orchestrates cellular-level phenotypes.

To illustrate this point, we examined the genes in the largest

bicluster and analyzed the function of ycdY, which is the only

orphan gene in this bicluster. This orphan gene is known to code

for a chaperone protein that is suggested to be a redox enzyme

maturation protein (REMP) (Turner et al., 2004). No functional

annotation is defined for ycdY. Surprisingly, ycdY deletion has

strong effects on growth under these 10 conditions (P-val-

ue¼3:33� 10�16). In order to predict its function we looked for

the most significantly enriched GO terms in this bicluster. Seventy-

one out of the 79 genes (89.9%) are annotated as ‘organonitrogen

compound biosynthetic process’ whereas only 485 genes are anno-

tated as this GO term among all the 3979 E.coli genes in this data-

set, which gives a P-value of 9:57� 10�55. Other most

significantly enriched GO terms are ‘cellular amino acid biosyn-

thetic process’ (P-value ¼ 1:37� 10�49), ‘small molecule biosyn-

thetic process’ (P-value ¼ 1:13� 10�48), ‘cellular amino acid

metabolic process’ (P-value ¼ 2:18� 10�43) and ‘organonitrogen

compound metabolic process’ (P-value ¼ 2:08� 10�42).

Therefore, our analysis strongly suggests that the function of ycdY

to be associated with these five GO terms.

Another case study on a bicluster containing 11 genes that are

essential under three dyeing chemical conditions but are dispensable

under a cold shock and an antibiotic, Spectinomycin, condition also

demonstrates the value of Gracob (Section S6).

5 Conclusion

In this paper, we proposed a novel graph-based biclustering method,

Gracob, that is developed to discover co-fit genes from large growth

phenotype profiling datasets. To our knowledge, Gracob is the first

biclustering method developed specifically to mine growth pheno-

type data. Experimental results from both a variety of synthetic

datasets and three genome-scale growth phenotype datasets for

E.coli, proteobacteria and yeast demonstrate the superior perform-

ance of Gracob over a great collection of the widely used bicluster-

ing methods to discover co-fit genes.
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