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Abstract

Manual screening of citation records could be reduced by using machine classi-

fiers to remove records of very low relevance. This seems particularly feasible

for update searches, where a machine classifier can be trained from past

screening decisions. However, feasibility is unclear for broad topics. We evalu-

ate the performance and implementation of machine classifiers for update

searches of public health research using two case studies. The first study evalu-

ates the impact of using different sets of training data on classifier perfor-

mance, comparing recall and screening reduction with a manual screening

‘gold standard’. The second study uses screening decisions from a review to

train a classifier that is applied to rank the update search results. A stopping

threshold was applied in the absence of a gold standard. Time spent screening

titles and abstracts of different relevancy-ranked records was measured.

Results: Study one: Classifier performance varies according to the training data

used; all custom-built classifiers had a recall above 93% at the same threshold,

achieving screening reductions between 41% and 74%. Study two: applying a

classifier provided a solution for tackling a large volume of search results from

the update search, and screening volume was reduced by 61%. A tentative esti-

mate indicates over 25 h screening time was saved. In conclusion, custom-built

machine classifiers are feasible for reducing screening workload from update

searches across a range of public health interventions, with some limitation on

recall. Key considerations include selecting a training dataset, agreeing stop-

ping thresholds and processes to ensure smooth workflows.
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What is already known
Using a machine classifier for an update search is feasible in some contexts.
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What is new
Describes and evaluates the utility and implementation of classifiers to update
searches for a broad topic area of public health intervention research.

Potential impact
The study informs the implementation of applying machine classifiers to update
searches for systematic reviews and living systematic reviews. Key consider-
ations include selecting an appropriate classifier, agreeing stopping thresholds
and using information management processes to ensure smooth workflows.

1 | INTRODUCTION

Identifying research for inclusion into systematic reviews
and research registers with a wide public health interven-
tion focus can involve sensitive searching to retrieve a
high recall of a wide range of literature.1,2 This also
entails screening thousands of irrelevant citation records,
which takes considerable time if undertaken manually.
Machine learning is a possible way of reducing workload
as it can be used to rank the records by relevance so that
those of very low relevance are not manually screened.3

Machine learning requires data from which to ‘learn’, so
one promising use scenario is in the case of update
searches, where previous screening decisions applied in
the original review are available. This is particularly
appealing for research topics where systematic literature
searches yield many irrelevant records.

The model of identifying studies for systematic
reviews is based upon retrieving citation records identi-
fied from a literature search followed by screening their
titles and abstracts for relevance against pre-defined eligi-
bility criteria. Those that meet the criteria are screened
again based on the full-text publication. In a traditional
approach, humans screen all the records retrieved from a
systematic search, within the time and resource available.
The literature search strategy is designed in a way to
achieve a manageable volume of records from the search
results for human screening. Approaches to reduce the
volume of records for screening include adjusting search
terms and search syntax, the number of resources
searched, or other parameters such as date limits. This
approach is particularly challenging where a search
yields relatively high volumes of irrelevant citation
records, and there is no way to modify the search strategy
without reducing recall. Machine learning has the poten-
tial to help here by ranking the search results returned
according to relevance, with those deemed highly likely
to be irrelevant not requiring human assessment. In both
systematic searching and machine learning, there is
uncertainty around any research that is missed, and each
approach requires judgements on implementation.

In this paper, we present two case studies where cus-
tom-built machine classifiers (generated from project-
specific datasets) were applied to update searches that
aimed to identify a broad range of public health interven-
tion research. We begin by briefly describing the custom-
built classifiers and their application to update searches
followed by the case studies. The first case study com-
pares recall and screening reduction obtained when using
different classifiers against gold standards of manual
screening. The second study reflects on applying a classi-
fier for a systematic review update search, and applying a
stopping threshold to cease manual screening in the
absence of a gold standard.

2 | BACKGROUND: DEVELOPING
AND APPLYING MACHINE
CLASSIFIERS FOR UPDATE
SEARCHES

Machine classifiers are a type of ‘supervised’ machine
learning which depend upon training data upon which to
‘learn’. In our case studies, they are ‘trained’ using screen-
ing data generated from human screeners. A sufficiently
large volume of screening data is needed to achieve a good
classifier performance. Some machine classifiers have been
developed from large sets of data to recognise certain char-
acteristics such as study design. For example, a machine
classifier for identifying randomised controlled trials (RCTs)
has been developed from over 280,000 health-related cita-
tion records that were classified by humans in the Cochrane
Crowd.4 By applying a threshold to remove records that are
highly unlikely to be describing RCTs, at least 40% of
records were able to be discarded from a typical search
without undertaking manual screening, while achieving
over 99% recall.4 However, as this classifier can only identify
RCTs in health research, it cannot be used to identify other
study designs5 or achieve similar recall of RCTs in other
domains (e.g., we observed this from retrospectively apply-
ing it to RCTs in a systematic review of education research,
where performance was unacceptably low).
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Unfortunately, large quantities of high-quality train-
ing data are not available for many use scenarios.
Machine learning can still be useful though, and in the
case of update searches, can utilise the screening data
generated from the original search(es). We describe these
as ‘custom-built’ classifiers, as they are trained on use-
specific data, and are not intended to generalise beyond
their specific project. While they tend not to have the
scale of training data that was available in, for example
the RCT Classifier above5 (and so might not be as accu-
rate), they have the potential to be more tailored for the
task in hand; for example, in our use cases, they can
cover a wider range of study designs.

When applied to ‘unseen’ records, a machine classifier
can output a score for each record indicating how relevant
it is to the class of interest (e.g., an RCT classifier will rank
a record on how likely it is to describe an RCT). The score
output is on a continuous scale rather than a binary deci-
sion of relevance. This score can then be converted into a
binary decision by applying a ‘threshold’, below which the
citation records will not be screened. Applying a threshold
is a key challenge when using any machine classifier in
order to maximise recall and reduce manual workload.
Decisions might be informed by user-assessment, heuristics
or statistical approaches.6

Using a machine classifier for an update search is fea-
sible where the scope of the update search is unchanged
from the original search, and where there is no shift in
terminology used in the research field, and if the training
data seems ‘large enough’.7 This approach may be less
feasible where the data from the original search have a
different scope to the update, such as in cases where
there is a ‘concept drift’ from changes in the research
team, the searches, and aspects of the review question.3,8

There are a variety of different methods for machine clas-
sification3,9 for example, support-vector machine (SVM),
Naïve Bayes, neural networks and ensemble methods.
Convolutional neural networks (CNNs) have been shown
to have a marginally better performance than SVM for
classifying RCTs though this also depends on the model
parameters chosen, the data available, and the threshold
used to determine likely relevance.4 It is not the intention
in this paper to evaluate these different methods though, and
their performance can depend on context. Wallace et al.7

suggest using a ten-fold cross validation analysis to assess the
performance of a classifier model before applying it to an
update search. They suggest the training data are split so that
90% trains a classifier that is then tested on the remaining
10%, with the process repeated 10 times. Performance is
estimated as the average of results across the 10 tests.

Shekelle et al.10 used machine classifiers for three sys-
tematic review updates compared with a manual screen-
ing approach. The authors trained the classifier based on

inclusion decisions in the final report, and found that
two studies were missed in three reviews, and that the
volume of citation records for screening was reduced by
between 67% and 83%. They suggest that the two studies
missed did not alter the review conclusions or the
strength of the evidence. Wallace et al.7 estimated a
screening reduction of between 70% and 90% for four
update searches, and one study was missed. These studies
show that machine learning is a promising approach
especially where the volume of records needing to be
screened might otherwise be prohibitive. Large reduc-
tions in screening are inevitably related to the precision
of the search results in individual cases. As systematic
review searches within health research have an estimated
precision of 3% at full-text inclusion,11 there is an oppor-
tunity for time savings from not screening irrelevant cita-
tion records in this field. For public health reviews the
precision of searches may be lower, due to the language
used and the comparatively lower use of technical jargon.
For example, one of the case studies presented in this
paper is a systematic map of public health interventions
by community pharmacies.12 The precision of the origi-
nal search was 1%, based upon 21,329 records screened to
locate 255 relevant papers. The interventions are each are
described by a wide range of terminology (i.e., they are
described by many different words which may not be dis-
tinctive to a particular context), and the low precision
partly relates to the broad scope of the research consid-
ered relevant, the diffuse terminology used to describe it,
and its broad classification within information systems.

Applying machine classifiers to update searches on
public health interventions is appealing, because of the
large numbers of citation records retrieved, though there
are few available evaluations so their performance on dif-
fuse topics is uncertain. Questions on their utility include
determining an optimal quantity of training data, assessing
recall performance, and the workload saved within a given
stopping threshold. Questions on implementation include
practical considerations in applying the tool and reporting
a transparent workflow of study identification.

In the remainder of this paper, we present two case
studies that utilise machine classifiers to identify inter-
ventions in public health that can inform the above
research gaps. The case studies have specific and differ-
ent purposes. The first case study compares the utility
of custom-built classifiers and the RCT classifier devel-
oped from the Cochrane Crowd dataset for identifying
controlled trials in public health. It uses manually-
screened citation records as gold standards. The second
case study considers both the utility and implementa-
tion of using machine classifiers in an update search in
the absence of a gold standard and where a threshold
for stopping manual screening was developed and
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applied. We present each study separately, followed by
a combined discussion and conclusion.

3 | CASE STUDY 1: COMPARING
PERFORMANCE OF CLASSIFIERS

3.1 | Background

The Trials Register of Promoting Health Interventions
(TRoPHI)13 contains citations describing randomised and
non-RCTs of health promotion and public health. Since
2004, the register has been populated from routine searches
and from research obtained while conducting systematic
reviews. Its purpose is to facilitate the gathering of evidence
in health promotion research. As of December 2020, the
database contains over 14,000 citation records that meet the
register's eligibility criteria. The eligibility criteria are applied
to the title and abstract citation record by one human
screener. Records that describe health promotion effective-
ness reviews are assessed for inclusion in a separate data-
base, Database of Promoting Health Effectiveness Reviews.14

3.2 | Aim

To compare the performance of machine classifiers devel-
oped from different training sets in terms of highest recall
and highest screening reduction. The results inform
which classifier to use for update searches for the
TRoPHI database of public health interventions.

3.3 | Methods

This case study compares the performance of four classi-
fiers: The RCT classifier described above that was built
from data generated by Cochrane Crowd; and three cus-
tom-built classifiers that were built from data previously
generated within the TRoPHI register. For the three cus-
tom-built classifiers, training and test datasets of human-
coded citation records screened using the TRoPHI regis-
ter eligibility criteria were used as a gold standard. These
records (n = 19,759) were from searches undertaken
between January 2012 and June 2013, and had been man-
ually assigned to one of multiple options relating to
exclude and include (Table 1). The three classifiers were
trained from the same dataset of records, but differed in
terms of which parameters (screening decisions)
informed the training for inclusion as follows: Custom 1:
Meets topic and any study design; Custom 2: Meets topic
and study design is either a controlled trial or interven-
tion effectiveness review; Custom 3 meets topic and is a

controlled trial (see Table 2, column 2). We refer to the
three custom-built classifiers as Custom 1, Custom 2, and
Custom 3, respectively.

These were built within the machine classifier func-
tion available within EPPI-Reviewer 4.15 This classifier
utilises the popular ‘sci-kit-learn’ machine learning
library and is written in python and deployed on the
Azure Machine Learning platform. The decisions made
in text preparation can often have a bigger impact on
classifier performance than the selection of any particular
algorithm. Different options for text pre-processing were
evaluated when it was initially developed, and it was
found that a “bag-of-words” approach using tri-grams
without word stemming provided the most consistently
high and generalisable performance. Stop words listed in
the PubMed stop-word list are removed. In our use case,
this permits the classifier to recognise “randomized con-
trolled trial” as a specific term, something which would
be lost if uni-or bi-grams were chosen. The lack of stem-
ming is helpful too, in that it enables the model to be
‘aware’ of the difference between records that describe
“randomized controlled trials” and a single “randomised
controlled trial”—a distinction that would be lost if
words were stemmed. This of course helps the model to
distinguish between discussions of multiple trials—for
example in systematic reviews—and presentations of the
results of a single trial. The approach we used in these
case studies was to use the ‘SGDClassifier’, which can be
used to implement logistic regression and SVM models.
In our case, we used the logistic regression model and
multipled the output probabilities by 100 to give the rele-
vance scores presented in this paper.16

The above four classifiers were evaluated by applying
to three separate datasets of records, which were gener-
ated from searches carried out during 2008, 2010 and
between July 2013 and 2015. These datasets are referred
to as ‘A', ‘B' and ‘C'. Table 1 describes the datasets and
shows the distribution of the exclude and include codes
within the training and test sets. Duplicate-checking was
undertaken between each dataset to avoid overlap of
samples. The classifiers generated a relevance ranking
score for each citation in the test set of between 0 and
99, where 99 is highly relevant. A threshold was applied
to exclude those that ranked as having ‘very low rele-
vance’, between 0 and 10. Precision and recall of RCTs
and non-RCTs (non-RCTs) in the test set and screening
reduction was calculated as defined in Box 1.

3.4 | Results

Table 2 shows the performance of the classifiers for the
controlled trials on the test sets. The RCT classifier
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TABLE 1 Description of the training and test sets

Exclusion (Ex) and
inclusion criteria for
TRoPHI

Training set
(n = 19,759)a

Test set A
(n = 9,368) Test set B (n = 7,185) Test set C (n = 5,812)

Description Searches between
January 2012 and
June 2013

Searches July
2013–March
2015

Searches during 2010,
publication date 2009–
2010

Searches during 2008,
publication date 2007–
2008

Ex1: Focus is not on health
promotion or public
health

16, 536 8502 6796 5351

Ex2: Study is not a
prospective evaluation of
an intervention

1799

Ex3: Study has no control or
comparison group

Ex4: Item is a review
(consider for Database of
Promoting Health
Interventions)

312

Include 1: non-randomised
controlled trial (non-RCT)

220 213 103 96

Include 2: Randomised
controlled trial (RCT)
(this includes a true
randomised method, or
quasi-randomisation such
as alternate allocation)

892 653 286 365

aClassifier was trained on 20,050 references, numbers adjusted following additional duplicate-removal.

TABLE 2 Performance of the classifiers on test set A (n = 9368), B (n = 7,85) and C (n = 5812)

Classifier Training criteriaa Set

RCTs Non-RCTs

Screening
reduction %

Precision
%

Recall
%

Precision
%

Recall
%

RCT classifier Include RCT in any human health domain A 12.3 99.7 3.4 85.9 43.3

B 8.1 99.7 2.4 83.5 50.9

C 11.1 99.2 2.6 87.5 43.6

Custom 1 Include any studies that are in the health
promotion domain (all studies without Ex1
code)

A 11.7 99.1 3.8 99.5 40.9

B 7.8 100% 2.8 100% 49.3

C 13.6 99.5 3.5 96.9 54.2

Custom 2 Include any RCTs, non-RCTs or reviews in the
health promotion domain (all studies
without Ex1, Ex2 or Ex3 codes)

A 16.5 98.8 5.4 98.6 58.4

B 12.2 99.3 4.3 97.1 67.6

C 19.6 98.1 4.9 93.8 68.6

Custom 3 Include any studies that are RCTs or non-
RCTs in the health promotion domain (all
studies without Ex1, Ex2, Ex3 or Ex4 codes)

A 19.7 98.0 6.3 96.2 65.4

B 14.6 99.0 5.1 97.1 72.9

C 23.2 97.8 5.8 92.7 73.5

aEx1, Ex2, Ex3, Ex4 are described in Table 1.
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achieved at least 99% recall across all samples, Custom
1 had marginally better recall of RCTs for two of the
three test sets. All classifiers achieved at least 98% recall
of RCTs. For recall of non-RCTs, the custom-built classi-
fiers performed better than the RCT classifier, with at
least 93% recall. This is as expected, as the RCT classifier
was not designed for this purpose.

Screening reduction across the classifiers ranged from
41% to 65% for the test sample A, and from 44% to 73%
across test samples B and C. For the custom-built classi-
fiers there is a trade-off between higher screening reduc-
tions and lower recall, and this trend is more marked for
non-RCTs. Furthermore, there is variation between the
results of the test sets for each classifier, particularly in
identifying non-RCTs. It is possible this is owing to the
wide variation in terminology of non-RCTs combined
with the relatively small number of studies that are non-
RCTs in the training and test sets. The classifiers were
trained on 220 non-RCTs, compared with 892 RCTs. The
RCT classifier had a lower precision of RCTs, and lower
screening reduction compared with Custom 2 and 3, indi-
cating the influence of subject domain in contributing to
performance.

Since this analysis, the Custom 2 classifier has rou-
tinely been applied to update searches of the trials regis-
ter. While the recall is less than Custom 1, it achieves a
higher screening reduction. It may be possible to boost
performance by training a new classifier using citation
records with screening data generated since this study
was undertaken.

4 | CASE STUDY 2:
IMPLEMENTING A MACHINE-
CLASSIFIER WITHIN A
SYSTEMATIC REVIEW WORKFLOW

4.1 | Background

An 18-month update search was undertaken for a sys-
tematic map of public health service provision by com-
munity pharmacies, prior to publication.12 The map
summarises research studies that examine the effective-
ness and appropriateness of community pharmacies in
providing public health services to local populations. An
update search was considered necessary as we anticipated

a growth of research in this area. The update search
yielded 23,208 additional records after an initial removal
of duplicate records that had been identified in the origi-
nal review. This search yield was higher than obtained
for the original search (21,329 records). The search yield
contained many irrelevant items, though there was no
clear way to reduce the number of records it generated to
lie within the resources available for manual screening.
One option was to re-construct and test the entire search
to try to reduce the yield, and another option was to train
and apply a machine classifier in order to reduce manual
screening. Both options required decisions on setting
limits, either setting limits around the searches or setting
limits on when to cease screening. We considered the lat-
ter approach as the most feasible.

Locating literature on community pharmacy public
health provision is challenging. The literature search was
based on two concepts: ‘Community pharmacy’ and
‘public health’, and each are described by diffuse termi-
nology. For example, retail pharmacies located on shop-
ping streets or in supermarkets may not be labelled as a
community pharmacy, and they provide a variety of ser-
vices within the remit of public health. Public health in
this context concerns many interventions to promote a
healthy lifestyle, including services for diabetes and car-
diovascular health, immunisations, sexual health, sub-
stance misuse and antimicrobial resistance awareness,
among others. These services include capacity-building
interventions, such as providing health champions to
engage with service providers and local communities,
and individually-delivered interventions such as health
education to promote a healthy lifestyle or reduce specific
health conditions. Prior to the update, the original data-
base search was checked against relevant studies that
were identified from outside the database search to assess
why they were not located from the database searches.
This informed an expansion of the update search by
searching additional sources (Emerging Sources Citation
Index, International Pharmaceutical Abstracts and addi-
tional websites) and removing certain database limits
that were originally applied in some of the health data-
base searches in order to reduce the volume of results.
Therefore, the search was updated with the entire time-
frame of the review, from 2000 to 2017. The scope of the
review, the search concepts, search terms and syntax
remained unchanged from the original search.

Precision = relevant items found with relevance score >10 /total number of items with score 
>10

Recall = relevant items found with relevance score >10/all relevant items that exist

Screening reduction = % of items with a relevance score 0- 10

BOX 1 Definitions of the

performance parameters

126 STANSFIELD ET AL.



4.2 | Aims

(1) To describe the issues encountered, decisions and
results from applying machine classifiers to facilitate
prioritised relevance screening against the eligibility
criteria for the map, and to assess the screening saved
from not screening search results with a low relevancy
score. (2) To estimate the time saved from not screening
citation records with a low relevancy score. (3) To con-
sider the implementation of the process within the sys-
tematic review workflow.

4.3 | Methods

4.3.1 | Selecting a classifier

Two custom-built classifiers were developed using the
machine classifier function within EPPI-Reviewer 4 (with
the same characteristics as described in the previous
methods section).15 The classifiers were trained on the
screening decisions from the original map and applied to
the search results of the database update searches. The first
classifier was trained on the screening decisions of citation
records at the title and abstract stage, using 894 titles and
abstracts as the basis of an include decision, and 20,435
title and abstracts as excludes. A second classifier was
trained on the title and abstracts records from the full-text
includes and relevant systematic reviews (n = 261) as the
basis of an include decision, and the remaining records as
the basis of an exclude decision (n = 21,068). The EPPI-
Reviewer 4 interface provides a bar chart showing the dis-
tribution of the citation records across the relevance scores,
and this was used to indicate the suitability of each classi-
fier (presented in the results section). At this point, the first
classifier was determined as not suitable, and the second
classifier was applied to the update search.

The second classifier was retrospectively tested using a
stratified five-fold cross-validation analysis using the gold
standard data, by training on a 90% sample of the original
training dataset and testing on the remaining 10% of the
training dataset to check the ranking scores of the known
relevant records. The sets were generated from random
samples of the 261 includes and 21,068 excludes in the
training data, repeated to obtain five sets of training and
test sets with recall being the statistic evaluated.

4.3.2 | Applying the classifier to the update
search

Out of the 23,208 citation records from the database
searches, 21,420 contained titles and abstracts and were

ranked by relevance using the second classifier. A bar
chart showing the distribution of records across the rele-
vance scores informed the development of an algorithm to
set a threshold below which screening would cease. We
intended to cease screening after a predetermined interval
where no further relevant records were identified. How-
ever, if this interval was not achieved, screening would
cease after a specified number of records in agreement
with the review team. The algorithm comprised of the fol-
lowing three rules: (1) Do not screen records with a score
of 10 or less; (2) Manually screen records with a score
of 20 or more; (3) Manually screen records with a score of
11–19 in batches of 500, starting from those with a score of
19; (4) Screen a further 1000 records after the last include.
During the process of manual screening, a modification to
rule 4 was imposed: to only screen the batches of 500 until
score 13 as the interval of 1000 was not achieved.

4.3.3 | Evaluating performance

The performance of the second classifier on the update
search results was retrospectively assessed on 21,403 cita-
tions. Total screening reduction was calculated, based on
the number of citation records that were not screened.
The precision of the relevance scores for the relevant
records was determined. As all records were not screened
it is not possible to calculate recall. We compared the
inclusion rate (precision) and publication date of the
included studies from relevance-ranked screening with
other records that were screened manually, which were
from: the original searches, records that were title-only
(n=1,788)and searching and browsing websites
(n=15). Reflection on implementing the process into the
review update workflow was undertaken throughout.

4.3.4 | Time analysis

We measured the time taken by one reviewer to screen
40 abstracts (eight samples of five abstracts) in a set of
references with relevance scores between 13 and 19. This
was compared with the time taken to screen 40 abstracts
across sets of references with higher relevance scores
between 20 and 99 (eight samples of five abstracts across
this range). The time taken to screen each abstract was
measured in seconds by one reviewer using a digital stop-
watch. The stopwatch was started the when the
reviewer's eyes first met the screen and stopped when the
reviewer reached a decision on the exclude code. There
were 14 exclude codes that the reviewer could choose
from, or an include code. Exclude codes consisted of
study design, publication type or date, country, and

STANSFIELD ET AL. 127



specific topic exclusions. The screening was undertaken
in conjunction with a ‘show terms’ feature in EPPI-
Reviewer 4 that highlights terms pre-determined by the
user as relevant in green and those that are irrelevant in
red (the relevant and irrelevant terms were determined
during the original screening, prior to the update search).
The reviewer had screened a significant number of stud-
ies from the original review and so had a high level of
familiarity with the types of abstracts that would be
encountered in the screening and the criteria used for
each of the exclusion and inclusion codes.

4.4 | Results

4.4.1 | Selecting a classifier

Figure 1 shows the bar charts of the two classifiers. The
second classifier was considered suitable, as it showed
the highest number of citations were within the lower
relevance score range, and a marked decrease in the
higher relevance rankings from 20 to 99. Classifier 1 did
not display this same trend as there were less citations
marked as of very low relevance (0–9) than scores of (10–
29) and therefore seemed less precise. This was not sur-
prising as the training data for classifier 1 was based on
inclusion decisions at title and abstract. When the studies
were screened at full-text a series of additional exclusion
criteria were applied, and these stricter criteria informed
the training of Classifier 2 (e.g., these criteria included
medication management except for antimicrobial resis-
tance, all process evaluations and views studies outside
UK settings).

The five-fold cross-validation analysis of the second
classifier showed an average recall of 99% (range 100%–
96%, based on 26 or 27 included studies per set) using a
threshold score of above 14: across two tests one included
study had a relevance score of 9 and another study
scored 14.

4.4.2 | Applying the classifier to the update
search

Out of the 23,208 citations from the searches, 21,455 were
eligible for the machine classifier. This was reduced to
21,403 following further identification of duplicates dur-
ing manual screening. It was noticed that some citations
contained abstracts in the notes field rather than in the
abstract field, including 5786 records from one database.
These were checked and edited within a citation manage-
ment tool prior to applying the classifier. All the records
to be screened were labelled and distributed between two
reviewers for single-screening. The reviewers had both
screened for the original review and had experience in
screening from other systematic reviews on public health
topics. This labelling was particularly crucial for applying
the stopping rules, as records with a score of under
19 were screened in order of relevance ranking in order
to inform when to stop screening. The screening was
undertaken in batches of 500 at relevance scores of
19 and lower, until those at score 13 and under remained.
In the last manually-screened batch of 500 citations, of
which some were score 13, one citation was identified as
relevant on title and abstract, but on full-text retrieval
was considered irrelevant. Although the original

FIGURE 1 Relevance scores of two

classifiers (n = 21,404)
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algorithm was designed to help to inform when to stop
manual screening, it was still too inclusive without modi-
fication, due to some ambiguous abstracts.

4.4.3 | Evaluating performance

Out of the 21,403 title and abstract records, 8449 were
manually screened, corresponding to a screening reduc-
tion of 61%. Of the title and abstract records screened,
62 records, reporting 55 studies, were included in the sys-
tematic map. Figure 2 shows the distribution of relevant
records per references screened. The machine classifier
ranked 61 (98%) of these citations within the first 21%
citations for screening, and these had a relevance score of
between 20 and 99. The remaining citation that was
included in the systematic map had a score of 14. Seven-
teen references (27%) were identified between the mid-
ranking relevance scores 40–49 to the low-relevance score
of 13. Figure 3 shows the precision of the relevance scores
of citations included in the systematic map based on the
total citations within each relevance score range. As
expected, the higher precision was achieved at higher rel-
evance scores, than at the lower scores from 13 to
49, though these lower scores were clearly important for
identifying 27% of references.

The study that had a relevance score of 14 related to
compliance with antibiotic therapy.17 Antimicrobial resis-
tance is one of the priority areas identified by the funder
of the systematic map12 and only one study on antibiotic
therapy was in the original map. Three studies on

antimicrobial resistance were found from the update sea-
rch, one each from the expedited title and abstract
screening.17 one from the screen of citations without
abstracts18 and one from the website searching.19

The inclusion rate (precision) of titles and abstracts
from the relevance screening process was 0.73%. All

FIGURE 2 Relevant records per volume screened (n = 8,449)

FIGURE 4 Contribution of all the studies shown by

publication year (N = 336)
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citation records that did not contain abstracts were man-
ually screened (n = 1,788) to yield a further seven studies
for inclusion in the map, which equates to 0.39% preci-
sion. A further 12 studies were included in the map that
were identified from website searches. Figure 4 shows
the contribution of these three groups of citations to the
overall set of studies, arranged by publication year.

4.4.4 | Time analysis

Table 3 presents the minimum, maximum and mean
time taken to screen a single record, based on screening

five records per relevance score range. Figure 5 shows
the distribution of mean screening time for studies by
relevance score. Overall, there is a trend for longer
times to screen records with high relevance scores com-
pared with those of lower relevance. 12,954 titles and
abstracts were not screened by the reviewers. Based on
the mean time of 7 s to screen the records with a low
relevance score of 13, this equates to an estimated 25 h
of screening time saved.

4.5 | Discussion

4.5.1 | Developing and testing classifiers

In the first case study, testing the precision and recall
provided confidence in selecting a classifier and applying
it to update searches, though the variation in perfor-
mance across the test sets highlight limitations in achiev-
ing recall. There are also decisions around how inclusive
the training dataset should be. When using screening
data generated from human screeners who adopt a hier-
archical screening process it may be possible to evaluate
and select from a number of inclusion and exclusion
criteria, which may have different implications for classi-
fier performance. In case study one, although the Custom
3 classifier was trained to be more specific to the study
design of interest than Custom 1 and 2, Custom 3 had

TABLE 3 Time taken to screen citation records at different relevance scores

Screening time per record based on five per category (seconds)

Relevance score Minimum Maximum Mean Total

90–99 138 280 214.2 1071

80–89 198 320 266 1330

70–79 15 303 132.2 661

60–69 30 132 78.4 392

50–59 35 134 93.2 466

40–49 10 222 62 310

30–39 10 140 61.8 309

20–29 8 130 59.8 299

18–19 7 15 11.2 56

17–18 5 17 12.2 61

16–17 5 15 8.4 42

16 3 18 11 55

15–16 4 30 12.2 61

14–15 5 15 9.4 47

13–14 5 8 6.6 33

13 3 15 7 35

FIGURE 5 Screening time for records by relevance score

(n = 5, for each relevance score range)

130 STANSFIELD ET AL.



lower precision and recall for non-RCTs and slightly
lower recall of RCTs than Custom 2.

In the second case study, post-hoc testing of the
chosen classifier achieved a high recall though could
still potentially miss some studies. There will inevitably
be some uncertainty in the development and suitability
of custom-built classifiers owing to the relatively small
datasets they are based on, and possible variations in
the parameters applied. Observing a bar chart showing
the distribution of the relevance scores from applying a
classifier helps reviewers assess the suitability of the
classifier (such as shown in Figure 1). Cross-validation
analyses provide a quantitative indication of recall per-
formance. Applying a series of stopping rules informs
performance, though this occurs during the screening
process, once the classifier has been selected and
applied.

4.5.2 | Applying the classifier

Case study one had the benefit of comparison with a gold
standard. The variation in recall across datasets between
93% and 98% for non-RCTs shows there are challenges in
identifying non-RCTs. From our experience it can some-
times be difficult to label a record as non-RCT from read-
ing an abstract alone, and this was also observed by
Hausner et al.20 as part of obtaining gold standards for
search filter development for this study type (which
achieved 92% sensitivity21). The recall level from a reduc-
tion in screening is sufficient for the purposes of the
TRoPHI register, which is to support the efficient identifi-
cation of controlled trials in health promotion, rather
than functioning as a single source.

In the second case study it was important to discuss
and justify the process of applying a classifier with the
review team and the funder of the review. The alterna-
tive option of developing a more specific search strategy
was not viable, as there was no clear way to restrict the
search strategy without losing relevant records. While
constructing a precise search would have provided
greater transparency than utilising a machine-learning
approach, it seemed less desirable in reaching the goal
of mapping the literature. A more precise search would
have reduced the possibility of locating relevant studies
from a range of contexts or publications or that offer
different findings. Evaluating the original search strat-
egy with the results of the original map helped support
decisions around the update search and the approach
taken.

There is a conceptual and cultural barrier around not
screening studies that are identified from literature
searches. Undertaking partial screening creates

uncertainty over the number of items to screen for review
teams, though this can be estimated to some extent at the
outset for update searches. Information management pro-
cesses are needed to ensure smooth workflow of the
items to be screened and to implement a stopping crite-
rion. In case study two, stopping rules needed to be devel-
oped and modified within the process to manage the
workload of screening, and were also informed from
feedback while screening was taking place. The finding
of one relevant study with a relevance score of 14 shows
the importance of screening to a relatively low threshold
for broad topics or where studies are not well represented
in the original dataset. With hindsight, testing could have
been undertaken on the remaining unscreened references
to check if there were relevant references (e.g., using
unsupervised clustering, or applying a classifier trained
using different parameters). In the future we hope to uti-
lise other approaches to determining stopping thresholds
from ongoing research within our research centre.
Finally, it is important to note that the scores are a rela-
tive concept of relevance, and the reported scores used
in this study are not intended to be used as thresholds
that can be applied in other situations. This point is
supported by Weightman et al.22 who used the same
classifier function within EPPI-Reviewer 4 to retrospec-
tively observe performance compared with manual
screening for two update searches on social care topics;
they found they would have obtained 100% retrieval, if
they had only screened to threshold scores of 22 and
43, respectively.

4.5.3 | Performance of the classifiers

In both case studies the classifiers enabled a reduction in
the number of irrelevant records that needed to be
screened. Case study one also shows the influence of sub-
ject domain in contributing to performance, and a benefit
of custom-built classifiers over generic classifiers to
decrease screening volume. While the workload in
screening is inevitably reduced, the time savings are less
clear. In case study two we made a modest attempt to
indicate the type of time savings that the workload reduc-
tion could produce.

4.5.4 | Screening time analysis

The Cochrane Handbook suggests a “conservatively esti-
mated reading rate” of 30–60 s for abstracts of health
interventions, or approximately 500–1000 over an 8-hour
period.23 Przybyła et al.6 observed lower screening times
at the later stages of a prioritised screening process. We
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also observed a corresponding relationship between rele-
vance score and screening time; however, our data indi-
cate this is not constant for all citation records (based on
a low-sample size). The time needed to screen abstracts
with the highest relevance scores in our study was
between 15 to 320 s. This variation reflects our experience
that some abstracts can be quickly discarded by reading
only a title, and others require more processing time to
both read and understand the abstract and to also con-
sider how it matches with the eligibility criteria. There is
also the possibility that reviewer experience with the
screening improves speed.6 With priority screening, the
records with lower relevance scores were much quicker
to screen, with a range of 3–30 s. An estimate of the time
saved by not screening 12,954 citations extrapolates to
25 h based on 7 s per record (the mean screening time of
the lowest ranked study for screening just five records).
However, we expect this time saving to be greater in
practice as it does not consider screening at scale, and the
need for rest breaks. Other variables that could influence
time needed to screen include: concentration level and
screening fatigue, internet and computer speeds, reading
speed, abstract length, and overall environment in which
screening is undertaken. Undertaking a time analysis on
larger samples of records, and with more than one
screener, would provide a more accurate estimate of time
savings.

5 | LIMITATIONS

For case study two, the reported precision of the title and
abstract screening may be marginally higher than
reported. Conference abstracts were included in the
update searches though removed early on in the screen-
ing process. However, we estimate that without this, pre-
cision would still be under 1%. Duplicates are a challenge
for any search across multiple resources, and particularly
for update searches as the search has been undertaken at
more than one timepoint. For case study two, the dupli-
cates were removed at the outset of the process, and
when identified during screening. We expect there will
be some duplicate records that have been missed, particu-
larly those classed as irrelevant. The time analysis in case
study two is based on a low sample size.

6 | CONCLUSIONS

Both case studies show that custom-built classifiers can
achieve considerable reductions of screening for update
searches in broad public health intervention topics. They
are particularly useful where a yield of search results is

difficult to reduce using conventional methods. Case
study one demonstrates there is a domain influence in
applying classifiers. A custom-built classifier may achieve
higher screening reductions towards a specific domain
than a generic classifier derived from larger datasets cov-
ering a broader domain. However, achieving high recall
and high-screening-reduction appear to be limited by the
quality of the training data. Questions on the utility of
classifiers for update searches include: determining an
optimal quantity of training data, assessing recall perfor-
mance, and assessing workload saved within a stopping
threshold. Owing to the customised nature of such classi-
fiers, answers to these questions may vary across differ-
ent cases. Case study two shows how this can be
understood and implemented within the context of
updating a systematic map. Our findings suggest that
there is potential to significantly reduce time spent
screening by applying custom-built machine classifiers
and excluding studies of low relevance using appropriate
stopping rules. Key considerations include selecting an
appropriate the classifier, agreeing stopping rules and
using appropriate information management to ensure
smooth workflow.
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