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Introduction

In most aging studies, chronological age (ChronAge) has 
been used as the aging indicator. However, ChronAge only 
measures how much time that has passed since birth. The 
definition of ChronAge suggests that the aging processes 
take place along a continuum with exact distances, across 
the whole adult lifespan. However, the fact that one chrono-
logical year has passed, does not necessarily mean that an 
individual also has aged the equivalent of 1 year. Probably, 
the speed of the aging processes both vary and differ dur-
ing the adult lifespan, such that an individual may age more 
during certain periods and less during other periods. Also, 
the effects of aging are to a large extent individual. For 
example, a group of randomly selected older persons with 
a ChronAge of 75 can be rather heterogeneous on a particu-
lar aspect of aging (Gunn et al. 2009). It would, therefore, 
be more reasonable to use an age measure that better cap-
tures aging, per se. No single biomarker (e.g., grip strength 
or lung function) has been found to alone reflect the aging 
processes of the body in a representative way. Often 
researchers use selected samples of biomarkers to better 
capture these complex processes across time. No standard 
combination is used, but if different operational definitions 
of a construct are used, then also a more nuanced picture of 
the phenomenon (in this case age/aging and its connection 
to other variables) will be provided.

In the present longitudinal study, we used an age vari-
able named functional biological age (fBioAge), which is 
based on performance on functional body measures, i.e. 
grip strength, lung functioning, gait, visual acuity, and 
auditory acuity (Anstey et  al. 1996). Functional biomark-
ers measure behavior and perception and are, therefore, rel-
evant for the study of psychology and aging (Anstey 2008), 
and in this study, our ambition was to use an age indicator 
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relevant for research in cognitive aging. Previous analyses 
of fBioAge in this sample (Sternäng et  al. under review) 
indicate that it meets many of the criteria for a good indica-
tor of aging, as outlined by McClearn (1997): it changes 
at a rate that reflects the rate aging, it reflects physiologi-
cal age, the relationship with illness and ADL indicates that 
fBioAge is crucial to the maintenance of health, fBioAge 
successfully differentiates shorter and longer term survival, 
and fBioAge demonstrates significant change over a short 
period of time.

The concept of fBioAge has been used for some time 
now, and prominently by Anstey (2008). An fBioAge vari-
able has also recently been developed and examined by our 
own group in a cross-sectional setting (Wahlin et al. under 
review). The present study takes the topic one step further, 
by using a longitudinal approach, and by simultaneous 
examination of both environmental and genetic influences 
on fBioAge variability.

For this research, we used longitudinal data from the 
Swedish Adoption/Twin Study of Aging (SATSA; Finkel 
and Pedersen 2004). The participants in SATSA are iden-
tical and fraternal twins, reared apart or reared together, 
which provides the possibility to examine influences of 
genetic and environmental factors on individual differences.

The goals of the present study were to examine longitu-
dinal changes in fBioAge across the later parts of the adult 
life span (ChronAge 50+), to examine potential gender dif-
ferences in these trajectories, and to examine genetic and 
environmental influences on individual differences in aging 
trajectories. The corresponding hypotheses were: (i) The 
rate of increase in fBioAge will (contrary to ChronAge) 
vary significantly across the examined ChronAge span. (ii) 
Gender differences will be found in both levels and rates 
of change in the fBioAge trajectories. Research has shown 
that there are gender differences in levels of biological age, 

health and longevity (Brayne et  al. 2001; Nakamura and 
Miyao 2008; United Nations Statistics Division 2013), and 
in rates of change in biological age (Nakamura and Miyao 
2008). (iii) The influence of environmental factors on fBio-
Age will increase in old age with higher ChronAge (our 
study included an age range up to 93 years of age). Studies 
have shown an increasing influence of environmental fac-
tors in old age in, for example, self-rated health (Gavrilova 
and Gavrilov 2009), motor functioning (Finkel et al. 2015), 
and cognitive measures (Finkel and Reynolds 2010).

Methods

Participants

Accrual procedures for SATSA have been described pre-
viously. In brief, the sample is a subset of twins from the 
population-based Swedish Twin Registry (Finkel and Ped-
ersen 2004). In-person testing (IPT) took place in a loca-
tion convenient to the participants, such as district nurses’ 
offices, health-care schools, and long-term care clinics. 
Testing was completed during a single 4-hour visit. All 
variables included in the current analyses were collected 
beginning at the second wave (IPT2). Most waves of IPT 
occurred at 3-year intervals, with one exception: in-person 
testing did not occur during wave 4. Therefore, the total 
time span from IPT2 to IPT8 was 19 years.

In total, data from 740 individuals were included in the 
current analyses: 304 men and 436 women. Of those partic-
ipants, 61% provided data at three or more time points and 
16% participated at all six waves. Mean number of waves 
of participation was 3.38 (SD = 1.7) for men and 3.33 
(SD = 1.7) for women. Table  1 presents descriptive infor-
mation at each wave. Age range at each wave is presented; 

Table 1   Sample characteristics

Note: N pairs indicates number of monozygotic reared apart/monozygotic reared together/dizygotic reared apart/dizygotic reared together twin 
pairs
*Mean ChronAge for women is significantly greater than mean ChronAge for men at p < .05
**Mean fBioAge for women is significantly greater than mean fBioAge for men at p < .0005

Wave Men Women

N N pairs Mean ChronAge (SD) Mean fBioAge (SD) N N pairs Mean ChronAge (SD) Mean fBioAge (SD)

(in years) (in T scores) (in years) (in T scores)

IPT2 225 13/26/24/35 64.7 (8.4) 48.7 (5.3) 317 16/27/56/33 66.3 (9.0)* 55.1 (5.5)**
IPT3 186 11/12/21/31 67.3 (8.7) 48.9 (5.6) 268 9/24/42/26 69.4 (9.4) 55.2 (6.3)**
IPT5 199 9/20/24/25 68.7 (9.3) 50.3 (5.9) 285 17/24/39/25 70.5 (9.7)* 56.1 (6.7)**
IPT6 165 8/14/18/15 70.6 (8.8) 51.4 (5.9) 210 10/17/23/16 71.5 (8.7) 56.2 (5.6)**
IPT7 137 6/11/10/18 72.6 (8.1) 51.0 (5.9) 201 8/15/22/17 74.6 (9.0)* 57.1 (7.5)**
IPT8 117 6/7/9/15 74.1 (7.7) 51.7 (7.7) 171 9/11/19/13 75.4 (8.2) 56.3 (6.1)**
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age was fairly normally distributed at each wave. Women 
averaged 1.5–2 years older than men at each IPT, a differ-
ence that was significant at p < .05 at IPT2, IPT5, and IPT7. 
Using an age-based latent growth curve model (described 
below) instead of a time-based model ensures that age is 
equated across sex. Because SATSA is a cohort-sequential 
design, new participants were added at waves IPT3 through 
IPT5, and some participants were lost due to attrition (Fin-
kel and Pedersen 2004). Four types of twins participate in 
SATSA: monozygotic twins reared apart (MZA), monozy-
gotic twins reared together (MZT), dizygotic twins reared 
apart (DZA), and dizygotic twins reared together (DZT). 
Number of twin pairs participating at each IPT is indicated 
in Table 1; data from both complete and incomplete pairs 
were used in the analyses to maximize power.

Measures

Vision and hearing

Vision and hearing were measured via self-report. Par-
ticipants were asked to rate their vision on a scale from 1 
(excellent) to 5 (nearly blind or blind) and to rate their hear-
ing on a scale from 1 (excellent) to 5 (nearly deaf or deaf).

Muscle strength

The participants’ grip strength was measured by a Collin 
handgrip dynamometer (0–70  kg) by a trained research 
nurse at the IPT. The participant made six attempts (three 
with each hand) and the maximum score (in kg) was con-
sidered as the participant’s grip strength score.

Walking speed time

Time to walk 3 m and return was recorded starting at IPT2. 
The nurse administering the interview used a stopwatch to 
measure the amount of time it took (in seconds) for the par-
ticipant to complete this task.

Lung function

Lung function was tested on one of two inter-calibrated 
portable  10-1 dry bellows Vicatest spirometers (Mijn-
hardt, Bunnik, The Netherlands) with subjects in seated 
position and their nasal passages blocked with nose clips. 
Forced expiratory volume in the first second (FEV1) was 
used in the current analyses. At IPT7, only one trial was 
collected; during IPT2 through IPT6 two trials were com-
pleted, and data from the best trial were used in the present 
analyses. During the course of the study, it became neces-
sary to change spirometric equipment, due to the increasing 
difficulty of transporting the Vicatest spirometers and the 

availability of new spirometric equipment that was lighter 
and easier for the nurses to use. Thus, at IPT3, pulmonary 
function for 30% of the subjects was measured using the 
Vicatest, and the remaining subjects were assessed with a 
portable ML 330 spirometer (Micor Medical, Kent, United 
Kingdom). The two spirometers were inter-calibrated to 
ensure consistent measurement. FEV1 values for both 
spirometers were expressed in BTPS (body temperature 
and pressure saturated with water vapor).

Functional biological age

The five indicators above used for the construction of fBio-
Age were significantly intercorrelated. We aimed to exam-
ine sex differences in fBioAge beyond the trivial fact that 
men have greater body mass and stronger muscles in gen-
eral than women. Before calculation of fBioAge, FEV1 
was, therefore, corrected for body volume through division 
by the individual’s squared height (m2). The five variables 
were then z-transformed separately with IPT2 values as the 
basis and summed to create a composite score. To correct 
for sex in the grip strength scores, the z transformation of 
grip strength was done separately for women and men. The 
mean fBioAge at each IPT is presented separately for men 
and women in Table 1.

Statistical method

Due to the range in ChronAge at each IPT (up to 40 years) 
an age-based biometric latent growth curve model (LGCM) 
was used to examine genetic and environmental contribu-
tions to ChronAge changes in fBioAge (Neale and McArdle 
2000). Note that age-based and time-based models provided 
similar results. The LGCM provides estimation of fixed 
effects, i.e. fixed population parameters as estimated by the 
average growth model of the entire sample, and random 
effects, i.e. individual variation in growth model param-
eters. Comparing a model with one slope to a model with 
two slopes indicated that the two-slope model provided a 
better fit to the data (likelihood ratio test = 138.6, df = 4, 
p < .01). Therefore, a two-slope LGCM was used (Finkel 
et al. 2003): one slope for younger old (ChronAge < 75) and 
a separate slope for older old (ChronAge > 75). An empiri-
cal method was used to determine the best centering age: 
models centered at different ages (60, 65, 70, 75, 80) were 
compared. Because the models are not nested, we could not 
compare fits via a likelihood ratio test. Instead we exam-
ined Aikaike’s Information Criterion and the residual vari-
ance estimated by the model. In the model with centering 
age set of ChronAge 75, AIC and residual variance were 
both minimized, indicating that the age-75 model produced 
the best fit to the data. Thus, the intercept is evaluated at 
the inflection point: ChronAge 75. The age-based latent 
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growth curve model is presented in Fig. 1. Observed data 
are indicated by y0 through y5. Group mean intercept (Mi) 
and slopes are estimated (Ms1 and Ms2) and residual vari-
ances (u0 through u5) are set equal across waves. The paths 
from the latent slope factors to the observed scores are the 
age basis coefficients, B1(t) and B2(t). The age basis serves 
as a marker for the age of the subject at each time of meas-
urement, adjusted for the centering age. Therefore, age 
basis coefficients are defined as an individual’s observed 
ChronAge at each measurement occasion minus the center-
ing age (75 years). Values of B1(t) were set to zero for any 
ChronAge greater than 75, thereby defining S1 as the rate 
of change up to ChronAge 75. Similarly, values of B2(t) 
were set to zero for any ChronAge less than 75, defining 
S2 as the rate of change after ChronAge 75. When the age 
basis is set to zero, the individual cognitive score associ-
ated with that measurement occasion does not contribute to 
the estimation of the particular slope (i.e., the slope prior to 
ChronAge 75 or alternatively after ChronAge 75).

Using twin data, the random effects, or variance, in 
latent growth curve parameters can be divided into four 
separate components: additive genetic effects (A), corre-
lated environmental effects shared by anyone living in the 
same culture (C), shared rearing environmental effects 
shared only by twins who grew up in the same home (S), 
and nonshared environmental effects unique to each indi-
vidual and error associated with age-specific residuals 
(E). For simplicity, the model in Fig. 1 includes only the 
additive genetic effects for the intercept (Ai) and slopes 
(As1 and As2). Genetic influences on correlations among 
intercepts and slopes, are captured by the paths from Ai 
to S1 and S2, and from As1 to S2. In total then, there are 
six genetic parameters (paths) estimated by the model. 
Shared rearing environment, correlated environment, and 
nonshared environment were also included in the model, 
for a total of 24 biometric parameters.

By fitting structural models to the observed MZA, 
MZT, DZA, and DZT covariance matrices, we can esti-
mate the proportion of phenotypic variance accounted 
for by the variance in genetic factors, shared environ-
ment factors, correlated environment factors, and non-
shared environment factors. Biometric latent growth 
curve models were fit with the structural equation mod-
eling program Mx version 1.66b (Neale et al. 2003). The 
raw maximum likelihood estimation procedure was used 
throughout. We tested nested models using a likelihood 
ratio test (i.e. subtracting the −2 log likelihoods of the 
models being compared).

Results

Model comparisons

In the first set of models, sex differences in the biomet-
ric latent growth curve model were tested, as reported in 
the top of Table 2. First, the full model with all param-
eters estimated separately for men and women was fit to 
the data. In model 2, all model parameters were equated 
across sex: three growth curve parameters (intercept, 
slope 1, and slope 2) and 24 biometric parameters (paths 
for A, C, S, and E). The likelihood ratio test (LRT) com-
paring the fit of model 2 to model 1 indicated a significant 
reduction in model fit. In model 3, only the three growth 
parameters were equated across sex, which also resulted 
in significant reductions in model fit versus model 1. 
When only the biometric parameters were equated across 
sex in model 4, no reductions in model fit occurred. Thus, 
men and women differ in the shape of the change trajec-
tory, but not in genetic and environmental influences on 
that trajectory.

Fig. 1   Two-slope latent growth curve model. Note I = intercept, 
S1 = slope 1, S2 = slope 2; Observed data are indicated by y0 through 
y5. Group mean intercept (Mi) and slopes are estimated (Ms1 and 
Ms2) and residual variances (u0 through u5) are set equal across 
waves. The paths from the latent slope factors to the observed scores 
are the age basis coefficients, B1(t) and B2(t). For simplicity, the 
model includes only the additive genetic effects for the intercept (Ai) 
and slopes (As1 and As2)
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Latent growth curve

In the second phase of model fitting, additional models 
were tested to identify the nature of the sex differences in 
change trajectories; results are presented in the middle of 
Table  2. Using model 4 as the new baseline model, sex 
differences in each growth curve parameter were tested 
separately in models 5, 6, and 7. Comparing model fit sta-
tistics to model 4 indicated significant sex differences in 
intercept, only. Thus, men and women differ in mean fBio-
Age, but there are no significant sex differences in rates of 
change either before or after ChronAge 75. Change trajec-
tories estimated by the growth curve model are presented 
in Fig. 2; growth curve parameter estimates are reported in 
Table  3. For both men and women, rates of change after 
ChronAge 75 are twice as fast as rates of change before 
ChronAge 75. For example, slope 1 for fBioAge is 0.32 
for men while slope 2 is 0.78. The fact that two-slope 
models provide a significantly better fit to the data than 
one-slope models (p’s < 0.001) verifies that the difference 

in rates of change before and after ChronAge 75 was sig-
nificant. The mean fBioAge at ChronAge 75 is five points 
higher for women than for men. Because slopes estimated 
for men were slightly greater than the slopes estimated for 
women, the change trajectories for men and women con-
verge slightly, but not significantly, over the age range: the 
sex difference at ChronAge 50 is 6.11 whereas it is 4.10 at 
ChronAge 90.

Twin analysis

The purpose of the twin analysis was to determine whether 
A, C, and S influences on the growth curve parameters 
were significant. Therefore, three additional models were 
fit to the data; results are reported in the bottom section 
of Table  2. In model 8, additive genetic effects (A) were 
dropped from the model, which did not have a significant 
impact on model fit versus model 4. In model 9, both cor-
related environmental (C) and shared environmental (S) 
effects were dropped from the model, with no significant 
change in model fit versus model 4. In model 10, A, C, and 
S were all dropped from the model, which resulted in a sig-
nificant change in model fit versus model 4. Comparison 
of model 9 with model 10 provides the most direct test of 
genetic influences on the growth curves, and the difference 
in model fit was significant (change in fit = 26.7, df = 6, 
p < .001). Thus, model fitting indicated significant genetic 
influences on fBioAge.

Changes in genetic and environmental components of 
variance for fBioAge estimated by model 9 are presented 
in Fig. 3: both raw variances (top) and proportions of vari-
ance (bottom). Total variance in fBioAge was fairly flat 
(about 20) up until ChronAge 75, at which point total vari-
ance started to increase dramatically, reaching a maximum 

Table 2   Model-fitting results

LRT Likelihood ratio test
**Difference in model fit is significant at p < .01

Model −2LL (df) LRT (df)

Initial model testing (vs. model 1)
 1. Full model 13252.9 (2339)
 2. Equate all across sex 13446.4 (2366) 193.5 (27)**
 3. Equate LGCM across sex 13421.6 (2342) 168.7 (3)**
 4. Equate biometric across sex 13261.7 (2363) 8.7 (24)

Follow-up testing of LGCM (vs. model 4)
 5. Equate I across sex 13373.5 (2364) 111.8 (1)**
 6. Equate S1 across sex 13262.8 (2364) 1.2 (1)
 7. Equate S2 across sex 13264.1 (2364) 2.4 (1)

Follow-up testing of biometric (vs. model 4)
 8. Drop A both sexes 13270.4 (2369) 8.8 (6)
 9. Drop CS both sexes 13267.6 (2375) 14.7 (12)
 10. Drop ACS both sexes 13294.3 (2381) 41.4 (18)**

Fig. 2   Changes in mean fBioAge estimated by the growth curve 
model
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of 69 at ChronAge 90. The bottom half of Fig. 3 indicates 
that the increase in total variance was fairly evenly split 
between genetic and environmental variance. In addition to 
estimating changes in genetic and environmental influences 
on fBioAge, the biometric latent growth curve model pro-
vides a means for identifying the nature of the genetic and 
environmental influences. Biometric parameter estimates 
resulting from model 9 are reported in Table  3. Param-
eter estimates for the paths from Ai to intercept and Ei to 
intercept were significant; however, genetic influences on 
slopes were not significant. Thus, although there were sig-
nificant genetic influences on mean level of fBioAge, rates 
of change were influenced primarily by nonshared environ-
mental factors.

Discussion

ChronAge, an indicator of age used in most aging stud-
ies, is primarily an index of time. fBioAge is a promising 
alternative to ChronAge, being an age measure that also 
can be considered as an indicator of aging, per se. fBioAge 
consists of functional body measures, i.e. muscle strength, 
lung functioning, gait, and sensory abilities (Anstey et  al. 
1996). The biological age variable developed within our 
group was based on the concept of fBioAge (Anstey 2008), 
and has recently been used in a cross-sectional setting 
(Wahlin et  al. under review). The current study is unique 
in its longitudinal approach to examination of fBioAge. We 
found that the average trajectories of fBioAge across time 
increase with a rather low steady rate up to 75 chronologi-
cal years of age, and after that the rate of change is twice as 
fast. This type of increase in the trajectories was the same 
for both women and men. However, the intercept of the 
LGCM for women was significantly higher than the corre-
sponding intercept for men. The individual differences (i.e. 
total variance) increased strongly after ChronAge 75. The 
SATSA twin study design allowed us to examine genetic 
and environmental influences on the trajectories. We found 
that genetic and environmental factors have an approxi-
mately equal influence on the variance.

It is in line with our first hypothesis that the trajecto-
ries of fBioAge increase with different rates across the 
life span. fBioAge has, in this respect, an important char-
acteristic as an aging indicator that ChronAge does not 
have. The aging processes goes on at individual rates, and 
Nakamura and Miyao (2008) also observed that the rate of 
change in biological age increases later in life, although 
in their study it was from 65 chronological years of age. 
Our results are also in line with other longitudinal research 
on different types of body performance measures (such as 
cognition and grip strength) that do not change that much 
before ChronAge 65–70, after which the change increases 

Table 3   Parameters estimates (confidence intervals) from biometric 
growth curve model 9

Parameter Estimate C.I.

Intercept – Men 51.70 (50.82, 52.59)
Slope 1 – Men 0.32 (0.27, 0.38)
Slope 2 – Men 0.78 (0.58, 0.96)
Intercept – Women 56.81 (56.16, 57.58)
Slope 1 – Women 0.29 (0.25, 0.34)
Slope 2 – Women 0.64 (0.49, 0.77)
Ai → Intercept 2.47 (1.43, 3.46)
Ei → Intercept 3.05 (2.24, 3.88)
Ai → Slope 1 0.01 (−0.05, 0.10)
Ei → Slope 1 0.05 (−0.01, 0.12)
As1 → Slope 1 0.00 (0.00, 0.11)
Es1 → Slope 1 0.00 (0.00, 0.12)
Ai → Slope 2 0.23 (−0.16, 0.42)
Ei → Slope 2 −0.21 (−0.36, 0.09)
As1 → Slope 2 0.01 (−0.50, 0.48)
Es1 → Slope 2 0.35 (−0.59, 0.54)
As2 → Slope 2 0.01 (−0.48, 0.43)
Es2 → Slope 2 −0.17 (−0.54, 0.56)

Fig. 3   Changes in genetic and environmental components of vari-
ance for fBioAge estimated by the growth curve model
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(e.g., Sternäng et al. 2015a, b). Also, the variance of fBio-
Age is rather high in old ChronAge, which means that the 
individual trajectories differ a lot. Individual differences in 
aging can be captured by fBioAge but not by ChronAge, 
which has the same rate of change for all individuals. This 
is also an important advantage for fBioAge compared to 
ChronAge as aging indicator.

We found gender differences in the fBioAge trajectories. 
This was only partly in line with the second hypothesis, 
since the differences were only observed in levels (inter-
cepts) and not in change across time. Women had higher 
fBioAge than men across the studied ChronAge range in 
this sample of Swedish twins. This type of gender differ-
ence was also found in cross-sectional data from Bangla-
desh (Wahlin et al. under review). Other results from other 
countries have also shown higher fBioAge for women (e.g., 
Anstey et al. 1996; Nakamura and Miyao 2008). In Bang-
ladesh, this was expected, since the life situation for older 
women connected to health and possibilities are worse than 
for men (e.g., Herlitz and Kabir 2006). In Sweden, however, 
it is not as easy to understand why women have higher fBi-
oAge than men, since women, for example, live longer than 
men in general in Sweden and in nearly all other countries 
(United Nations Statistics Division 2013). However, while 
women live longer they also report having worse health 
than men do (Brayne et  al. 2001) which probably influ-
ences strongly their fBioAge level. This paradox and the 
gender differences in longevity and aging are not yet fully 
understood (Austad 2006; Regan and Partridge 2013), and 
these different levels of fBioAge in women and men need 
further study. However, we found no significant gender dif-
ferences in the rate of change in fBioAge, which is different 
to findings showing that women may have a slower rate of 
aging than men (Nakamura and Miyao 2008). To be sure, 
the curves for men and women in the present study seem 
to converge somewhat in late adulthood, but that tendency 
was not statistically significant.

We observed that the levels of fBioAge, for this popu-
lation, were rather equally influenced by genetic and envi-
ronmental factors. There was a nonsignificant trend for 
increasing environmental variance after ChronAge 75. 
This result is in line with our hypothesis that environmen-
tal factors increase their influence during the life span. 
We also observed that it was the nonshared environmen-
tal factors primarily that influenced the rate of change in 
fBioAge. Other studies have also shown that several traits 
demonstrate increased nonshared environmental variance 
in old age (Finkel et al. 2015; Finkel and Reynolds 2010; 
Gavrilova and Gavrilov 2009). Still others have found 
that heritability remains stable, at least up to 80 years of 
age (McGue and Christensen 2013). Since environmental 
factors include things that a person can affect, such as life-
style, type of work, and living place, it might be possible 

to influence our own fBioAge development to a certain 
extent, for example, with change of lifestyle. An increase 
in nonshared environmental variance could result from the 
cumulative effect of (distal) lifestyle factors experienced 
across adulthood. If so, then interventions should focus on 
lifestyle changes in early and midlife. On the other hand, 
an increase in nonshared environmental variance could 
result from proximal environmental events unique to the 
individual (illness or injury) from which the individual, as 
a result of reduced resilience, is no longer able to recover in 
a timely fashion. In that case, interventions might better be 
focused on the present situation. Additional research will 
be required to locate the optimal focus of interventions. 
The potential to reduce fBioAge in late life is an interesting 
challenge that needs further examination. Since there were 
no gender differences in the influence of genetic and envi-
ronmental factors, this could potentially be equally possible 
for men and women.

Limitations

Even if this study has strong features, it also has some limi-
tations worth noticing. First, since the fBioAge levels were 
different for men and women, we cannot exclude that this 
difference partly has a methodological reason. However, we 
controlled the fBioAge variable for sex in the underlying 
measures, i.e. grip strength was adjusted for sex and lung 
capacity for body volume. Limitations include many of the 
statistical assumptions common to structural equation mod-
els. The data are assumed to be missing at random and the 
sample is assumed to be relatively homogeneous. As one 
focus of the current analysis was on sex differences, it is 
important to note that patterns of participation and attrition 
did not differ significantly for men and women. As with 
any longitudinal sample, attrition occurred in the SATSA 
sample. However, using an age-based growth curve model 
instead of a time-based model allowed us to maximize 
power, especially for twin pairs with more participation 
waves. Finally, although fBioAge demonstrated positive 
skew, the use of the two-slope growth curve model allowed 
us to capture the increase in individual differences after 
ChronAge 75.

Conclusions

This study is unique by its examination of longitudinal tra-
jectories in fBioAge. The rate of increase in fBioAge was 
twice as fast after ChronAge 75. There were gender differ-
ences in the trajectories. fBioAge was significantly higher 
in women than in men, but there were no gender differ-
ences in rates of change with ChronAge. fBioAge is fairly 
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equally influenced by genetic and environmental factors. 
In addition, the rates of change in fBioAge were primar-
ily due to non-shared environmental factors. The different 
rates of aging, and the individual differences in aging that 
we observed in this study, can be captured by fBioAge but 
not by ChronAge, which assumes the same rate of aging 
for all individuals. These features are important advantages 
for fBioAge compared to ChronAge as an aging indicator. 
In the future, we will examine further how fBioAge, and in 
particular the distribution of fBioAge in adults over Chron-
Age 75, relates longitudinally to aging-sensitive functions 
such as cognitive abilities.
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