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Abstract

Background: High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever
increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This
“large p, small n" paradigm in the area of biomedical “big data” may be at least partly solved by feature selection algorithms,
which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the
exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms
employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets.

Results: This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal
Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with
phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor
algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing
algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to
have particular biomedical relevance to the phenotypes from the literature.

Conclusion: McTwo selects a feature subset with very good classification performance, as well as a small feature number.
So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.

Keywords: Maximal information coefficient (MIC), Heuristic algorithm, Feature selection, Filter algorithm, Wrapper

algorithm

Background

Due to the difficulty of collecting specific sample types
and the limited available resources, only a small number
of samples can be collected for a traditional biological
study. However with modern biotechnologies huge
amounts of biomedical“big data” may be produced for a
single sample. This leads to the challenge of the“large p
small #” paradigm in biological big data [1] which cannot
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be solved by the widely used deep learning strategy
employed in other big data areas [2]. A “large p small n”
dataset usually has dozens or at most a few hundred sam-
ples and millions or more features for each sample [1-3].
Over-fitting will be induced if all the features are used in
the modeling of classification or regression for these sam-
ples [3]. One of the solutions is feature selection or di-
mension reduction, which tries to find a subset of features
with the best modeling performance [3].

Various feature selection algorithms have been pub-
lished, and they may be roughly grouped into three
classes, based on how they determine the chosen fea-
tures [4—6]. A class I wrapper algorithm usually adopts
an existing data mining algorithm to evaluate a feature
subset, and applies a heuristic feature screening rule
for the feature subset with the optimal data mining
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performance. It tends to consume exponentially in-
creased time to find such a feature subset. Class I algo-
rithms usually use heuristic rules to find locally
optimal solutions. The Prediction Analysis for Micro-
arrays (PAM) [7] algorithm calculates a centroid for
each of the class labels, and selects features to shrink
the gene centroids toward the overall class centroid.
PAM is robust for outlier features. The Regularized
Random Forest (RRF) [8] algorithm uses a greedy rule
by evaluating features on a subset of the training data
at each random forest node. The choice of a new fea-
ture will be penalized if its information gain does not
improve that of the chosen features.

A class II filter algorithm measures the association of
each feature or feature subset with the sample labels,
and orders all the features or feature subsets based on
this measurement. Most of the filter algorithms evalu-
ate the individual features. For the feature-based filter
algorithms, the user has the option of deciding the
number of top-ranked features for further experimental
validations, but no information is provided for the fea-
ture subset with the optimal modeling performance. A
filter algorithm does not consider the inter-feature cor-
relations, but its linear calculation time complexity
sometimes makes it the only affordable choice for large
datasets [6]. T-test based filtering (TRank) algorithm is
the most commonly used method to test for the differ-
ence of a feature between two groups. It estimates the
difference between the two groups and the variation in
the dataset giving a statistical significance measurement
[9]. Wilcoxon test based feature filtering (WRank) algo-
rithm calculates a non-parametric score of how dis-
criminative a feature is between two classes of samples,
and is known for its robustness for outliers [10]. ROC
plot based filtering (ROCRank) algorithm evaluates
how significant the Area Under the ROC Curve (AUC)
of a feature is for the investigated binary classification
performance [11]. The Correlation-based Feature Selec-
tion (CES) [12] algorithm is a filter-based subset evalu-
ation heuristic algorithm which assumes that features
in a good feature subset should be independent of each
other and are highly correlated with the samples’ class
labels.

A class III hybrid algorithm aims to automatically
generate an optimally selected feature subset by inte-
grating the wrapper and filter strategies within differ-
ent heuristic feature selection steps [6]. For example,
Xing, et al. proposed a hybrid of filter and wrapper
approaches to select a feature subset of a high-
dimensional microarray dataset, and outperforms the
regularization strategy with satisfactory classification
error rates [13].

This study proposes a novel wrapper feature selec-
tion algorithm, McTwo, based on the measurement
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Maximal Information Coefficient (MIC) [14] between
two variables. The first step of McTwo screens all
the features for their MIC associations with the class
labels and each other, and only those with significant
discriminative power are kept for further screening.
Then McTwo employs the best first search strategy
to find the feature subset with the optimal classifica-
tion performance. The experimental data suggests
that this algorithm outperforms the other algorithms
in most cases, with significantly reduced numbers of
features.

Methods

The binary classification problem and its performance
measurements

This work investigated the binary classification problem. A
binary classification problem has two sets of samples,
the Positive (P) and Negative (N) sets. P={P;, Py, ..., P,;}
and N={N;, N,, ..., N,,}. The numbers of positive and
negatives samples are also abbreviated as P =7 and N = m,
respectively. The total number of samples is s=7n+m.
Each sample XePuN is a k-feature vector X = <F;(X),
Fy(X), ... Fi(X)>. A binary classifier f assigns X to
either P or N.

Sensitivity (Sn), specificity (Sp) and accuracy (Acc)
were widely used to measure how well a binary classifi-
cation model performs [15-17]. Let TP and FN be the
numbers of positive samples that are predicted by the
model to be positive and negative, respectively. TN and
FP are the numbers of negative samples, predicted to
be negative and positive, respectively. So P=TP + FN
and N = TN + FP. Sensitivity (Sn) is defined as the ratio
of positive samples that are correctly predicted Sn =
TP/(TP + FN) = TP/P, and specificity (Sp) is the ratio of
corrected predicted negative samples Sp = TN/(TN +
FP) = TN/N. The model’s overall accuracy is defined as
Acc=(TP+ TN)/(TP+ FN + TN + FP) = (TP + TN)/(P + N)
[18]. Another measurement Avc is defined as (Su + Sp)/2
to help evaluate the unbalanced datasets with different
numbers of positive and negative samples.

All the classification algorithms were evaluated for
their overall performance measurements using 5 fold
internal cross validations, averaged over 30 runs with
different seeds for the random number generators. A
binary classification algorithm with the larger Acc value
performs better. If two models perform similarly well,
the simpler model is preferred, since it costs less
resource and human labour in its clinical deployment
[15]. Also, a simpler model may avoid the over-fitting
challenge in the biomedical big data area, caused by the
“large p small n” paradigm [19]. External cross valida-
tions are also conducted to test whether McTwo gener-
ates feature selection bias.
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The proposed feature selection algorithm may select
features for any binary classification datasets. For the
convenience of discussion and dataset availability, this
study focuses on the classification performance compari-
son on the microarray-based gene expression profiling
datasets.

Biomedical datasets used in this study

Seventeen binary classification datasets were used for
the classification performance evaluation in this study,
as shown in Table 1. Two widely investigated datasets
Colon [20] and Leukaemia [21] were retrieved from the
R/Bioconductor packages colonCA and golubEsets, re-
spectively. Six publicly available datasets, i.e. DLBCL
[22], Prostate [23], ALL [24], CNS [25], Lymphoma [26]
and Adenoma [27], were downloaded from the Broad
Institute Genome Data Analysis Center, which is avail-
able at http://www.broadinstitute.org/cgi-bin/cancer/
datasets.cgi. The dataset ALL was further processed
into four binary classification datasets, i.e. ALL1, ALL2,
ALL3 and ALL4, based on different phenotype annota-
tions as described in Table 1. Another five new data-
sets, i.e. Myeloma (accession: GDS531) [28], Gastric
(accession: GSE37023) [29], Gastricl/Gastric2 (acces-
sion: GSE29272) [30], T1D (accession: GSE35725) [31]
and Stroke (accession: GSE22255) [32], were down-
loaded from the NCBI Gene Expression Omnibus
(GEO) database.
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The raw data from the NCBI GEO database were
normalized into the gene expression matrix with the
default parameters of the RMA algorithm [33], and all
the other datasets were downloaded as the normalized
data matrix.

All the datasets used in this study are previously pub-
lished by the other researchers, and publicly available, as
described above. So neither ethics nor informed consent
forms are needed from this study.

Maximal information coefficient based feature screening
(McOne)

Maximal information coefficient (MIC) tests the de-
pendence between two variables and whether they have
a linear or other functional relationship [14]. The
measurement MIC is symmetric and normalized into a
range [0, 1]. A high MIC value suggests a dependency
between the investigated variables, whereas MIC =0
describes the relationship between two independent
variables. Although MIC seems equitable for different
dependency types [34] and performs slightly worse
than some other algorithms like the dynamic slicing
algorithms and t-test [35], its ability to handle both
numeric and category data will facilitate the future
applications to heterogeneous biomedical datasets. The
calculation function for MIC is implemented as the R
package Minerva version 1.5 by the original authors.
The statistical characterization of MIC and the com-
prehensive comparisons of MIC against the other

Table 1 Summary of the 17 binary classification datasets used in this study

D Dataset Samples Features Summary

1 DLBCL 77 7129 DLBCL patients (58) and follicular lymphoma (19)

2 Pros (Prostate) 102 12625 prostate (52) and non-prostate (50)

3 Colon 62 2000 tumour (40) and normal (22)

4 Leuk (Leukaemia) 72 7129 ALL (47) and AML (25)

5 Mye (Myeloma) 173 12625 presence (137) and absence (36) of focallesions of bone

6 ALL1 128 12625 B-cell (95) and T-cell (33)

7 ALL2 100 12625 Patients that did (65) and did not (35) relapse

8 ALL3 125 12625 with (24) and without (101) multidrug resistance

9 ALL4 93 12625 with (26) and without (67) the t(9;22) chromosome translocation
10 CNS 60 7129 medulloblastoma survivors (39) and treatment failures (21)
I Lym (Lymphoma) 45 4026 germinalcentre (22) and activated B-like DLBCL (23)

12 Adeno (Adenoma) 36 7457 colon adenocarcinoma (18) and normal (18)

13 Gas (Gastric) 65 22645 tumors (29) and non-malignants (36)

14 Gas1 (Gastric1) 144 22283 non-cardia (72) of gastric and normal (72)

15 Gas?2 (Gastric2) 124 22283 cardia (62) of gastric and normal (62)

16 T1D 101 54675 T1D (57) and healthy control (44)

17 Stroke 40 54675 ischemic stroke (20) and control (20)

Column “Dataset” gives the dataset names that will be used throughout this manuscript. Columns “Samples” and “Features” are the numbers of samples and
features in this dataset, respectively. Column “Summary” describes the two sample classes, and the sample number in each class is given in the parenthesis.
Details of the dataset and the original study may be found in the references listed in the column “Reference”
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statistical tests including Pearson correction and mu-
tual information may be found in [14].

Algorithm. McOne

Input: (F, C, r), where F=<F,, F,, ..., F;>, C=<C}, (5, ..., C&>, and ris a

threshold.

Begin

1. create an array micFC[1..k] //store MIC between all features and class
2. create and array Subset[1..k] //store subset by the feature ID

3. numSubset = 1 //Subset[1..numSubset] contains the selected features
4. fori=1tok

5. micFC[i] = MIC(F[i],C)

6. if micFC[i]>=r

7. Subset{numSubset| = i

8. numSubset = numSubset + 1

9. endif //delete MIC less than threshold r

1

11.

0. endfor
1 rank the items in Subset[1.. numSubset] in the descending order by
micFC[Subset[i]]

12. for e= 1 to numSubset

13. g=e+1

14. while q <= numSubset

15. if MIC(F[Subset[e]], F[Subset[¢]]) >= micFC[Subset[q]]
16. for i = g to (numSubset - 1)

17. Subset[i] = Subset[i + 1]

18. numSubset = numSubset - 1

19. endfor

20. elseg=qg+1

21. endif //redundant feature discrimination
22. endwhile

23. e=e+1

24. endfor

25. return FReduce = F[Subset[1..numSubset]]

End

An MIC-based filtering step, McOne, is proposed to
remove those features of little association with pheno-
types or redundant with other features remaining in the
feature subset, as described in the above pseudo-code.
Firstly, a number of terms are defined. For a given binary
classification problem, the class labels C={C;, C,, ...,
Cs}, CefP, N}, and each sample has k features < F(X),
F(X), ... Fi(X)>, where F; is the j" feature.

Definition: Information Relevant features: S = {F; |MIC(F,
C) > r}, where r is a pre-set irrelevancy threshold.

Definition: Information Redundant features: F; is re-
dundant, if there exists another feature F; s.z. MIC(F;,C) >
MIC(F,C) and MIC(F;,F)) > MIC(F;,C).

Information dominant criterion: Feature F; will be
kept, if it has the maximum information relevancy with
target variable C in the candidate feature subset MIC(F;, C)
and not redundant with the features already selected.

McTwo algorithm

We employ the best first search strategy to further reduce
the feature number. Our experimental data shows that
McOne selects a subset of features with satisfying classifi-
cation performances. However, McOne may select dozens,
or even more than a hundred features, which may lead to
the over-fitting problem for some big data areas with the
“large p small n” challenge [3]. The best first search strat-
egy is widely used for the purpose of further reducing the
number of selected features in a small scale feature subset.
This study uses the version implemented in the FSelector
package version 0.19 in the software R version 3.0.2.

Page 4 of 14

The k nearest neighbour (KNN) algorithm is used as the
embedded classifier in the best first search procedure.
Although KNN is a very simple classifier, its merits of fast
computing and parameter independency make NN the
ideal classifier when being executed many times in a wrap
procedure. The simple form NN is chosen, i.e. k= 1.

The balanced accuracy BAcc = (Sn+ Sp)/2 calculated
by the leave-one-out (LOO) validation strategy is used as
the optimization goal. This is because the overall accuracy
Acc does not always reflect a reasonable classification per-
formance of a classifier on an imbalanced dataset. For ex-
ample, for a dataset of 100 positive and 10,000 negative
samples, if a classifier predicts any samples as “negative”,
it has Acc =10,000/(100 + 10,000) = 99.01 %, but S =0. In
comparison, BAcc=(0+1)/2=0.5, which ranks such a
classifier very low. Also, the LOO validation is parameter
independent, and may be an objective strategy to evaluate
how well a classifier performs.

The aforementioned step two of McTwo uses the output
feature subset of McOne as its input, and returns the
features filtered by the above procedure.

Time intensity estimation of McTwo

Here is an estimation of the time complexity of the algo-
rithm McTwo. McOne needs to calculate MIC values
between all the features, and features against the class
labels. Let p and n be the numbers of features and sam-
ples, respectively. So McOne runs for at most the time
O(p” + p), assuming that the MIC value between two
variables is calculated within a constant time. The sec-
ond step of McTwo theoretically needs to screen all the
remaining features filtered by McOne, which is at most
O(p). So the worst-case time complexity of McTwo is
O + p) + O(p) ~ O(p* + 2p) ~ O(p?), which is the same
as the feature selection algorithm FCBF [36]. But the fil-
tering step McOne is implemented to evaluate the MIC
values between features and class labels, which will usually
exclude most of the features. Then the evaluation of inter-
feature MIC values will be significantly speeded up. So the
actual calculation time will not reach the upper-bound
O(p?) in most cases.

Comparative analysis of feature selection performances
We conducted a series of comprehensive comparative ex-
periments with the other commonly used feature selection
algorithms, from both the classification accuracy and se-
lected feature numbers aspects. The comparison was con-
ducted against two wrapper algorithms (class I), i.e. PAM
[7] and RRF [8], and three widely used filter algorithms
(class II), i.e. TRank [9], WRank [10] and ROCRank [11].
Since the filter algorithm CFS automatically generates an
optimally selected feature subset, CFES is grouped with the
wrapper algorithms in the comparison experiments.
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FCBF (Fast Correlation-Based Filter) [36] selects fea-
tures in a similar way to McTwo. There are two major dif-
ferences between FCBF and McTwo. In the first step,
McTwo uses the measurement MIC to test the association
between two variables [14], whereas FCBF uses the sym-
metric uncertainty (SU) based on information gain [36].
MIC is claimed to fit better on complex datasets than the
other correlation measurements. In the second step,
McTwo chooses the next feature based on the perform-
ance of an embedded classifier NN, while FCBF deter-
mines whether the next feature is kept by evaluating
whether it, together with the existing features, may consti-
tute an approximate Markov blanket, defined from the
measurement SU. An external cross validation is con-
ducted to compare the classification performances of the
two algorithms.

A number of representative classification algorithms are
chosen to build the binary classification models based on
the features selected by the aforementioned feature selec-
tion algorithms. Support Vector Machine (SVM) calcu-
lates a hyper-plane between the two classes of samples/
points in the high-dimensional space that maximizes the
inter-class distance but minimizes the intra-class distances
[37]. The Naive Bayes (NBayes) model assumes that the
features are independent of each other and picks the class
label with the maximal posterior probability as the predic-
tion [38]. NBayes is known to be competitive with the
more advanced and computationally-intensive methods,
e.g. SVMs, in some machine learning problems such as
text categorization [39]. A Decision Tree (DTree) consists
of decision rules on the tree nodes about which route to
take for the next decision step [40]. The simple Nearest
Neighbour (NN) algorithm predicts that a query sample
belongs to the same class as its nearest neighbour in a
given distance measurement [41].

The whole procedure of the experiments is illustrated
in Fig. 1.

Results and discussion

McTwo significantly decreases the feature number
selected by McOne

The two datasets Gasl and T1D are selected from the 17
datasets as representatives of cancers and cardiovascular
diseases, respectively. The detailed results of all the other
datasets can be found in Additional file 1: Figure S1. Re-
sults of all the 17 datasets will be summarized and dis-
cussed in the following text.

McTwo achieves similar overall accuracies to McOne,
using different classification algorithms, as shown in Fig. 2.
Firstly, McOne outperforms McTwo only on one of the
17 datasets for the NN classification algorithm while on
average McTwo outperforms McOne with a 3.99 % im-
provement in accuracy. This is within our expectation,
since McTwo tries to minimize the feature number while
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keeping a similar overall classification accuracy in the sec-
ond step. The only exception is the dataset Adeno, where
McTwo has a 0.2 % smaller Acc (99.8 %) than McOne
(100 %). But McTwo uses only 2 features to achieve
almost similar classification performance as McOne’s 29-
feature based model. On average, McTwo (90.99 %) out-
performs McOne (86.99 %) in the overall accuracy Acc
and the maximal improvement 10.6 % is achieved on the
dataset Stroke. The DTree model of McTwo outperforms
that of McOne for 14 out of the 17 datasets, the excep-
tions being Myeloma, ALL2 and CNS. The average im-
provement of McTwo over McOne is 3.4 %. But McOne
outperforms McTwo with the averaged improvement in
Acc of 3.00 and 4.86 % for the SVM and NBayes algo-
rithms, respectively. This may be due to the fact that SVM
[42] and NBayes [43] tend to be sensitive to the feature
numbers, while McTwo selects a significantly smaller
number of features than McOne, which will be discussed
in the following paragraphs.

McTwo performs slightly worse in the best classification
models than McOne, as shown in Fig. 3. For a given fea-
ture subset, researchers will always choose the classifica-
tion model with the maximal overall accuracy. So the
maximal Acc (mAcc) of the four classification algorithms
(SVM, NBayes, DTree and NN) is used as the perform-
ance measurement of the feature subset selected by
McTwo and McOne. Figure 3 shows that McTwo has an
0.8 % loss on average in mAcc than McOne, but performs
equally well or better for 11 out of the 17 datasets than
McOne. The largest difference of mAcc is observed for the
dataset Stroke, where McOne outperforms McTwo by
13.4 %. There is only 0.01 % difference in the averaged
mAcc between the two feature selection algorithms for the
other 16 datasets.

McTwo selects a significantly smaller number of fea-
tures than McOne, as shown in Fig. 3. On average,
McTwo selects only 1/33.3 number of features to
achieve similar classification accuracy compared with
McOne. The largest numbers of features selected by
McTwo and McOne are 7 and 164, respectively. For the
dataset ALL1, both McTwo and McOne achieve 100 %
in mAcc with McTwo using only one feature, compared
to the 156 features selected by McOne.

So both of the two steps, i.e. McOne and the wrapper,
are important in McTwo for finding the optimal subset
of features.

Comparison with the wrapper FS algorithms

The classification performances of feature subsets se-
lected by McTwo and three other wrapper algorithms
CFS, PAM and RRF were compared. Best classification
performance of the features selected by McTwo is usu-
ally achieved by the classification algorithms DTree and
NN, as shown in Fig. 4 and Additional file 1: Figure S2.
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Fig. 1 Experimental design of this study. There are 17 datasets used to evaluate the performances of the feature selection algorithms, as in box of
“Data Input”. The structure of proposed McTwo algorithm is illustrated in the box “McTwo”. Nine other representative feature selection algorithms are
listed in the box “Other Methods". Four binary classification algorithms are used to evaluate what degree of accuracy the classification models based
on the selected features may achieve. The classification performance is measured by the sensitivity (Sn), specificity (Sp), overall accuracy (Acc). a The
processing scheme of internal cross validation. b The work flow of external cross validation

McTwo performs much better than the algorithms PAM
and RREF, but worse than CFS, as shown in Table 2. We use
the comparison triplet win/tie/lose to measure the num-
bers of datasets that algorithm A performs better, equally
well and worse compared with algorithm B by the meas-
urement maximal accuracy mAcc, and this triplet is defined
to be CT(A, B) = (win/tie/loss). McTwo performs better
than PAM and RRF in 12 and 15 out of the 17 datasets, re-
spectively. But McTwo does not achieve better mAcc than
CFS in 14 datasets. It follows that CFS performs even bet-
ter in mAcc compared with PAM and RRF, with CT(CFS,
PAM) = (16/1/0) and CT(CFS, RRF) = (17/0/0).

The balance between the classification accuracy and
the model complexity for the four wrapper algorithms
was also investigated, as shown in Fig. 5. On average, as
we have seen, McTwo achieves 3.5 % lower than CFS in
mAcc, but 1.9 and 3.9 % better than PAM and RREF, re-
spectively. But McTwo only needs 1/44.4 number of
features on average compared with CFS. For example,
both McTwo and CFS achieve 100 % in mAcc on data-
set ALL1, but McTwo uses only one feature, compared

with 103 features selected by CFS. There is currently
no measure available to rate a classification model on
both prediction accuracy and model complexity. Here
we define an evaluation index of model complexity and
classification accuracy EI = Acc-p/100 for this purpose,
where p is the number of features used in the classifica-
tion model. Except for the PAM feature selection algo-
rithm on the dataset ALL3, McTwo performs best
compared with all the other three wrapper algorithms
on all the 17 datasets. McTwo performs worse than
PAM in Acc on the four datasets Colon, Mye, ALL4
and Lym, with differences of 2.4, 0.2, 2.1 and 0.1 %, re-
spectively. The comparison of feature numbers selected
by McTwo and PAM for the four datasets shows that
McTwo recommends significantly smaller numbers of
features, i.e. (6 vs 14), (7 vs 34), (2 vs 30) and (4 vs 109),
respectively. Similar observations may be found on the
two datasets Gasl and Stroke where McTwo performs
worse than RRF. CFS and PAM also show a high fluctu-
ation in the numbers of finally chosen features for
different datasets, as shown in Fig. 5a.
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Fig. 2 Comparison of the binary classification accuracy Acc between the two algorithms McTwo and McOne. The performance is illustrated on the two
datasets a Gas1 and b T1D. Figures for the other datasets may be found in Additional file 1: Figure S1. The averaged value and the standard deviation of
the classification Acc are calculated over the 30 runs of the 5-fold cross validations over the given dataset
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Fig. 3 Comparison of the maximal classification accuracies and the feature numbers between McTwo and McOne. The two curves give the maximal
classification accuracies, and the embedded table gives the feature numbers selected by McTwo and McOne for each of the 17 datasets
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Fig. 4 Comparison of the binary classification accuracy Acc among the four algorithms, McTwo, CFS, PAM and RRF. The performance is illustrated
on the two datasets a Gastric and b T1D, and the figures for the other datasets may be found in Additional file 1: Figure S2. The averaged value
and the standard deviation of the classification Acc are calculated over the 30 runs of the 5-fold cross validations over the given dataset

Generally, McTwo outperforms PAM and RRF on
both the classification accuracy and the model com-
plexity. Although CFS slightly outperforms McTwo in
the averaged measurement mAcc, McTwo uses signifi-
cantly smaller numbers of features than CFS. Using the
balanced model performance measurement EI, McTwo

Table 2 The comparison triplets between algorithm pairs from
McTwo, CFS, PAM and RRF

CT(A, B) McTwo CFS PAM RRF

McTwo 0/17/0 1/2/14 12/1/4 15/0/2
CFS 14/2/1 0/17/0 16/1/0 17/0/0
PAM 4112 0/1/16 0/17/0 13/0/4
RRF 2/0/15 0/0/17 4/0/13 0/17/0

The comparison triplet CT(A, B) is defined to be the numbers of the 17 datasets
where algorithm A performs better, equally well and worse, compared with
algorithm B. The measurement mAcc is used for comparison. The column and
row of CFS are highlighted in bold

outperforms almost all the three wrapper algorithms on
all the 17 datasets, as shown in Fig. 5b.

Comparison with the filter FS algorithms

We further compare McTwo with the three filter algo-
rithms TRank, WRank and ROCRank for their classifica-
tion performances. A filter algorithm only outputs an
ordered list of features based on a ranking measurement.
So for a fair comparison, this study chooses top p
features from the ordered list of features ranked by the
filter algorithms, where p is the number of features
chosen by McTwo.

McTwo outperforms practically all the three other
filter algorithms on 15 out of the 17 datasets, when
using the NN classification algorithm. The only two
exceptions are that ROCRank algorithm performs 0.8
and 0.2 % better than McTwo in Acc using NN on the
dataset Pros and Adeno, respectively. The three other
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Fig. 5 Should this be'Plots of classification accuracy and model complexity and of the combined measure El. a The line plots of the classification
model's overall accuracy with the four wrapper algorithms on the 17 datasets, and the corresponding numbers of features selected by the different
feature selection algorithms. b The line plots of the measurement El. (Note that there is no relationship between the neighbouring datasets connected
by the line which is simply included for convenience to identify data points for each algorithm. This is especially necessary where two algorithms have

classification algorithms based on McTwo features
perform similarly well or better compared with the
classification performances based on the features of
the three filter algorithms. Figure 6a shows that the
best McTwo model using NN has an Acc 0.3 % smaller
that of the best ROCRank model using NBayes on the
dataset Gasl. For the dataset T1D, the NN classifica-
tion model based on McTwo features outperforms
almost all the other classification models. The one
exception is that on the dataset ALL3 (0.7848), PAM
outperforms McTwo (0.7720) with 0.0128 in Acc, as
shown in Fig. 6b. The performance measurements
Sn/SplAcc/Avc of all the 17 datasets are given in
Additional file 1: Figure S3.

McTwo and the three filter algorithms are compared
pairwisely, and the results are illustrated using compari-
son triplets in Table 3. Firstly, McTwo performs as well

as or better than the three filter algorithms on 14
datasets. The three filter algorithms outperform McTwo
on three different datasets in the measurement mAcc.
All the three filter algorithms, TRank (0.759), WRank
(0.759) and ROCRank (0.749) outperform McTwo
(0.716) on the dataset ALL2, as detailed in the Add-
itional file 1: Table S2. ALL2 is the most difficult dataset
for all four algorithms and the three wrapper algorithms
(Figs. 5 and 7). CFS performs better on mAcc (0.837) but
used 56 features compared to 0.716 for McTwo which
selected only two features. In all the other cases the im-
proved mAcc values of the filter algorithms is no more
than 1.1 % better than with McTwo, as in Additional
file 1: Table S2.

The above data demonstrates that McTwo performs
better than the three filter algorithms on most of the
17 datasets, and similarly well on the others.
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External cross validations of the feature selection
algorithms

Five-fold external cross validation is conducted for compar-
ing McTwo with the other feature selection algorithms.
Due to the excessive computation requirement of the CFS
algorithm, the three largest datasets ALL1, Gasl and Mye
are chosen for the comparative study of external cross vali-
dations. External cross validations are recommended to

Table 3 The comparison triplets between algorithm pairs from
McTwo, TRank, WRank and ROCRank

CT(A, B) McTwo TRank WRank ROCRank
McTwo 0/17/0 14/0/3 11/3/3 12/2/3
TRank 3/0/14 0/17/0 3/3/11 6/0/11
WRank 3/3/11 11/3/3 0/17/0 8/3/6
ROCRank 3/2/12 11/0/6 6/3/8 0/17/0

The comparison triplet CT(A, B) is defined to be the numbers of the 17 datasets
where algorithm A performs better, equally well and worse, compared with
algorithm B. The measurement mAcc is used for comparison

evaluate whether a feature selection algorithm has a selec-
tion bias for small datasets [44—46]. The widely-used fea-
ture selection algorithm, i.e. Support Vector Machine based
on Recursive Feature Elimination (SVM-RFE), may be used
as either filter or wrapper model [47]. These are denoted as
RfeRank and Rfe in this comparison, respectively.

McTwo achieves satisfactory and stable classification
performances using the external cross validations on the
three investigated datasets, as shown in Fig. 8. As in the
results of internal cross validations, McTwo does not
achieve the best classification performances on the two
datasets ALL1 (mAcc=0.969) and Gasl (mAcc=0.903),
but its performances are similar to those of the other algo-
rithms. McTwo also shows much smaller variations com-
pared with both wrapper and filter algorithms on the
datasets ALL1 and Gasl. Similar low variations are only
achieved by CFS, PAM, RRF and TRank on the dataset
ALLI1. The dataset Mye is challenging for all the feature
selection algorithms, none of which achieve much in
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excess of 0.800. All the feature selection algorithms pro-
duce similar variations for the dataset Mye. McTwo has a
similar feature screening outline to FCBEF, but achieves
better classification performances on the three investi-
gated datasets. This is probably due to the fact that
McTwo targets the classification performance as its
optimization goal.

The statistical significance is also evaluated using the
paired t-test to determine whether McTwo performs
better than, similar to, or worse than each of the other fea-
ture selection algorithms [48]. The results are shown in
Additional file 1: Table S3. For a confidence level 0.95,
CFS and PAM perform statistically significantly better
than McTwo on all the datasets. And McTwo performs
similarly or slightly better than all the other wrapper algo-
rithms. Except for the dataset Mye, McTwo performs
better than all the investigated filter algorithms on all the
datasets. When a slightly more stringent confidence level
0.99 is chosen, no feature selection algorithms perform
better than McTwo except on the dataset Mye. The algo-
rithms CFS and PAM perform better than McTwo with
statistical significance. However McTwo uses only 1/3 as
many features as CFS and PAM to achieve similar or just
slightly worse classification performances.

Best wrapper features are not always top-ranked by filter
algorithms
As shown in Fig. 6, the best McTwo model performs simi-
larly well to or better than the three filter feature selection
algorithms, however the features selected are not always
the top-ranked ones evaluated by the filter algorithms.
Table 4 summarizes how each of the 4 features of Gastricl
and 6 features of T1D selected by McTwo is ranked by
the three filter algorithms.

Except for that the probeset 216381_x_at is ranked as 9,
9 and 1 by TRank, WRank and ROCRank, respectively, all
the other features selected by McTwo are ranked lower

Table 4 The rankings of the features selected by McTwo from
the three filter algorithms

Dataset Probeset TRank WRank ROCRank

Gastricl 216381_x_at 9 9 1
209902_at 831 143 237
205523_at 235 178 266
218595_s_at 604 241 187

T1D 1560237_at 1450 1817 82
1570327_at 17598 14048 41447
208031_s_at 29 173 3921
1569685_at 42946 40628 38453
239925_at 23068 12694 35843
1556521 _a_at 32784 32691 52455

The probeset IDs are given in the column “Probeset”, and the rankings from
the three ranking algorithms are in the last three columns, respectively
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than 25, as shown in Table 4. For example, the dataset
Gastricl even has a 831-ranking feature selected into the
classification model with 95.35 % in overall accuracy. The
dataset T1D has 54,675 features, and the McTwo-based
NN classification model outperforms all the other models
in the overall accuracy, as shown in Fig. 6b. But this best
model uses a feature ranked 52,455 out of the 54,675
features by ROCRank. A widely-used feature selection
strategy based on the filter algorithms is to choose the
top-K ranked features where K is usually determined by
trial and error. So such low-ranked features will normally
be removed by any filter algorithms.

Our data suggests that best classification models may use
some features which are ranked low by filter algorithms.
This is plausible as the filter algorithm evaluates the associ-
ation of each feature with the class labels independently,
and a combination of the top p ranked features does not
necessarily lead to a classification model with high overall
accuracy. For example, the features linearly correlated with
the top ranked feature will also be highly ranked. However
a combination of these linearly correlated highly-ranked
features will not improve the classification model based on
the top ranked feature. A lower-ranked feature inde-
pendent of the top ranked feature may lead to a better
classification model.

Biological inferences of the McTwo selected features
Although most of the features selected by McTwo are
ranked low by the filter algorithms, many have known
roles in disease onset and development. For example two
of the Gastricl features, 216381 x_at and 218595 s_at,
are known to be associated with gastric cancer, as shown
in Table 4. Probeset 216381_x_at of the gene AKR7A3
(aldo-keto reductase family 7, member A3) is involved in
the biological processes of cellular aldehyde metabolics
and oxidation reduction. An independent study observed
its differential transcriptional levels between gastric can-
cers and control samples [49]. Probeset 218595_s_at of
the gene HEATR1 (HEAT repeat containing 1) may pre-
vent apoptosis and induce gastric carcinoma in Helicobac-
ter pylori-infected gastric epithelial cells [18].

Two other probesets 209902 _at and 205523 at are
extensively associated with many cancer types, but their
association with gastric cancer needs to be further investi-
gated [50-55]. Probeset 209902_at of the gene ATR
(ataxia telangiectasia and Rad3 related; similar to ataxia
telangiectasia and Rad3 related protein) is a serine/threo-
nine protein kinase. ATR acts as a DNA damage sensor
and activates checkpoint signals such as BRCA1, CHEK1,
MCM?2, RAD17, RPA2, and p53/TP53 when exposed to
harmful influences such as IR (ionizing radiation) and UV
(ultraviolet light). These conditions can lead to blocking
DNA replication and mitosis, and promoting DNA repair
and apoptosis. ATR is related to various types of cancers,
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such as esophageal adenocarcinoma, oropharyngeal can-
cer, endometrioid endometrial cancer, breast cancer, ovar-
ian cancer and others [50-53]. Probeset 205523 _at of the
gene HAPLNI (hyaluronan and proteoglycan link protein
1) can keep the polymerides of proteoglycan monomers
and hyaluronic acid in the cartilage matrix. HAPLNT1 is in-
volved with biological process ranging from cell adhesion
to biological adhesion. HAPLNT1 is known to be associated
with many cancer types, such as esophageal adenocarcin-
oma, breast cancer, colorectal cancer and others [54, 55]. A
recent study shows that the over-expression of HAPLN1
and its SP-IgV domain improves tumorigenic properties of
malignant pleural mesothelioma. Thus HAPLN1 may be of
relevance for cancer treatment [56].

One of the six T1D features selected by McTwo, i.e.
208031_s_at, is also known to be closely associated with
the development of diabetes. Probeset 208031_s_at of the
gene RFX2 (regulatory factor X, 2 (influences HLA class II
expression)) is a transcription factor. The transcriptional
activator rfx2 can bind to DNA in the promoter of the IL
-5 receptor alpha gene. RFX2 is involved in the biological
processes of transcription, regulation of transcription and
regulation of RNA metabolism. It has been demonstrated
that RFX2 plays an essential role in the development of
diabetes in the DREAM (Diabetes Reduction Assessment
with ramipril and rosiglitazone Medication) Study [57].

Conclusions

This study describes a novel MIC-based wrapper feature se-
lection algorithm, McTwo. McTwo achieves better or simi-
lar classification performances compared to the existing
feature selection algorithms, and recommends a smaller
number of features compared to the other wrapper algo-
rithms. Using the same number of features, McTwo also
achieves better or similar performance compared to other
filter algorithms. The features selected by McTwo may lead
to interesting biological hypotheses for further experimental
investigation.
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