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The coordination of spontaneous brain activity is widely enhanced relative to compensa-
tion activity in Parkinson’s disease (PD) with tremor; however, the associated topological 
organization remains unclear. This study collected magnetic resonance imaging data 
from 36 participants [i.e., 16 PD patients and 20 matched normal controls (NCs)] and 
constructed wavelet-based functional and morphological brain networks for individual 
participants. Graph-based network analysis indicated that the information translation 
efficiency in the functional brain network was disrupted within the wavelet scale 2 (i.e., 
0.063–0.125 Hz) in PD patients. Compared with the NCs, the network local efficiency 
was decreased and the network global efficiency was increased in PD patients. Network 
local efficiency could effectively discriminate PD patients from the NCs using multivariate 
pattern analysis, and could also describe the variability of tremor based on a multiple 
linear regression model (MLRM). However, these observations were not identified in the 
network global efficiency. Notably, the global and local efficiency were both significantly 
increased in the morphological brain network of PD patients. We further found that the 
global and local network efficiency both worked well on PD classifications (i.e., using 
MVPA) and clinical performance descriptions (i.e., using MLRM). More importantly, func-
tional and morphological brain networks were highly associated in terms of network local 
efficiency in PD patients. This study sheds lights on network disorganization in PD with 
tremor and helps for understanding the neural basis underlying this type of PD.

Keywords: Parkinson’s disease, resting-state network, individual morphological network, multivariate analysis, 
tremor

introduction

The spontaneous activity of human brain is highly structured in which anatomical regions inter-
act within a network (Schnitzler and Gross, 2005; Bullmore and Sporns, 2012). The topological 
organization of brain networks can be depicted and characterized by the concept of graph theory 
(Bullmore and Sporns, 2009; Park and Friston, 2013). Graph-based network analysis demonstrates 
an optimized topology in brain networks, with efficient information transmission and exchange 
(Bassett and Bullmore, 2006). This normal network organization is disrupted in certain brain diseases 
(Bassett and Bullmore, 2009; He et al., 2009a; Zhang et al., 2011; Wang et al., 2013). The disrupted 
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network topology has been linked to the neural basis underlying 
brain dysfunction, which has provided a new avenue to elucidate 
the essence of brain disorders.

Parkinson’s disease (PD) is a chronic neurodegenerative dis-
order with an array of motor symptoms, such as resting tremor, 
akinesia, and rigidity (Deuschl et  al., 2000; Lees et  al., 2009). 
Neuroimaging studies have shown that resting-state functional 
connectivity (RSFC) (Hacker et al., 2012; Tessitore et al., 2012) 
and spatial topology (Skidmore et al., 2011) are disrupted in the 
patients with PD. In particular, resting-state network organiza-
tion exhibits lower network efficiency in PD patients relative to 
normal controls (NCs) (Skidmore et  al., 2011; Gottlich et  al., 
2013), and the reduction of the network global efficiency longitu-
dinally accumulates with PD progression (Olde Dubbelink et al., 
2014). By contrast, many studies have found that PD patients 
with tremor exhibit widespread increased RSFC compared with 
NCs (Helmich et  al., 2011, 2012; Prodoehl et  al., 2013; Zhang 
et  al., 2015). This difference may stem from the fact that the 
pathophysiology of PD is heterogeneities across clinical symp-
toms (Thenganatt and Jankovic, 2014). Despite the degeneration 
of dopaminergic neurons in the basal ganglia being linked to 
reduced brain network efficiency, there are salient compensation 
events in PD patients with tremor (Helmich et al., 2012; Zhang 
et  al., 2015). These compensation events may lead PD patients 
with tremors to be a unique PD state with widespread increases 
in functional connectivity (Helmich et  al., 2012; Zhang et  al., 
2015). Moreover, the compensation mechanisms also benefit 
the PD patients with tremor, who show fewer cortical lesions 
(Helmich et al., 2012) and slower development of dementia-like 
cognitive dysfunction (Aarsland et al., 2003; Williams-Gray et al., 
2007; Helmich et al., 2012). Given the reduced network efficiency 
documented in PD patients, it is necessary to further explore the 
brain network topology underlying the compensation in PD 
patients with tremor.

The present study examined the brain network topology of PD 
patients with tremor using functional and individual morphologi-
cal brain networks. We set out to assess (1) functional brain net-
work topologies based on wavelet-based RSFC in PD patients with 
tremor relative to NCs, (2) the spatial organization of individual 
PD morphological brain networks, and (3) the linkage between the 
two types of brain networks and the patient’s clinical performance. 
We collected resting-state functional magnetic resonance imag-
ing (rs-fMRI) data and anatomical T1 data from 16 PD patients 
with tremor and 20 matched NCs. Whole-brain functional brain 
networks were constructed using wavelet-based RSFC, and 
cortical morphological networks were constructed using the 
inter-regional gray matter (GM) similar analysis approach. The 
topological organization of the functional and morphological 
brain networks and their relationships were investigated in terms 
of network efficiency in PD patients relative to the NCs.

Materials and Methods

Participants
Sixteen right-handed PD patients with resting tremor (nine males 
and seven females) were recruited from the Second Affiliated 
Hospital of Guangzhou University of Traditional Chinese 

Medicine. A detailed clinical assessment, including history, physi-
cal, neurological, and neuropsychological examinations, including 
the Unified Parkinson’s Disease Rating Scale (UPDRS I–IV), Mini-
Mental State Examination (MMSE), and Hoehn and Yahr Scale 
(H–Y stage), were performed on each patient. The patients were 
diagnosed according to UK PD Brain Bank Criteria (Gibb and Lees, 
1988). All the PD patients had resting tremor with (Skidmore et al., 
2011) or without (Bullmore and Sporns, 2012) action or postural 
tremor. These patients exhibited bilateral hand tremor (i.e., eight 
patients with right hand tremor and two with left hand tremor) or 
bilateral hand tremor (i.e., six patients). The resting tremor level 
was evaluated by using the sub-scale item 20 of UPDRS III (Krack 
et al., 1997, 1998; Mahlknecht et al., 2015). The current patients 
had different levels of resting tremor (eight tremor-dominant 
patients and eight non-tremor-dominant patients). The exclusion 
criteria included a history of other neurological or psychiatric con-
ditions, including secondary Parkinsonism, atypical parkinsonian 
disease, advanced PD stages (H–Y, 4–5), dementia (MMSE score 
<24). There were no any substance dependence and head trauma 
in all these patients. In addition, a total of 20 age-, gender-, and 
education-matched NCs (11 males and 9 females) were collected 
for the present study. This study was approved by the Institutional 
Review Board of the Guangzhou University of Traditional Chinese 
Medicine. All the participants gave written informed consent for 
the study. The detailed clinical and demographic information for 
all participants is shown in Table 1.

image acquisition
All participants were scanned using a 1.5-T Siemens scanner at 
the department of radiology of the Second Affiliated Hospital of 
Guangzhou University of Traditional Chinese Medicine. Rs-fMRI 
data were collected using an echo-planar imaging sequence: 30 axial 
slices; repetition time (TR) = 2000 ms; echo time (TE) = 39 ms; 
slice thickness  =  4  mm; gap  =  1  mm; flip angle (FA)  =  90°; 
matrix =  64 ×  64; field of view (FOV) =  240  mm ×  240  mm. 
Participants lay quietly in the scanner with their eyes closed 
and foam padding was used to restrict head motion as far as 
possible during data acquisition. In total, 180 volumes were 
obtained for each participant. We acquired 3D structural images 
using a T1-weighted MP-RAGE sequence: 192 sagittal slices; 
TR  =  1160  ms; TE  =  4.21  ms; inversion time  =  600  ms; slice 

TaBle 1 | Demographics and clinical characteristics of the participants.

nc (n = 20) PD (n = 16) p Value

Age (years) 42–78 (59.2 ± 8.7) 37–81 (60.5 ± 11.8) 0.37b

Gender (M/F) 11/9 9/7 0.90a

Illness duration (years) – 0.42–6 (2.5 ± 1.7) –
MMSE – 29.0–30 (29.8 ± 0.05) –
UPDRS – 4–49 (27.3 ± 14.3) –
H–Y – 1–3 (2.25 ± 0.91) –
Tremor level – 1–4 (2 ± 0.85) –

Data are presented as minimum–maximum (Mean ± SD).
PD, Parkinson’s disease; NC, nealthy control; MMSE, Mini-Mental State Examination; 
UPDRS, Unified Parkinson’s Disease Rating Scale; H–Y, Hoehn and Yahr Scale; tremor 
level, resting tremor score of item 20 in UPDRS III.
aThe p value was obtained using a two-tail Pearson chi-square test.
bThe p value was obtained using two-sample two-tail t tests.
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thickness  =  0.9  mm; no gap; FA  =  15°; matrix  =  512  ×  512; 
FOV = 256 mm × 256 mm.

Data Preprocessing
Resting-state functional magnetic resonance imaging data 
preprocessing was performed with the GRETNA toolbox (Wang 
et  al., 2015) based on SPM81. Briefly, functional preprocessing 
included the following: (1) the first five volumes were discarded to 
allow for scanner stabilization; (2) the time offsets between slices 
as well as geometrical displacements due to head movement of the 
functional images were corrected. According to the criterion of a 
displacement >3 mm or an angular rotation >3° in any direction, 
none of the participants were excluded. The summary scalars of 
both gross (maximum and root mean square) and micro (mean 
frame-wise displacement) head motion were matched between 
the two groups (all p > 0.15); (3) Using an optimum 12-param-
eter affine transformation and non-linear deformations, all 
corrected functional data were then normalized to the Montreal 
Neurological Institute (MNI) space, and then resampled to 
3-mm isotropic resolution; (4) the effects of low-frequency drift 
and high-frequency physiological noise of the resulting images 
were further reduced in term of the temporally band-pass filtered 
(0.01–0.1  Hz); and (5) after removing the linear trend, several 
nuisance signals, including 24-parameter head-motion profiles, 
mean white matter (WM), and cerebrospinal fluid (CSF) time 
series, were also regressed out from each voxel’s time course.

Structural data (3D T1-weighted anatomical images) preproc-
essing was implemented by the VBM8 toolbox in SPM82. The 
structural processing steps included the following: (1) we firstly 
applied an adaptive Maximum A Posterior (MAP) technique to 
segment the structural images into GM, WM, and CSF; (2) then, 
the GM maps were normalized (using a DARTEL approach) into 
the MNI space; (3) in addition, the non-linear modulation of GM 
maps were used to compensate for spatial normalization effects; 
and (4) the GM maps were spatially smoothed using a 6-mm full 
width at half maximum Gaussian kernel.

network construction
Wavelet-Based Functional Network
A wavelet-based functional network (Wang et  al., 2013) was 
constructed for each individual participant. For functional 
network construction, the nodes were defined using a previous 
brain atlas with 264 putative functional areas, defined using 
neurobiological principles (Power et al., 2011). The nodes were 
distributed across the cerebral cortex, subcortical structures, and 
the cerebellum. For the edges, we applied the maximal overlap 
discrete wavelet transform method (Percival and Walden, 2000) 
to obtain the wavelet coefficients; then, the interregional RSFC 
was calculated as the edges by calculating the Pearson correlation 
between any pair of ROIs in wavelet coefficients. In this study, the 
brain functional networks related to four wavelet scales (scale 1, 
0.125–0.250 Hz; scale 2, 0.063–0.125 Hz; scale 3, 0.031–0.063 Hz; 
and scale 4, 0.016–0.031 Hz) were constructed and investigated.

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
2 http://dbm.neuro.uni-jena.de/software/

Individual Morphological Network
To construct the morphological network, the node definition was 
the same as the functional network. The edges of the morpho-
logical network represented the GM similarity between nodes. 
In this study, the intracortical similarity was measured by using 
a seed cube similarity approach (Tijms et al., 2012). Using this 
method, the correlation coefficient of the regions on aspect of 
three dimensional structure of the cortex intact, geometrical 
information, and the GM values in the voxels of defined cubes 
were measured. It should be noted that the maximum correlation 
value was computed over different rotations of the seed cube, in 
which the regions with zero variance in GM values were excluded 
(average across all subjects, 0.01%). Here, only positive similarity 
values survived this threshold. Finally, the similarity values were 
binarized after determining a threshold for each individual graph.

network analysis
The network analysis was the same for the two types of brain 
networks and was calculated after the network construction 
procedure.

Thresholding Procedure
A sparsity threshold was applied to measure the individual cor-
relation matrices. Considering it is different to select a single 
threshold, an empirically thresholded scope was used on the wide 
range of 0.02 ≤  sparsity ≤ 0.4 (interval = 0.02). We calculated 
global and local efficiency of the resultant networks at each spar-
sity (Latora and Marchiori, 2003; Achard and Bullmore, 2007). 
Similar to previous studies (He et al., 2009b; Zhang et al., 2011), 
the area under the curve (AUC) for each network metric (global 
and local efficiency) was calculated to obtain a summarized scalar.

Network Metrics
Network efficiency has been widely used to depict parallel 
information flow within brain network (Latora and Marchiori, 
2001; Achard and Bullmore, 2007). For the constructed brain 
morphological networks, we calculated the network efficiency 
to characterize the brain topological organization. Here, the net-
work efficiency was described in the context of a binary network 
G with N nodes and K edges. The global efficiency for a network 
G is defined as:

 
E G

N N dglob
iji j G

( )
( )

=
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∑1
1

1
 (1)

where dij is the shortest path length between node i and node 
j in G and is calculated as the smallest sum of edge lengths 
throughout all possible paths from node i and node j. Global 
efficiency measures the parallel information transmission ability 
over the whole network. Instead, local efficiency measures the 
capability of information exchange for each subgraph. And the 
local efficiency of G is measured as:
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N
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i G

( ) ( )=
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where Eglob(Gi) is the global efficiency of Gi, the subgraph com-
prised the neighbors of the node i.
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Global and local efficiency were normalized by the related 
mean metrics of the 100 random networks. These random net-
works obtained the same number of nodes, edges, and degree 
distributions as the real brain networks. On aspect of the nor-
malized network efficiency, small-world architecture of the brain 
network was defined as the normalized local efficiency is larger 
than 1 and the normalized global efficiency is approximately 
equal to 1.

The nodal efficiency of a given node i is computed as (Achard 
and Bullmore, 2007)

 
e

N di
ijj i G

=
− ≠ ∈

∑1
1

1
 (3)

Nodal efficiency reflects the information propagation ability of 
a node with the others within a network.

The network metrics were calculated using the GRETNA 
toolbox (Wang et al., 2015). The visualization of brain  networks 
was implemented by the BrainNet Viewer (Xia et al., 2013).

statistical analysis
Non-parametric permutation tests (10,000 permutations) 
(Bullmore et al., 1999; He et al., 2008) were used to test differences 
in between-group brain network metrics. Gender and age were 
treated as unconcerned covariates for comparisons. For graph-
based metrics, a false-positive correction threshold p  =  1/N 
(N = 264) was used for multiple comparison correction (Bassett 
et al., 2009; Lynall et al., 2010).

A partial correlation approach was used to calculate the asso-
ciation between the network properties and clinical variables. 
Here, gender and age were used as covariates in the calculation.

Multivariate Pattern analysis
This study applied a multivariate pattern analysis (MVPA) 
method to explore whether the network local/global efficiency 
was able to distinguish the PD patients with tremor from the NCs. 
The brain network nodal efficiency was used as the discriminative 
feature, and the maximum uncertainty linear discriminate analy-
sis (MLDA) (Dai et al., 2012) was the classifier. Here, the linear 
classifier was validated by using a leave-one-out cross-validation 
(LOOCV) approach. A feature selection based on non-parametric 
permutation tests (p < 0.01, uncorrected) was used to reduce the 
data dimensions. The network nodes with significant between-
group differences in network efficiency were selected to form a 
discriminative pattern. Finally, the labels of samples (PD vs. NC) 
relative to the discriminative pattern were random disrupted and 
the classifier validation procedure was repeated 100 times. The 
distribution of the classifier performance with random labels was 
used to calculate the z-score value, which was used to infer the 
significance of the classifier performance.

Multiple linear regressions
A multiple linear regression model (MLRM) using least squares 
(“regress” in Matlab) was further applied to explore the cor-
relation between brain network efficiency and clinical behavior, 
as well as the network efficiency between the functional and 

morphological brain. For regression analysis, clinical perfor-
mance (e.g., tremor) was used as the response observation 
and the network nodal efficiency (e.g., local efficiency) was the 
predictor variable. For the exploration of the correlation between 
the two types of brain networks, brain functional network local 
(global) efficiency was used as the response observations, and the 
morphological network nodal local (global) efficiency was used 
as the predictor variable, and vice versa. The statistical attribute 
was used to validate the performance of the regress model. Here, 
the predictor variables were limited to those with significant 
correlations (Pearson correlation, p  <  0.01) with the response 
observations.

results

global Parameters of Brain networks
Relative to matched random networks, the network efficiency 
analysis revealed that a larger local efficiency but approximately 
equal global efficiency (i.e., small-world organization attribute) 
was observed in the PD functional brain network. However, 
statistical comparisons revealed significant differences in the 
network efficiency between the two groups. The PD patients 
showed significantly decreased local efficiency (p  =  0.02), 
increased global efficiency (p  =  0.01), and normal global 
efficiency (p  =  0.01) in the functional networks (Figure  1A), 
compared to the NC group.

Similarly, small-world organization was also found in the mor-
phological networks of PD patients. Increased global efficiency 
(p = 0.04), increased normalized global efficiency (p = 0.02), and 
local efficiency (p = 0.02) were also observed in the morphologi-
cal networks of PD patients (Figure 1B).

regional Parameters of Brain networks
Compared with the NCs, altered functional brain network 
efficiency was observed in the PD patients with tremor. To 
further localize the brain regions that drive the overall change, 
we compared nodal efficiency for each node between groups. For 

FigUre 1 | global parameters of brain networks. (a) functional brain 
network related to wavelet scale 2; (B) individual morphological brain 
network. *p < 0.05.
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local efficiency, decreased nodal local efficiency was observed in 
the left superior paracentral lobule cortex in PD patients, and 
increased nodal local efficiency in the left inferior paracentral 
lobule cortex and the right post cingulated cortex. For global effi-
ciency, the decreased nodal global efficiency and increased nodal 
global efficiency were found in the right inferior frontal gyrus 
(triangular part) and the right superior frontal gyrus (orbital 
part) in PD patients, respectively.

Similarly, we also found that the morphological networks of the 
PD patients showed significantly increased nodal local efficiency 
in the right inferior frontal gyrus (orbital part) and precentral 
gyrus, and left insula and post cingulated cortex, and cerebellum 
(i.e., Vermis_6). Decreased local nodal efficiency was found in 
the right Heschl gyrus and precuneus gyrus, and bilateral medial 
superior frontal gyrus in PD patients. Increased global nodal effi-
ciency was found in regions, including the right inferior occipital 
cortex, inferior frontal gyrus (orbital part), precental gyrus, and 
Heschl gyrus. The details are shown in Figure 2.

Discriminant analysis
The network nodal efficiency was investigated to explore whether 
it could classify PD patients from NCs. We found that the nodal 
local efficiency in the functional brain network could effectively 
discriminate the two groups (Accuracy = 0.81, Sensitivity = 0.88, 
Specificity  =  0.75), which was significantly above the random 
level (z = 2.70). The discriminate regions were located in the left 
inferior occipital and paracentral lobule, and the right postcentral 

and post cingulum cortex. However, we did not find sufficient 
discriminative information in the global nodal efficiency to 
classify the two groups (Accuracy  =  0.63, Sensitivity  =  0.68, 
Specificity = 0.60), which was still at the chance level.

We also found that the local nodal efficiency in the mor-
phological network could significantly discriminate the two 
groups (accuracy = 0.77, sensitivity = 0.81, specificity = 0.74) 
(z = 2.53). The regions were located at the right inferior (arbitral 
part)/medial (arbitral part)/superior/frontal gyrus, and the 
bilateral middle frontal gyrus. Nodal global efficiency could also 
discriminate the two groups (accuracy = 0.89, sensitivity = 0.94, 
and specificity  =  0.84) (z  =  3.51). The discriminative regions 
were found at the right lingual, rectus, and inferior (arbitral 
part)/medial (arbitral part)/superior/middle frontal gyrus, and 
the left postcentral gyrus. Figure  3 shows the details of these 
regions.

relationship Between Brain network Measures 
and clinical Variables
The normalized network local efficiency of the functional 
brain network was negatively correlated with the tremor level 
(r = −0.57, p = 0.03). We found that the functional brain network 
nodal local efficiency could effectively describe the variability in 
tremor performance in the PD patients (p = 0.003) (Figure 4). 
However, we did not find any other salient correlations between 
the network/nodal properties and clinical performance (i.e., 
UPDRS and Duration) (all p > 0.05).
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Moreover, there were no significant correlations between 
morphological network properties (i.e., local efficiency, global 
efficiency, gamma, and lambda) and clinical scores (i.e., Tremor, 
UPDRS, and Duration) (all p  >  0.05). Despite this result, the 
morphological network nodal efficiency (i.e., local efficiency and 
global efficiency) exhibits a high association with the variability 
of tremor and the duration of PD in the patients (all p < 0.001) 
(Figure 4).

association Between Functional and 
Morphological networks in PD Patients
The present study did not find any significant correlation between 
the functional connectivity of the functional network and the 
inter-region GM similarity of the morphological network in PD 
patients (p > 0.05). In addition, there were no significant correla-
tions of network efficiency (i.e., local efficiency and global effi-
ciency) between the two types of brain networks in PD patients 
(all p > 0.05).

Using MLRM, we found that there was a significant association 
between the nodal local efficiency in the morphological network 
and the functional network local efficiency in PD patients. The 

nodal local efficiency of the regions, including the right superior 
temporal gyrus, post cingulated cortex, and the inferior occipital 
gyrus, and the left middle temporal gyrus and middle frontal gyrus 
(Figure 5A) could describe the functional network local efficiency 
(R2 = 0.92, p < 0.0002). The functional nodal local efficiency of 
the regions including the right middle temporal gyrus, superior 
temporal gyrus, and fusiform, and the left inferior temporal 
gyrus, inferior parietal gyrus, superior medial frontal gyrus, and 
the bilateral inferior frontal gyrus (tribal part) (Figure 5B) could 
also describe the structure network local efficiency (R2 =  0.84, 
p < 0.03). Notably, these correlations were not found in any aspect 
of the network global efficiency.

Discussion

This study explored the topological properties of wavelet-based 
functional brain networks and individual brain morphological 
networks in PD patients with tremor and NCs. The main find-
ings can be summarized as follows: (i) decreased network local 
efficiency and the increased global efficiency was identified in the 
functional brain network constructed with wavelet scale 2 (i.e., 
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FigUre 4 | clinical performance description from the network 
nodal efficiency based on MlrM in PD patients. SlocE, nodal 
local efficiency of structure network; SgE, nodal global efficiency of 
structure network; FlocE, nodal local efficiency of functional network; 

T, tremor degree; D, disease duration. The color of the 
node reflects the direction of the regression coefficient (i.e., red is 
positive and green is negative), and the radius of the node reflects the 
coefficient size.
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0.063–0.125  Hz) in PD patients. The network local efficiency 
instead of the global efficiency performed well in discriminat-
ing PD from NCs. Further, there was high correlation between 
network local efficiency and tremor performance; (ii) the mor-
phological brain network local efficiency and global efficiency 
were significantly improved in PD patients with tremor. The 
nodal efficiency of both of these networks performed well in dis-
criminating PD from NCs. Both networks had high correlations 
with tremor/duration performances. (iii) We identified tight 
associations of network local efficiency between the functional 
and morphological networks in PD patients with tremor. These 
findings provide new insights into the neural substrates related to 
the pathological damage and the relevant compensation activity 
in PD patients with tremor.

altered Functional Brain network Organization
The wavelet-based functional network analysis method has 
already been applied to explore the economic properties of the 

functional brain network in PD patients. The findings of this 
previous study suggested that the functional brain network in 
PD patients exhibits a salient decrease in nodal and global effi-
ciency when compared with NCs and that the most significantly 
changed network organization was observed at wavelet scale 2 in 
the PD patients (Skidmore et al., 2011). We have noted that there 
was much evidence to demonstrate the rationality of the above 
observations in PD patients. Neurotransmitter depletion in the 
basal ganglia is an important neurochemical characterization in 
PD patients (Hacker et al., 2012). In fact, dopamine blockade has 
been shown to affect network efficiency in healthy participants 
(Achard and Bullmore, 2007), and decreased interregional 
connectivity (Luo et  al., 2014) and network efficiency have 
been observed in PD patients (Woerner et al., 2009). Thus, the 
reduced network efficiency in PD patients may reflect the effects 
of dopamine depletion.

Consistent with this assumption, this study also found that 
the functional brain network local efficiency within wavelet scale 
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FigUre 5 | regions of network local efficiency in description of the 
whole-brain network properties. (a) structure network nodal efficiency 
that could describe the functional network efficiency; (B) functional 

network nodal efficiency that could describe the structure network 
efficiency. The color of the node and the radius of the node are the same 
as in Figure 4.
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2 was significantly reduced in PD patients with tremor compared 
with NCs. Therefore, the decreased network efficiency may be 
tied to physiological damage in PD patients with tremor. By 
contrast, we also found that the functional brain network global 
efficiency was significantly increased in PD patients with tremor 
compared with NCs. These observations were opposite to the 
genuine consequence of pathological damage in PD patients. 
In fact, many previous studies have shown regional hyper-
metabolism (Kassubek et al., 2001) and increases in functional 
connectivity (Helmich et al., 2012) in PD patients with tremor. 
Despite the essence of these increased connections in PD patients 
with tremor are still unknown, these increases may be highly 
associated with cerebral compensation for pathophysiological 
changes in PD (Zhang et al., 2015).

The results of the multivariate discriminant analysis indicated 
that the network regional local efficiency pattern could discrimi-
nate PD patients from NCs. However, the network regional global 
efficiency measure could not (Figure 3). These observations sug-
gest that local efficiency rather than global efficiency of functional 
brain networks contains discriminative information. In addition, 
we found that the normalized local efficiency (i.e., Gamma) 
was negatively correlated with the tremor level, which was not 
observed for network global efficiency. More importantly, the 
MLRM showed that there was a functional brain network regional 
local efficiency pattern rather than a global efficiency pattern that 
could describe the tremor performance in PD patients (Figure 4). 
The related regions were predominantly located in the cerebellum 
and frontal cortex. As we know, the cerebellum has been shown 
to be a critical region involved in the pathophysiology of PD and 
may play roles in the both the pathological and compensatory 
effects (Wu and Hallett, 2013). Although the genuine pathological 
damage of PD occurs at well-recognized subcortical/cerebellum 
regions [e.g., basal ganglia and the cerebello-thalamo-cortical 
circuit (Helmich et al., 2012)], recent evidence has highlighted the 
important roles of cortical regions in understanding PD tremor 
(Zhang et al., 2015). Of the cerebral regions, the prefrontal cortex 

has attracted great attention (Taylor et al., 1986; Tsuchiya et al., 
2000). Increased neural activity has been found in the dorsolateral 
prefrontal cortex and prefrontal cortex dysfunction may be a 
consequence of caudate nucleus dysfunction (Taylor et al., 1986). 
Consistent with this finding, our previous study has already 
reported that functional network regional local efficiency per-
formed better than regional global efficiency in discriminating PD 
subtypes (i.e., PD patients with tremor and those without tremor) 
from NCs (Zhang et  al., 2014). Nevertheless, the observations 
reported here provide new evidence to suggest that the functional 
brain network regional local efficiency carries information on the 
degree of pathology of PD patients.

changed Morphological Brain network 
Organization
Widespread changes in GM volume in PD patients with tremor 
have been reported in many previous studies (Kassubek et  al., 
2002; Zhang et  al., 2015). To expand these previous findings, 
this study explored the topological organization of the brain 
morphological networks in PD patients with tremor. We found 
that the morphological network local and global efficiency was 
significantly improved in PD patients with tremor. The improved 
network efficiency (i.e., local and global efficiency) performed 
well in discriminating PD from NCs. The improved morphologi-
cal network efficiency also supported the compensatory interpre-
tation in PD patients with tremor.

More importantly, we also found that the improved mor-
phological network efficiency (i.e., global and local efficiency) 
could also describe the tremor and duration performances 
using MLRM. Several clinical measures (i.e., UPDRS, Tremor, 
and Duration) of PD patients with tremor were measured in 
this study. However, only tremor behavior and disease duration 
were observed to be represented in the morphological network 
local and global efficiency. Thus, in PD patients with tremor, the 
tremor behavior was tied to the improved morphological network 
efficiency, which may support a compensatory interpretation. Of 
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course, the compensatory notion in PD with tremor is still little 
documented. Thus, further studies should focus on the compen-
sation activity in PD patients with tremor. Using morphological 
network properties may be an important direction to explore the 
neural substrates underlying PD with tremor.

associations of the Functional and 
Morphological networks
Considering that the tremor behavior is correlated with the 
functional and morphological network properties, we further 
explored the correlation between the functional and morphologi-
cal networks. We found that morphological network regional local 
efficiency could describe the functional network local efficiency; 
and the primary regions were located in the right superior tempo-
ral cortex. As mentioned above, the right superior temporal cor-
tex of the morphological network efficiency was correlated with 
tremor behavior; here, we further found that the morphological 
network local efficiency in the right superior temporal cortex was 
highly correlated to functional network local efficiency. Based on 
these findings, we speculate that tight correlations exist between 
network local efficiency in the functional and morphological 
brain networks in PD patients. The tremor performances were 
represented differently in the functional and morphological brain 
networks. However, to the best of our knowledge, little evidence 
has documented the relationship between tremor and brain net-
work properties related to different modalities. This relationship 
should be deeply investigated in the future researches.

limitations
There are several limitations that should be considered in future 
works. First, this study is still a preliminary exploratory research 
to detect both structural and functional brain network alterations 
for PD patients with resting tremor. Although all the patients of 
this study were PD with resting tremor, the severity levels of 
the resting tremor varied across the patients and some of them 
were tremor-dominant while others were not. Recent studies 
(Prodoehl et  al., 2013; Selikhova et  al., 2013; Fereshtehnejad 
et al., 2015) have demonstrated that there may be different neural 
bases between tremor-dominant PD and PD with tremor or even 
between PD patients with different levels of tremor. This indicates 
the necessary of more homogeneous samples in clinical features 
and phenotypes for understanding the neural basis underlying PD 

with tremor. However, the small sample size of the present study 
limited the further analysis on this issue. Therefore, future studies 
should further investigate the neural basis of the PD patients with 
different types of tremors (i.e., resting tremor and action/poster 
tremor), and different levels of tremor in the same types. Second, 
the asymmetry of tremor may influence the final results. The 
tremor side- and/or location-specific alterations in PD are often 
different across patients. The small sample size of the present 
study limits further analysis of the effects of these confounding 
factors on our findings. It is necessary in further studies to clarify 
these important issues. Third, it should be noted that the direct 
relationship between brain network properties and neurotrans-
mitter reductions is unclear in PD patients with tremor, which 
may be an important direction of future studies. Fourth, only PD 
patients at stage I to III in terms of the H–Y were included in the 
current study to reduce the influence of their motor depicts on the 
quality of magnetic resonance imaging (MRI) as far as possible. 
Such a narrow range of the H–Y scores may be not appropriate 
for the correlation analysis with the network measures. Thereby, 
the representation of H–Y on the brain network properties in PD 
patients with tremor should be further explored in future works. 
Fifth, the findings of the present study were observed during the 
patients on off medicine condition, the modulation effect of drugs 
need further explored in other studies.

conclusion

In sum, this study provided evidence that the topological organi-
zation of the functional brain network (related to the wavelet 
scale 2) and the individual morphological network are disrupted 
in PD patients with tremor. There were significant correlations 
between the functional and morphological networks, which may 
be correlated with tremor in PD with tremor. These findings pro-
vide new insights into the neural basis of PD patients with tremor.
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