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and genotyper for canine MHC class I genotyping

Yuan Feng,1 Paul R. Hess,2 Stephen M. Tompkins,3 William H. Hildebrand,4 and Shaying Zhao1,5,*

SUMMARY

Themajor histocompatibility complex class I (MHC-I) genes are highly polymorphic.
MHC-I genotyping is required for determining the peptide epitopes available to an
individual’s T-cell repertoire. Current genotyping software tools do not work for
the dog, due to very limited known canine alleles. To address this, we developed
a Kmer-based paired-end read (KPR) de novo assembler and genotyper, which
assemble paired-end RNA-seq reads fromMHC-I regions into contigs, and then ge-
notype each contig and estimate its expression level. KPR tools outperform other
popular software examined in typing new alleles. We used KPR tools to success-
fully genotype152 dogs from a published dataset. The study discovers 33 putative
new alleles, finds dominant alleles in 4 dog breeds, and builds allele diversity and
expression landscapes among the 152 dogs. Our software meets a significant
need in biomedical research.

INTRODUCTION

The dog serves as an important translational model of cancer, infectious disease, obesity, neurological and

other disorders in humans. The canine model has the great potential to effectively bridge a current gap

between preclinical models and human clinical trials,1–5 accelerating drug discovery. This is because, unlike

traditional models such as cell lines or rodent models, canine diseases arise spontaneously in animals that

share the same environment as humans and have intact immune systems, thereby recapitulating the

essence of human diseases. Indeed, a significant molecular homology has been noted between various

canine cancer types/subtypes and their human counterparts.6–13 However, the effective use of the canine

model is at present significantly hampered by the lack of essential resource, including software tools for

major histocompatibility complex class I (MHC-I) genotyping.

A human individual expresses 3–6 alleles encoded by three classical MHC-I genes HLA-A, HLA-B, and

HLA-C (human MHC-I will be referred to as HLA-I hereafter). The syntenic canine MHC-I region encodes

genes including DLA-88, DLA-12, and DLA-64 (canine MHC-I will be referred to as DLA-I hereafter). How-

ever, only DLA-88, being themost diversified and with the highest expression level, is considered a classical

MHC-I gene.14–17 The status of DLA-12 and DLA-64 is currently unclear,17 due to limited data. The DLA-12

locus is reported to encodes not only DLA-12 alleles, but also DLA-88 like (DLA-88L) alleles.17,18

The threeMHC-I genes share >90% sequence identity overall. Moreover, their exons 2 and 3, which encode

the antigen-binding pocket, are among the most polymorphic regions in the genome. MHC-I genotyping

(accurate determination of the�550bp sequence of exons 2 and 3) is necessary to call alleles, which, in turn,

are needed in predicting the peptide ligandome presented by an individual’s collective classical MHC-I

molecules to the CD8+ T-cell repertoire. Thus, MHC-I genotyping is important for research on cancer

(e.g., tumor-specific neoantigen discovery),19,20 infectious disease, and other health issues.

MHC-I genotyping is traditionally achieved by PCR cloning-based Sanger sequencing.14–17 While consid-

ered the gold standard, this method is time-consuming, labor-intensive, and low-throughput. As

numerous individuals have undergone deep sequencing, many algorithms have been developed for

MHC-I genotyping using these massive genome-wide data, including RNA-seq.21–30 The challenge is

that these sequence reads, generated by Illumina or similar next–generation sequencing (NGS) technol-

ogies, are often short (usually <150bp). This limitation, coupled with the high sequence homology among

the three MHC-I genes and their highly polymorphic nature among individuals, complicates genotyping

by this methodology.
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In humans, the challenge is addressed by taking advantage of the vast number of known HLA-I alleles,21–30

about 23,694 in the IMGT/HLA database31 as of March 2022. With the assumption that many HLA-I alleles

existing in the human population have already been defined, many current HLA-I genotyping tools focus on

accurately mapping the NGS reads to the known allele reference and then genotyping the individual by

identifying known alleles with the most unambiguously placed NGS reads. A few tools perform assembly,

which either aims to extend the short reads to achieve more accurate mapping to known alleles,24 or is

reference-based but not de novo assembly.25 Hence, these assembly performing tools still heavily rely

on the catalog of known alleles.

In dogs, known DLA-I alleles are very limited, with 150 alleles for DLA-88, 8 alleles for DLA-88L, 20 alleles for

DLA-12, and 7 alleles for DLA-64 (185 alleles in total).14–18 Hence, current RNA-seq based MHC-I genotyp-

ing tools,21–30 whose accuracy heavily depends on the comprehensiveness of known alleles, do not work for

the dog. To address this deficiency, we are developing software tools that perform de novo assembly32 of

complete contigs for genotyping. Our software outperforms widely used genotyping tools in typing new

alleles.

RESULTS

Kmer-based paired-end read de novo assembler and genotyper conduct DLA-I genotyping

using paired-end RNA-seq data

Our KPR assembler assembles the highly polymorphic region, the entirety of exons 2 and 3, of DLA-I alleles of

an individual de novo, using paired-end RNA-seq reads that are mapped to a reference consisting of 196

known DLA-I alleles (Figure 1A). Our genotyper then genotypes each complete contig assembled, and esti-

mates the expression level of each allele, after contig validation and if needed, contig extension (Figure 1B).

Figure 1. Kmer-based paired-end read (KPR) de novo assembler and genotyper conduct DLA-I genotyping using paired-end RNA-seq data

(A) Our KPR assembler assembles the highly polymorphic region, the entirety of exons 2 and 3, of DLA-I alleles of an individual de novo, using paired-end

RNA-seq reads (see STAR Methods). Contigs are represented by bars, while paired-end reads are represented by paired-arrows facing each other. HVR:

hypervariable region.

(B) Our genotyper genotypes each assembled contig with the entire exon 2 and 3 sequence. For non-DLA-64 contigs, genotyping is done after variant

linkage building, validation and if needed, extension (see STAR Methods) are performed. Sequence variants are indicated by colored dots.
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Note that paired-end reads are both derived from the same allele, and our core algorithm relies on paired-

end sequencing for contig assembly, verification, and extension (Figure 1). Thus, our KPR tools do not rely

on the completeness of the known allele reference as heavily as existing genotyping tools and can type new

alleles. The detailed algorithms are described in the STAR Methods section.

The contigs generated by the Kmer-based paired-end read assembler are validated by

Sanger sequencing

We applied the KPR assembler (Figure 1A) to the canine RNA-seq data generated by our group,7,33 which

consists of 27–87 million paired-end reads of 76 x 76bp per sample. We performed PCR cloning-based

Sanger sequencing for DLA-88 by sequencing 5–10 clones per sample for 7 samples. The experiment

validated the DLA-88 assemblies at the nucleotide level. For example, both KPR and Sanger sequencing

identified a single allele (DLA-88*004:02) in one tumor (Figure 2A), two alleles (DLA-88*012:01 and DLA-

88*032:01) in MDCKII cells,33 and 4 alleles (DLA-88*501:01, DLA-88*501:02, DLA-88*004:02; DLA-

88*004:New1) in tumor 2577T (Table S1). In tumor LilyT, all 7 Sanger sequenced clones support the highly

expressed allele (DLA-88*004:02) genotyped by KPR (Table S1). In tumor T76, the only KPR-genotyped

allele (DLA-88*051:01) is validated by three Sanger sequenced clones (Table S1).

To more quantitatively assess the validation, we performed paired T and Wilcoxon tests on DLA-88 alleles

of the 7 samples genotyped by the KPR software and Sanger sequencing (Table S1). Both tests indicate no

significant differences between KPR and Sanger sequencing in either the alleles or their expression levels (p

values range from 0.33 to 0.78; see Table S1).

We also performed immunostaining experiments to show the expression of the MHC-I protein complex by

these cells (Figure 2B). These results support that our KPR tools are effective.

Kmer-based paired-end read running parameters are optimized via simulation

Three parameters are required to run the KPR tools, including the Kmer length (K), the number of assembly

runs (N), and the read pair depth (PD) for potential misassembly identification (Figure 1).

To evaluate these parameters, we performed simulations based on the largest RNA-seq study published so

far for the dog.35,36 The dataset consists of 25–77 million RNA-seq read pairs of 101 x 101bp per sample for

222 tumor and/or normal samples from 158 dogs (Table S2).

We first conducted comprehensive data quality control (QC), examining the sequencing amount and qual-

ity, as well as using germline mutations to validate the tumor-normal pairing accuracy and breed data ac-

curacy as described6 (Figures S1A–S1J). After excluding one sample of low quality and correcting three

samples from two dogs with misassigned breeds (Table S2), all other samples passed the QC measures.

We first chose three dogs with paired normal and tumor samples (six in total) from this cohort (Table S2).

The six samples represent the majority of the dogs of the cohort in DLA-I read total amount and distribu-

tion, as well as the sequencing error rate (Table S2; Figures S2A–S2C).

For allele simulation, we randomly chose 1 or 2 alleles per DLA-I gene from the known allele database. For

each allele, we simulated its sequence read-pairs in a sample chosen above using the actual read length,

insert size, and expression level of the corresponding DLA-I gene, as well as the overall sequencing error

rate of the sample (see STAR Methods). Then, we replaced the actual DLA-I read pairs with the simulated

ones. We made 10 allele combinations (ACs) per sample, by varying DLA-88 allele type, canonical or 50X

(which encodes an extra amino acid residue), and homozygosity or heterozygosity of DLA-88 and DLA-12

(DLA-64 is not considered because it is more distant, separately genotyped as shown in Figure 1B, and has

only 3 known alleles) (Table S2). We randomly sampled each AC three times. These yield a total of

6 ðsamplesÞ310 ðACsÞ33 ðrepeatsÞ= 180 simulated samples.

Figure 2. Contigs assembled by the KPR software are validated by Sanger sequencing

(A) Sanger sequence is identical to the contig assembled with RNA-seq reads of the same dog by the KPR software. HVRs

are drawn as reported previously.16,34

(B) Representative confocal images indicate that the MHC-I protein complex is expressed in the same tissue of the dog.

See Table S1.
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PD is a parameter for ‘‘variant linkage validation,’’ a function implemented in KPR to use paired-end RNA-

seq reads to identify misassemblies for contig validation (Figure 1B). Briefly, variant linkages are built via

multiple sequence alignment of contigs assembled for a sample. If a linkage is also found in one or

more RNA-seq read pairs mapped to the contig, then the linkage is validated. This however needs a certain

amount of RNA-seq read pair coverage over the linkage, i.e., PD. In KPR, we define PD as the maximum

read pairs that are mapped to any two polymorphic sites among true positive alleles of a sample when

none of the read pairs supports the variant linkage of a true positive allele. If the total read pair coverage

is >PD and yet no any read pair supports the linkage, the contig will be classified as misassembly.

To estimate PD, we genotyped the 180 simulated samples at different K and N values. As shown in Figure 3A,

PD stays roughly at 15 for known DLA-88 alleles at K and N values when false negatives are minimized. For

known DLA-12 alleles, PD is around 38 (Figure S3A). We thus set PD = 15 for DLA-88 and PD = 38 for DLA-12

(no PD cutoff is used for DLA-64 in our KPR software; see Figures 1 and S3B) for further studies.

For all studies later in discussion, we used two values, true positive rate (TPR) and false discovery rate (FDR) to

evaluate the genotyping results. TPR and FDR were calculated using either allele number (treating individual

alleles as 1 or 0), or allele expression (using the expression levels of individual allele) (see STAR Methods).

To evaluate N, we set K = 50bp and varied N from 1 to 30,000 to genotype the 180 simulated samples. The

genotyping results of DLA-88 are stabilized when N is > 100, especially after variant linkage validation with

paired-end reads (Figure 3B). For allele number, themean TPR ranges from 0.98 to 0.99 while themean FDR

ranges from 0.11 to 0.12 (Figure 3B; Table S2). For allele expression, the mean TPR ranges from 0.87 to 0.88

and the mean FDR is at approximately 0.2 (Figure 3B; Table S2).

To optimize K, we set N= 1; 000 and genotyped the 180 simulated samples by changing K from 20mer

(unique in a mammalian genome) to 80mer (as the read length is 101bp). For DLA-88, the mean TPR ranges

from 0.98 to 1 for allele number and 0.83 to 0.88 for allele expression when K changes from 20mer to 50mer,

and decreases afterward (Figure 3C; Table S2). Variant linkage validation with paired-end reads increases

expression TPRs and decreases FDRs, especially when K is small (Figure 3C; Table S2). Considering that

both TPR and FDR are at the acceptable level (mean TPR = 0:99 and mean FDR = 0:11 for allele number,

while mean TPR = 0:88 and mean FDR = 0:19 for allele expression; see Table S2), we chose 50bp as the

optimal K for running KPR on these samples for DLA-88.

As the choice of K is clearly related to the sequence read length, we performed simulations by varying the

read length from 50bp to 150bp. We genotyped 180 simulated samples at each read length with different K

values (Figures S4A–S4C; Table S2). The results indicate that setting K to half of the read length generally

yields better genotyping results (Figure S5; Table S2). The analysis also indicates that genotyping results

improve with longer read length (Figure 3D; Table S2).

DLA-12 and DLA-64 genotyping are less effective, as mean TPR ranges from 0.2 to 0.5 for DLA-64 andmean

FDR ranges from 0.17 to 0.42 for DLA-12 (Figures S3A and S3B; Table S2). However, K = 50bp for read

length of 101bp and N>100 are still appropriate parameters to use, as they yield higher TPRs and lower

FDRs compared to many other conditions (Figures S3A and S3B; Table S2).

We repeated the analysis with another RNA-seq dataset, consisting of 50–70 million 51 x 51bp read pairs

per sample from blood specimens of 39 dogs, of which 21 dogs have immune-mediated hemolytic anemia

and 18 dogs are unaffected.37 All samples passed our QC measures (Figures S6A–S6E). We chose six sam-

ples that represent the entire cohort (Table S2) for simulation. The simulation analysis indicates that the

optimized running parameters are NR1; 000, K being half of the read length, and PD = 12 for DLA-88 (Fig-

ure S7A), largely agreeing with those from the mammary dataset (Figure 3). However, for DLA-12 and DLA-

64, the optimized N is much larger, with NR10; 000 for the blood dataset (Figure S7B) versus NR 1; 000 for

the mammary dataset (Figures S3A and S3B). No significant difference was found for the other parameters,

as K = 20 (roughly half of the read length) works well for all three DLA-I genes and PD = 38 works well for

DLA-12 (Figures S7A and S7B). Using the optimized parameters, we achieved a similar genotyping accuracy

for DLA-88, but a significantly higher accuracy for DLA-64, for the blood samples compared to the mam-

mary samples (Figures 3, S3, S4, and S7). One reason may be that the blood samples have significantly

more DLA-I read pairs per sample, but approximately the same DLA-64/DLA-I ratios, compared to the
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mammary samples (Figure S8A). Thus, a larger N is required for DLA-64 assembly, and the increased

amount of DLA-64 read pairs, coupled with lower sequencing error rates (Figure S8B), improves the gen-

otyping accuracy.

Figure 3. KPR running parameters are optimized for DLA-88 genotyping via simulation

(A) Optimization of two-polymorphic site read pair depth (PD). A total of 180 simulated samples (see STARMethods) were

genotyped by the KPR software with each value of the assembly runs (N) or the Kmer length (K) specified by the X axis. The

Y axis indicates the maximum number of read pairs that do not support any variant linkage of known alleles in a simulated

sample. Red dots in black line show the optimized PD at each N or K. The numbers at the top indicate the total false

negatives (FN) in 180 samples. TP: true positives. FP: false positives.

(B and C) Optimization of N and K. Plotted are distributions of true positive rate (TPR) and false discovery rate (FDR) in

each of the 180 simulated samples at a specifiedN (B) or K (C) value. The genotyping was done with N = 1,000 for B and K =

50 for C. TPR and FDR were calculated using allele numbers (top) or estimated expression levels (bottom) before and after

paired-end validation. Each dot represents the TPR or FDR of a sample, while the line indicates the mean FDR or TPR of

the 180 samples at each N or K value.

(D) K varies with sequence read length. A total 180 simulated samples were genotyped at each read length with the

specified K value. Images are presented as B and C. See Figures S1–S8, and Table S2.
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Other factors influence genotyping accuracy

Beside read length (Figure 3D), we wanted to know if the KPR genotyping accuracy is influenced by AC,

sequencing error rate (E), DLA-I read pair amount (D), and DLA-I read distribution evenness along exons

2 and 3 (RD). We hence performed simulations with optimized parameters of PD = 15 for DLA-88 and

PD = 38 for DLA-12, K = 50bp (as read length is 101bp), and N= 1; 000 for the mammary dataset (Figures 3,

S3, and S4). Moreover, when evaluating one factor (AC, E, D, or RD), we kept all other factors optimized to

reduce confounding.

To assess the effect of AC on genotyping, we used the 10 ACs made previously (Figure 3), and randomly

sampled alleles from the known allele pool 30 times per AC. We then simulated 300 samples, using the

most optimized E (0.3%), D (180,435 read pairs), and RD (0.45) values across the mammary cohort

(Tables S2 and S3). The genotyping results reveal no significant difference in either TPR or FDR among

the 10 ACs for DLA-88 (Figure 4A), as well as for DLA-64 (Figure S9; Table S3). For DLA-12, however,

ACs of heterozygous alleles have significantly lower TPRs and higher FDRs, compared to ACs of homozy-

gous alleles (Figure S9A; Table S3). Thus, the accuracy of KPR tools may drop when genotyping samples

with heterozygous DLA-12 alleles. As such, we used only the 5 ACs with homozygous DLA-12 alleles to eval-

uate other factors later in discussion.

To assess the effect of E on genotyping, we kept D and RD optimized as stated above, and varied E from

0 to 1.6% (0:3%<E<0:8% for the cohort; see Figure S2A and Table S2). We simulated and genotyped 50 sam-

ples (10 samples per AC) with each E (350 samples in total). For DLA-88, the mean TPR is stabilized at 1.0 for

allele number and 0.9 for allele expression, while the mean FDR decreases to 0.08 to 0.02 for allele number

and 0.13 to 0.09 for allele expression, when E<0:4% (Figure 4B). Interestingly, nearly the same conclusion is

reached for DLA-12 and DLA-64 (Figures S9A and S9B).

To assess the effect of D on genotyping, we kept E and RD optimized, and varied D from 100 to 180,000

read pairs (4; 485%D%180; 435 for the cohort; see Figure S2B and Table S2). With these, we simulated

and genotyped 50 samples per D (400 samples in total). For DLA-88, the mean TPR reaches 1.0 for allele

number and 0.8 to 0.9 for allele expression when DR3; 000, and largely stabilizes afterward. Meanwhile,

the mean FDR ranges from 0.05 to 0.13 for allele number and 0.11 to 0.2for allele expression (Figure 4C).

The same mean TPR and FDR are reached when DR10; 000 for DLA-12 and DR30; 000 for DLA-64

(Figures S9A and S9B).

To assess the effect of RD on genotyping, we chose 5 RD values that represent the entire cohort (Table S2).

We simulated and genotyped 50 samples per RD (250 samples in total) by keeping E and D optimized. The

results reveal no significant difference in either TPR or FDR among different RDs (Figures 4D, S9A, and S9B;

Table S3), indicating that RD may not influence genotyping when E and D are optimized. To test this pos-

sibility, we repeated the analysis by reducing D to 10,000 and 3,000 read pairs. Increasing RD then indeed

improves the genotyping accuracy (Figures 4D, S9A, and S9B; Table S3).

Kmer-based paired-end read software outperforms other genotyping tools examined in

typing new alleles

We compared the KPR software to well-benchmarked and recommended genotyping tools that are RNA-

seq based, with or without assembly.21,22 For such tools that perform assembly, one is HLAminer,24 which

conducts de novo assembly, like the KPR assembler. Another is Kourami,25 which conducts the reference-

based assembly but at the time of writing only works for human alleles, and hence, is not included in the

comparison. For tools that do not perform assembly, most rely on read-mapping for genotyping (see Intro-

duction), and we chose Seq2HLA23 as the representative.

To compare the software tools, we performed two sets of simulation, one with known alleles and the other

with new alleles, which are represented by newly assembled allele candidates described in the next section

(Table S4). A total of 600 samples per set were simulated, using the same 6 samples shown in Figure 3 and

considering allele type and combination. Note that neither HLAminer nor Seq2HLA reports allele expres-

sion levels. Thus, only TPR and FDR for allele number were used to evaluate the genotyping results of each

software.
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In simulations with known alleles, KPR performs significantly better than the assembler of HLAminer (only

the assembly results of HLAminer were used for this comparison). KPR is comparable to Seq2HLA in DLA-88

and DLA-12 genotyping. For DLA-88, the mean TPR is 0.99 for KPR, 0.50 for HLAminer, and 0.84 for

Seq2HLA, while the corresponding mean FDR is 0.08, 0.07, and 0.36 respectively (Figure 5A; Table S4).

For DLA-12, the mean TPR is 0.59 for KPR, 0.02 for HLAminer, and 0.57 for Seq2HLA, while the correspond-

ing FDR is 0.20, 0.01, and 0.63 respectively (Figure 5A). However, for DLA-64, KPR performs worse than

Seq2HLA, with a mean TPR of 0.23 versus 0.90, and a mean FDR of 0.02 versus 0.25 respectively (Figure 5A).

In simulations with new alleles, KPR performs significantly better than HLAminer and Seq2HLA (Figure 5B).

As expected, Seq2HLA is unable to genotype new alleles, while KPR types new alleles with similar accuracy

as known alleles (Figure 5; Table S4). KPR achieves a mean TPR of 0.99 and a mean FDR of 0.15 for DLA-88,

compared to 0.42 and 0.02 for HLAminer (Figure 5B). KPR obtains a mean TPR of 0.62 and a mean FDR of

0.28 for DLA-12, also better than HLAminer (Figure 5B). For DLA-64, KPR and HLAminer are comparable,

with 0.19 and 0.22 for TPR and 0.03 and 0.02 for FDR respectively (Figure 5B).

Figure 4. The influence of allele combination (AC), sequencing error rate (E), DLA-I read amount (D) and distribution (RD) on DLA-88 genotyping is

evaluated via simulation

(A) AC evaluation. Genotyping results are shown for 300 samples, simulated with the 10 ACs (30 samples per AC) indicated and with E, D, and RD optimized

(see STAR Methods). TPR and FDR are presented as in Figure 3.

(B) E evaluation. Genotyping results are shown for 350 samples, simulated with 7 E values (50 samples per E) indicated and with AC, D, and RD optimized (see

STAR Methods). The thick bar of the X axis indicates the actual E range of the RNA-seq data of the cohort.

(C) D evaluation. Genotyping results are shown for 400 samples, simulated with the 8 D values (50 samples per D) indicated and with AC, E and RD optimized

(see STAR Methods). The thick bar of the X axis indicates the actual D range for the RNA-seq data of the cohort.

(D) RD evaluation. Genotyping results are shown for 250 samples, simulated with the 5 RD values (50 samples per RD) indicated and with all AC, E and D

optimized (left), or only AC and E optimized and D= 10; 000 (middle) or D= 3; 000 (right) (see STAR Methods). See Figure S9 and Tables S2 and S3.

ll
OPEN ACCESS

8 iScience 26, 105996, February 17, 2023

iScience
Article



A cohort of 157 dogs was genotyped by Kmer-based paired-end read software

We used KPR to genotype all 157 mammary tumors and 64 matching normal samples from 157 dogs of the

cohort35,36 passed QCmeasures (Figures S1A–S1J; Table S2) and used in our simulations described above.

We applied KPR to these 221 samples using the optimized parameters (Figure 3), by setting K = 50bp;N =

1; 000, and PD = 15 for DLA-88 and PD = 38 for DLA-12. We excluded genotyping results of 48 misassem-

blies identified by KPR. For DLA-12, we only kept the results of three new allele candidates that are recur-

rent and highly expressed (Table S5) to reduce false positives, as our simulation indicates a lower genotyp-

ing accuracy for DLA-12 (Figure S3A). A total of 208 samples (94%) were then genotyped, including 146

tumor and 62 normal samples from 152 dogs, yielding 45 known alleles and 60 new allele candidates

(Table S5). The remaining 13 samples failed genotyping, as no complete contigs of exons 2 and 3 were

assembled. These 13 samples have a significantly lower amount of DLA-I read pairs (Figure S10A), a critical

factor that affects the KPR genotyping efficiency based on our simulation analysis (Figures 4C and S9).

Most of the genotyping results are validated

We assessed the genotyping accuracy. Among 848 genotyping results, 730 (86%) are with 45 known alleles

(Table S5), and should be accurate. The remaining are with 60 new allele candidates. Among the new allele

candidates, 6 have their variant linkages fully validated with paired-end reads (Figure 1B), 24 are recurrently

found among R2 samples, and 10 have an expression fraction of R50% within a sample (Table S5). These

subsets of new allele candidates are less likely to be artifacts arising from sequencing or assembly errors;

their genotyping results (84 total) hence have a higher probability to be accurate.

To further validate the genotyping results, we used the whole exome sequencing (WES) data that are also

published for these dogs,35,36 via two approaches. First, WES read pairs were mapped to the RNA-seq

read-assembled contigs, which consist of 45 known and 60 new allele candidates. For each WES sample

Figure 5. KPR software outperforms the HLAminer assembly tool and Seq2HLA in new allele typing

(A) Genotyping with known alleles. Left heatmaps indicate TPR (red) and FDR (blue) in each of the 600 simulated samples (see STAR Methods). Columns

represent simulated samples, grouped based on the gene and AC, and then ordered by TPR and FDR. Right bar plots summarize the genotyping results of

all samples, with * indicating a significant (p < 0.05) difference via Wilcoxon rank sum tests between the software tools compared. Homo: homozygous; Het:

heterozygous; Het same: heterozygous with same type of alleles (DLA-88 or DLA-88L) only; Het Diff: with both DLA-88 and DLA-88L alleles.

(B) Genotyping with new alleles. Images are presented as described in A. See Table S4.
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and each DLA-I gene, the top two contigs with the most WES reads concordantly and identically mapped

were identified. If the WES sample and the two contigs are from the same dog, then validation is achieved.

This analysis validates 726 (86%) of 848 total genotyping results, of which 684 are with 31 known alleles and

42 are with 20 new allele candidates (Figures S10B and S10C; Table S5). Second, we conducted assembly

with WES reads for exon 2 and exon 3 separately. If either contig isR 90 amino acid long (exon 2 encodes

90 amino acids; exon 3 encodes 92 or 93 amino acids) and completely matches an RNA-seq contig from the

same dog, then the genotyping result is validated. This analysis validates 173 genotyping results, of which

162 are with 21 known alleles and 11 are with 8 new allele candidates (Figure S10C; Table S5).

Lastly, by manually examining 13 samples with >6 alleles genotyped, we identified 7 new allele candidates

that are misassembled from specific allele combinations. For instance, when a sample carries both DLA-

88*501:01 and DLA-12*001:01, chimeric assemblies DLA-12*14:01 and DLA-88*501:New3 are likely to be

generated, due to a long (>270bp) identical region amid two polymorphic sites between DLA-88*501:01

and DLA-12*001:01 (Table S5). To alert the users of potential misassembly, the KPR output files have

flagged any new alle candidates that share >270bp identical sequence with another allele (known or

new) in the sample.

Combining all validation analyses described above, 742 of the 848 (88%) genotyping results are either vali-

dated or considered unlikely to be false. Moreover, the analyses yield 33 new allele candidates that are un-

likely to be artifacts (referred to as putative new alleles hereafter), with 20 for DLA-88, 7 for DLA-88L, 2 for

DLA-12, and 4 for DLA-64 (Table S5).

DLA-88 has the highest expression and diversity

We investigated the 742 validated genotyping results of 208 samples (146 tumor and 62 normal) from 152

dogs. Among the three DLA-I loci, the DLA-88 locus is the most expressed and diversified (Figures 6A–6C).

A total of 28 known alleles and 20 putative new alleles of DLA-88 were identified in 199 samples, with a rela-

tive allele expression range of 3-100% and amedian of 35% (Figures 6A and 6B; Table S5). The DLA-64 locus

is the least diversified and expressed, with one known and four putative new alleles found in 97 samples and

having a relative allele expression range of 0.5–33.3% and a median of 5% (Figures 6A and 6B; Table S5).

The DLA-12/DLA-88L locus has intermediate allele diversity and expression levels. For DLA-12, a total of 12

known alleles and two putative new alleles were identified in 166 samples with a relative expression range

of 0.5-100% and a median of 11% (Figures 6A and 6B; Table S5). For DLA-88L, four known alleles and 7 pu-

tative new alleles were genotyped in 45 samples, with a relative expression range of 2-59% and a median of

23% (Figures 6A and 6B; Table S5). These diversity and expression level differences are clearly seen in the

cumulative relative allele expression level normalized within the population (Figures 6C and S11A). The ob-

servations are consistent with literature reports.14–17

As expected, many concordant alleles between tumor and normal samples were found for the 56 dogs with

both samples genotyped. Specifically, among 207 genotyping results from the normal samples and 206

genotyping results from the tumor samples, 166 (81%) agree (Table S5). Our statistical analysis reveals

no significant difference between tumor and normal samples in either the alleles or their expression levels

(0:6%p%1; see Table S5). Individual dog-wise, 55 of 56 total animals have at least one allele, and 3 alleles

on average, shared between the two samples of each animal, with 15 dogs having the agreement at 100%

(Figure S11B; Table S5). The disagreement found in some of the dogs may indicate that their tumor and

normal samples express the same alleles at different levels, due to different cell composition and/or epige-

netic or other alterations in the tumor.38,39 As a result, an allele might fail assembly and genotyping only in

the tumor (or normal) sample due to a lower expression level.

Our study reveals breed-dominant alleles (Figure 6D), consistent with published work.15,17 Specifically, we

identified prevalent alleles in 4 breeds with a sample size of R10 dogs (Figures 6D and S11C). Examples

include DLA-88*004:02 in Yorkshire Terrier, as well as DLA-88*014:01 and DLA-88*035:01 in Shih Tzu.

The dominant alleles in Shih Tzu match published studies,17 and differ more from those of the other three

breeds, consistent with their places of origin.

We also genotyped the 39 dogs with blood RNA-seq data,37 using the optimized parameters shown in Fig-

ure S7. The analysis yields the same major findings as the mammary study (Figures 6, S11A, and S12). First,

DLA-88 is the most diversified and expressed, compared to DLA-12 and 64, among these 39 dogs
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Figure 6. KPR tools genotyped 152 dogs from the largest canine RNA-seq study published so far35,36

(A and B) Genotyping results of the tumor (top) and normal (bottom) samples of the 152 dogs grouped by breeds. A dog is

represented by single or paired vertical bars. The lines inside each bar separate individual alleles, with the height

indicating the allele expression in reads per million (RPM) (A) or expression fractions within the animal (B). DLA-88/88L/12/

64: known alleles. DLA-88/88L/12/64 group: new allele candidates with allele group assigned. DLA-88/88L/12/64 new:

new allele candidates with no allele group assigned.

(C) Distribution of allele cumulative expression fractions within the 146 tumor samples. Alleles with cumulative expression

fractions R1.0 are shown. Known alleles are shown as black bars, while new alleles are as gray bars.

(D) Breed-dominant alleles in the tumor samples of 4 pure breeds with each havingR10 dogs. Top 4 alleles or alleles with

cumulative expression fraction ratio reaching >50% within a breed are specified. See Figures S10–S12 and Table S5.

ll
OPEN ACCESS

iScience 26, 105996, February 17, 2023 11

iScience
Article



(Figures S12A and S12B; Table S5). Furthermore, the most prevalent alleles among these dogs (Figures

S12C and S12D) also match those in the mammary cohort (Figures 6C and S11D). DLA-88L alleles were

found in Shih Tzu as expected, and also in Collie interestingly (Table S5).

DLA-12 and DLA-88L alleles cluster with DLA-88 alleles

To examine the allele diversity, we clustered the 45 known alleles and 33 putative new alleles genotyped in the

cohort, using their encoded amino acid sequences (Table S5). As expected, the DLA-64 alleles are outliers (Fig-

ure 7A). Importantly, the DLA-88 alleles are clearly divided into two clusters (Figures 7A, S13, and S14). One clus-

ter has fewer alleles and ismore distant (Figure 7A).40 The other cluster ismuch larger and can be further divided

into 2 subclusters, which are named DLA-88/DLA-88L and DLA-88/DLA-12 because of the enrichment in DLA-

88L and DLA-12 alleles respectively (Figures 7A and S6A–S6C; Table S6). The same conclusions are reached

when including all 160 known alleles or just using the 160 known alleles in the analysis (Figures S13 and S14).

We observed possible ‘‘pioneers,’’ which are the few highly prevalent alleles in each DLA-I cluster

(Figure 7A). Examples are DLA-88*014:01 in the distant DLA-88 cluster, as well as DLA-88*012:01 and

DLA-12*001:01 in the DLA-88/DLA-12 cluster (Table S6). This points out a potential ‘‘founder’’ effect in

forming these allele clusters.

The results indicate that DLA-88L and DLA-12 are distinct allele groups. Within each group, DLA-88L al-

leles are more divergent, while DLA-12 alleles are more conserved (Figure 7A). Interestingly, certain DLA-

12 and DLA-88L alleles are distributed differently among breeds. For example, DLA-12*001:01, found in

96 animals and representing the most prevalent allele, is significantly depleted in Shih Tzu. However,

Figure 7. DLA-12 and DLA-88L alleles cluster with DLA-88 alleles

(A) The clustering of 45 known alleles and 33 putative new alleles identified in the 152 dogs, based on amino acid sequence identities. Breed enrichment is

represented by the fraction of dogs within a breed that carry the allele. ‘‘Allele frequency’’ is the cumulated allele expression fraction, while ‘‘Dog number’’

specifies the number of dogs having the allele, within the cohort.

(B) Examples of DLA-88/DLA-88L linkages and a putative DLA-88/DLA-12 linkage indicated by allele co-occurrence identified by Fisher’s exact tests, with p

values shown. The two DLA-88/DLA-88L linkages shown have been reported previously.17

(C) Proposed evolution of the DLA-I genes. Red lines link the likely corresponding HLA-I and DLA-I genes. Dash lines indicate the breakage of the HLA-I locus

in the canine genome. ‘‘-’’ and ‘‘+’’ specify the gene orientation. See Figures S13–S15 and Table S6.
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DLA-88*016:04 (previously known as DLA-88*L17), a DLA-88L allele, is found only in Shih Tzu (Figure S15A;

Table S6). DLA-88L and DLA-12 are proposed to be both encoded by the DLA-12 locus.15,17 Indeed, our

analysis reveals significant co-occurrence of specific DLA-88 and DLA-88L allelic combinations (e.g., DLA-

88*028:01 and DLA-88*029:01; DLA-88*003:02 and DLA-88*017:01), as well as of DLA-88 and DLA-12

alleles (e.g., DLA-88*501:01 and DLA-12*001:01) (Figures 7B and S15B; Table S6). These results are

consistent with the reported DLA-88/DLA-88L and DLA-88/DLA-12 haplotypes.17,18

To better understand the relationship between DLA-88, -88L, and 12 alleles, we examined the dog-human

synteny at the MHC-I loci with genomic sequences. The canine counterpart of HLA-A is possibly lost,41

silenced or not assembled in the current CanFam3.1 genome after the ancestral region near the HLA-A lo-

cus broke in the canine genome, forming the end of canine chromosome 35 (Figure 7C). The canine orthol-

ogous site of HLA-B encodes only a pseudogene (Figure 7C); thus, the canine counterpart of HLA-Bmay be

also destroyed. While the DLA-88 locus is an unambiguous ortholog of the HLA-C locus (Figure 7C), the

DLA-12 and DLA-64 loci lack clear human orthologs. Because of the high sequence homology of DLA-

12/88L to DLA-88 (Figure 7A), it is possible that the original DLA-12 locus was created via duplication of

DLA-88 (Figure 7C).

DISCUSSION

Kmer-based paired-end read de novo assembler and genotyper

NGS-based methodology has become a focus for human HLA-I genotyping in recent years, and numerous

software tools have been published.21–30,42–46 Unfortunately, these tools, which are built upon the >23,694

human alleles, do not work for the dog, due to very limited alleles defined (185 total currently). The devel-

opment of additional software tools, such as the KPR de novo assembler and genotyper reported here,

could help to remedy this situation, enhancing the usage of the canine model.

Because our core algorithm relies on paired-end sequencing (note that paired-end reads are both derived

from the same allele), the accuracy of our tools is not as heavily dependent on known alleles, as are existing

methods.21–30 Indeed, Sanger sequencing validation, simulation analysis, and concordance with published

results17 all indicate that our tools are effective. Our software outperforms popular published genotyping

tools (with or without assembly) in typing new alleles.

Our KPR software however needs improvement. Factors including the amount of DLA-I reads (deter-

mined by the allele expression levels) influence the KPR genotyping accuracy. For lowly expressed al-

leles, the KPR assembler may be unable to assemble complete contigs that contain the entirety of exons

2 and 3, failing genotyping. We plan to test if the implementation of dynamic programming, such as the

Floyd-Warshall algorithm, into the assembly process will yield improvement. We have successfully imple-

mented dynamic programming in our copy number software SEG.47 Second, KPR is able to estimate the

allele expression level but the accuracy needs to be improved. KPR currently uses individual variant sites

for expression estimation, and we plan to implement a haplotype-based strategy for improvement. Third,

our current tools are designed for RNA-seq, but not for whole genome sequencing (WGS) and WES

data,42–46 which contain intronic sequences. Importantly, unlike RNA-seq, WGS and WES lack sequence

reads that directly link exons 2 and 3. Thus, new functionality is needed for our tools to work for WGS

and WES.

Our software is effective in DLA-88 genotyping, but less effective in DLA-12 and DLA-64 genotyping. DLA-

12 and DLA-64 are expressed less abundantly, compared to DLA-88. Moreover, DLA-12 has a high

sequence identity to DLA-88, making it harder to separate DLA-12 reads fromDLA-88 reads. DLA-12 alleles

are highly identical and two variant sites are often too distant to be validated by sequence read-pairs. All of

these contribute to the lower genotyping accuracy of DLA-12 by our software. The DLA-64 genotyping

issue is simpler. DLA-64 is more distant from DLA-88 and DLA-12, and its genotyping accuracy can be

improved by increasing the sequencing amount. Lastly, while parameters optimized for one dataset

work well for another dataset in our simulation study for DLA-88 genotyping, dataset-specific parameter

optimization is required to achieve effective DLA-64 genotyping.

Our software is capable of genotyping new alleles with the same accuracy as known alleles. However, for

the new allele candidates discovered by our software, experimental validation such as Sanger sequencing

is still needed.
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Our KPR software can be easily modified to genotype numerous other species that, like the dog, have very

few alleles defined. Note that the KPR assembler is species-independent, and only the KPR genotyper

needs modifications.

DLA-I allele diversity landscape

Consistent with published work,14–17 our genotyping study of a cohort of 152 dogs35 clearly indicates that

the DLA-88 locus encodes a classical MHC-I gene, being highly diversified and expressed, while DLA-64 is

the opposite. The DLA-12 locus is however less clear.

A previous study reports that the DLA-12 locus encodes DLA-12 alleles in 80% of dogs and DLA-88L alleles

in 20% of dogs examined.17 This is supported by our finding of significant co-occurrence of certain DLA-88

and DLA-88L alleles, as well as certain DLA-88 and DLA-12 alleles, in the same animals. Our sequence anal-

ysis reveals that DLA-12 and DLA-88L alleles are closer to some DLA-88 alleles, compared to among more

distant DLA-88 alleles themselves. Unlike the DLA-88 locus, we have not found a human orthologue for the

DLA-12 locus. These findings support the notion that the original DLA-12 locus may be duplicated from the

DLA-88 locus. A recent study reports that DLA-88L arose via interlocus and intralocus gene conversion be-

tween DLA-88 and DLA-12.18 As such, DLA-12 and DLA-88L alleles should perhaps be classified as sub-

groups of DLA-88, which further increases the DLA-88 diversity.

As DLA-88L is highly homologous to DLA-88 and new DLA-88L alleles are yet to be identified, it is possible

that some DLA-88L alleles may be mistakenly classified as DLA-88. This may explain why >2 alleles of DLA-

88 are genotyped in some animals by us and others.15

Kmer-based paired-end read software can lead to more biological insights

Over 1,000 dogs have publicly available paired-end RNA-seq data, and more dogs are on the way.

Applying our KPR software to these rapidly accumulating data will assess the diversity landscape of

DLA-I alleles, and discover dominant alleles within and across breeds. This knowledge can in turn be

used to address important questions, including how the MHC-I genotype shapes the tumor mutational

landscape. By investigating 9,176 human cancer patients, a team reports that recurrent mutations are

more likely to locate in peptides that are poorly presented by the HLA-I molecules across patients, and

that the HLA-I genotype is associated with the emergence of specific oncogenic mutations.48 The authors

conclude that the HLA-I genotype restricts the oncogenic mutational landscape and could be used in pre-

dicting personal cancer susceptibility.48 Once a large number of cancerous and healthy dogs are geno-

typed, we can conduct similar research to determine if the DLA-I genotype also shapes themutational land-

scape in dogs.6,49 Importantly, investigating the association between breed-dominant alleles and

prevalent oncogenic mutations may contribute to the understanding of the breed-predisposition to can-

cer.50 For example, Maltese, Yorkshire terrier, and poodle are among breeds reported to be susceptible

to mammary tumors.50 Are dominate alleles in these predisposed breeds (Figure 6D) poorly presenting

the prevalent oncogenic mutations detected in mammary tumors, such as PIK3CA H1047R,6,49 compared

to other breeds? These will deepen our understanding of tumorigenesis and cancer susceptibility.

Limitations of the study

First, our KPR software performs de novo assembly of the entire exon 2 and 3 sequences with RNA-seq

data. It hence cannot genotype DLA-I alleles that are not expressed or expressed at a low level. Second,

for new allele candidates discovered by our software, validation (e.g., Sanger sequencing) is needed.

This is especially so for new allele candidates of DLA-12 due to the higher probability of misassembly.

Third, the KPR software assembles and genotypes alleles individually, and hence cannot determine the

allele haplotype. For samples where >2 DLA-88 alleles are genotyped, more studies are needed to deter-

mine if and which DLA-88 alleles are encoded by the DLA-12 locus. The confirmed alleles should be reclas-

sified as DLA-88L alleles.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Dog monoclonal anti-MHC-I DG-H58A Monoclonal Antibody Center;

Washington State Univ.

Cat# DG-BOV2001; RRID: AB_2722788

Alexa fluor� 594 Goat anti-mouse IgG Jackson ImmunoResearch Code: 115-585-006; RRID: AB_2338872

Biological samples

Canine tumor samples Collected from veterinary hospitals

with owner informed consent.

N/A

MDCKII, RNA samples Wang, et al. 202033 https://pubmed.ncbi.nlm.nih.gov/33089114/

Chemicals, peptides, and recombinant proteins

Fetal Bovine Serum Atlanta Biological Cat# S11550

Critical commercial assays

AllPrep DNA/RNAMini Kit Qiagen Cat# 80204

iScript cDNA Synthesis Kit Bio-Rad Cat# 1708880

Phusion High-Fidelity DNA Polymerase NEB Cat# M0530S

Deposited data

Canine mammary tumor RNA-seq data The SRA database https://www.ncbi.nlm.nih.gov/sra/

?term=PRJNA489087

Canine mammary tumor whole exome sequencing

(WES) data

The SRA database https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA489159/

Canine whole blood RNA-seq data The SRA database https://www.ncbi.nlm.nih.gov/

bioproject?term=PRJNA629466

Other canine RNA-seq data (from our lab) The SRA database

Wang et al., 20187,8

Wang et al., 202033

https://www.ncbi.nlm.nih.gov/

bioproject?term=PRJNA418842

https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA532904/

Canine MHC-I reference alleles, with official allele

names

The IPD-MHC database https://www.ebi.ac.uk/ipd/mhc/group/DLA/

Canine MHC-I reference alleles, with no official

allele names

GenBank LC130502.1-LC130527.1; LC171419,1-

LC171438.1; KX583613.1, KX583617.1,

KX583623.1, KX583624.1, KX583625.1,

KX583628.1

Canine reference genome, CanFam3.1 https://www.ncbi.nlm.nih.gov/data-hub/

genome/GCF_000002285.3/

Oligonucleotides

Primers for DLA-88 exons 2 and 3 cloning

CGGAGATGGAGGTGGTGA’’ (forward)

‘‘GGTGGCGGGTCACACG’’ (reverse)

This paper N/A

Software and algorithms

KPR de novo assembler and genotyper This paper https://github.com/ZhaoS-Lab/KPR.git

BWA 0.7.17 http://bio-bwa.sourceforge.net/

SAMtools 1.9 http://samtools.sourceforge.net/

Python 2.7.14 https://www.python.org/downloads/

release/python-2714/

Trimmomatic 0.39 Bolger et al., 201451 https://github.com/usadellab/Trimmomatic

Clustal-Omega 1.2.4 http://www.clustal.org/omega/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Shaying Zhao (szhao@uga.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data: All data used in the study, including RNA-seq data, are publicly available, as listed in the key re-

sources table.

d Code: The software package of KPR de novo assembler and genotyper is available at Github at https://

github.com/ZhaoS-Lab/KPR.git. It is written in Python (version 2.7) and runs on the Unix/Linux platform.

Other software tools including SAMtools (version 1.9), Trimmomatic (version 0.39), BWA (version 0.7.17),

and Clustal-Omega (version 1.2.4) are needed to execute the pipeline. These tools are publicly available

as listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Canine cDNA samples

Canine cDNA samples used in this study (listed in Table S1) are described in our previous publica-

tions7,8,10,33. Briefly, one cDNA sample was extracted from cells of Madin-Darby canine kidney II

(MDCKII),33 a widely used cell line in research.33 Three cDNA samples (T76, 414642T, and 435726T) were

extracted frommammary tumors of adult female dog patients,10 with one being a 14-year-old Staffordshire

Terrier (T76) and the other two with exact age and breed unknown. The remaining three cDNA samples

(N14-77-T5-E1, 2577T, and LilyT) were extracted from intestinal tumors of three canine patients,7,8

including a 9-year-old neutered male Golden Retriever-mix (N14-77-T5-E1), an 11-year-old intact male En-

glish Cocker Spaniel (2577T), and a 9-year-old spayed female English Cocker Spaniel (LilyT). Tumors sam-

ples were collected from client-owned dogs that develop the disease spontaneously, under the guidelines

of the Institutional Animal Care and Use Committee for use of residual diagnostic specimens and with

owner informed consent. The research received the ethical approval from the Institutional Animal Care

and Use Committee of the University of Georgia.

METHOD DETAILS

Kmer-based paired-end read (KPR) de novo assembler and genotyper

The KPR assembler assembles DLA-I alleles de novo, as illustrated Figure 1A and below.

� Step 1: DLA-I read-pairs are identified by first mapping paired-end RNA-seq reads of a dog with

BWA52 (version 0.7.17), after cleaning with Trimmomatic51 (version 0.39), to the DLA-I reference,

which consists of 185 known DLA-I alleles with official allele names16 and 11 alleles derived from

GenBank16,17,34,53 with no official allele names assigned. Then, concordantly mapped pairs with at

least one read placed to exon 2 or 3 of DLA-I genes are identified, and further selected for those

with each base quality at R30 to reduce sequencing error rate to %0.1%.

� Step 2: The Kmer dictionary is built from the forward (or reverse) read of each pair selected above at

an exhaustive 1bp sliding window. Low frequency Kmers are identified, and read-pairs harboring any

of them are removed to further reduce sequencing errors.

� Step 3: Read pair extension starts with a randomly chosen pair with forward read F and reverse read

R. It is extended by another pair with forward read fi and reverse read ri, if F and R share identical

sequence of >K in length with fi and ri, respectively, at their 3
0 or 50-end (Figure 1A). This yields Fcontig,

and Rcontig, which are then looped through the same extension process until no further extension is

possible.
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� Step 4: Final contig is assembled from the last Fcontig, and Rcontig from step 3, if they share identical

sequence of >K at their 50 or 30-end.

� Step 5: Steps 3 and 4 are repeated N (e.g., 1,000) times such that all extension paths have been ex-

hausted.

The KPR genotyper genotypes assembled contigs, as illustrated in Figure 1B and below

� Contig sorting and variant linkage building: After removing duplicates, assembled contigs are clas-

sified as DLA-64 contigs and non-DLA64 contigs. All full length (containing the entire sequence of

exons 2 and 3) DLA-64 contigs are subjected to ‘‘DLA-I genotyping’’ described below. All non-

DLA-64 contigs are subjected to multiple sequence alignment for consensus sequence building

to identify variable sites and variant linkage groups.

� Variant linkage validation and frequency estimation with paired-end reads: To reduce false results

from misassembly, variant linkage groups of non-DLA64 contigs are built via multiple sequence

alignment of the contigs, and validated with paired-end reads after mapping the DLA-I read-pairs

(see step 1 in the assembly section) to the contigs. If a linkage is also found in one or more RNA-

seq read pairs mapped to the contig, then the linkage is validated (as the two sequences of a

read pair are from the same allele). The frequency of each linkage group is estimated with read-

pair coverage at its unique variant sites.

� Contig extension (if not completely covering exons 2 and 3): MHC-I genotyping requires the entire

sequence of exons 2 and 3. Incomplete contigs are first extended by other incomplete contigs via

overlapping variant linkage (R75% overlap) or paired-end reads (Figure 1B). If still incomplete, these

contigs are further extended with paired-end reads based on variants or frequency (Figure 1B).

� DLA-I genotyping: Each complete contig (with entire exons 2 and 3) is translated into amino acid

sequence, and compared to the known DLA-I reference for gene and allele identification. Allele

groups are assigned by examining the sequences from three HVRs, following the scheme by the In-

ternational Society for Animal Genetics DLA Nomenclature Committee,16,34 including 3-digit typing

for allele group (e.g., DLA-88*034) and 5-digit typing for allele (e.g., DLA-88*034:01).

� New allele candidate naming: If matching to a known allele group based on hypervariable regions

(HVRs),16 the allele will be named by assigning to that allele group (3-digit typing, e.g., DLA-

88*034), followed by ‘‘:New’’ and an integer (5-digit typing, e.g., DLA-88*001:New1). If not matching

to any known allele group, we will first assign the allele to a specific DLA-I gene (DLA-88, 88L, 12 or 64)

via sequence clustering with known alleles. Then, we will name the alleles as described above, except

for using ‘‘X’’ to represent the allele group, e.g., DLA-88*X:New2.

Sanger sequencing

Sanger sequencing was performed following published procedures.15,17 Briefly, exons 2 and 3 of DLA-88

were amplified from cDNA samples of canine cells and tissues, using primers ‘‘CGGAGATGGAGG

TGGTGA’’ (forward) and ‘‘GGTGGCGGGTCACACG’’ (reverse) (Table S1). Then, the amplified PCR

products were cloned into a vector and 5–10 clones per sample were subjected to sanger sequencing using

the two primers specified above.

Immunohistochemistry (IHC) and confocal imaging

IHC with frozen sections of canine tissue samples and confocal imaging were performed following

published procedures.7–10 Briefly, H58A, a pan DLA-I monoclonal antibody purchased from the Washing-

ton State University (WSU) Monoclonal Antibody Center, was used the primary antibody. Alexa Fluor594–

conjugated secondary antibody was purchased from Jackson ImmunoResearch. Images were taken with a

Zeiss LSM 710 confocal microscope.

Sample simulation

Six paired tumor and normal RNA-seq samples of 3 dogs from a published study35,36 were used for

the simulation. Their identifiers in the sequence read archive (SRA) database are: 1) SRR7779554 and

SRR7779476 from dog CMT-162; 2) SRR7779670 and SRR7779671 from dog CMT-785; and 3)

SRR7779469 and SRR7779468 from dog CMT-149 (Table S2). Allele simulation was performed by random
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sampling of the DLA-I database. A total of 10 allele combinations (AC) were made to simulate scenarios

including homozygosity versus heterozygosity, and DLA-88 canonical versus DLA-88*50X alleles. Allele

sampling was repeated 3 times for each AC (Table S2). For PD, K, and N optimization simulation (Figure 3),

a total of 6 ðsamplesÞ310 ðACsÞ33 ðallele sampling repeatsÞ= 180 samples were simulated.

PD is defined as the maximum read pairs that are mapped to two polymorphic sites among true positive

alleles of a sample when none of the read pairs supports the variant linkage of a true positive allele (Fig-

ure 3A). PD is used in variant linkage validation for potential misassembly identification (Figure 1B).

For AC, D, and E evaluation (Figure 4), all samples were simulated based on the RNA-seq data of sample

SRR7779668, as well as optimized values derived from the best samples from the 158 dogs of the cohort.35 These

include180,435 readpairsof sampleSRR7779475 forD,0.31%ofSRR7779475 forE, and0.45ofSRR7779668 forRD

(TableS2). Toevaluate the impactofAC (Figure4A), randomallele samplingwas repeated30 timesperACgroup

(Table S3), resulting in a total of 10 ðACsÞ3 30 ðallele sampling repeatsÞ = 300 simulated samples. Tominimize

the influenceofAC,only5ACgroupswithhomozygousDLA-12wereused forE,DandRDsimulation (Figures4B–

4D).RDwas representedby theuniformity test statistics calculatedwithmapped readcount ateachbaseposition

of DLA-I exons 2 and 3, using the SciPy package.54 To evaluate RD, 5 samples with an RD range representing the

entire cohort were selected, including SRR7779632 with RD = 0:08, SRR7779628 with RD = 0:17, SRR7779614

with RD = 0:27, SRR7779679 with RD = 0:36, and SRR7779668 with RD = 0:45. A total of simulated samples of

7 ðEsÞ35 ðACsÞ310 ðallele sampling repeatsÞ= 350 for E, 8 ðDsÞ35 ðACsÞ310 ðallele sampling repeatsÞ= 400

for D, and 5 ðRDsÞ35 ðACsÞ310 ðallele sampling repeatsÞ= 250 for RD were generated.

For software comparison (Figure 5), random allele sampling was repeated 10 times for each of the 10 ACs

separately for known alleles (Figure 5A) and new alleles (Figure 5B), using the 6 samples chosen as

described in Figure 3 (Table S4). New alleles are from contigs assembled by the KPR tools, as shown in Fig-

ure 6 (Table S5). A total of 6 ðsamplesÞ310 ðACsÞ310 ðallele sampling repeatsÞ= 600 simulated samples

were generated separately known and new allele genotyping.

Simulated DLA-I read pairs of each sample were generated from selected alleles, considering 3 parameters

derived from the actual RNA-seq data of the sample. First, sequencing error rate was estimated from the

non-DLA-I CDS regions after aligning the RNA-seq reads to the canFam3 reference genome with BWA52

(version 0.7.17). Based on the estimated rate, sequencing errors were randomly introduced to the simu-

lated RNA-seq reads. Second, relying on the mapping position to the reference alleles, each simulated

read-pair was made to replace its corresponding actual RNA-seq read pair, having the same read length

and insert size. Third, the expression levels of the 3 DLA-I genes were estimated via a unique region in

exon 3, i.e., ‘‘ACCATGTAC’’ for DLA-88, ‘‘TGGATGTTT’’ for DLA-12, and ‘‘TGGACTTCG’’ for DLA-64.

Based on this, the amount of simulated read-pairs of each DLA-I allele was determined (and evenly split

among the two alleles for heterozygous allele simulation).

TPR and FDR

Using the allele number (integer) or the relative allele expression level (non-integer) to represent each pos-

itive call, TPR was calculated by TPR = TP
TP + FN and FDR = FP

TP +FP ; where TP, TN, and FP respectively represent

the number of true positives, false negatives, and false positives. A relative expression level is the expres-

sion fraction of an allele in a sample by treating the combined expression of all alleles in the sample as 1.

Genotyping a published cohort

RNA-seq data of 158 tumors and 64 normal samples of 158 dogs from a published study35,36 were down-

loaded from the SRA database (PRJNA489087) (Table S5), and quality controlled as follows. First,

MultiQC55 (version 1.5) was used to examine GC content and duplicate level (Figures S1B–S1D). Base qual-

ity distribution before and after Trimmomatic trimming was also examined (Figure S1A). Second, the dis-

tributions of per sample read-pair total amount, mapping rate and quality, and CDS targeting rate were

examined to identify and exclude samples that fail to meet the cutoffs (Figures S1G–S1J). Third, tumor-

normal sample pairing accuracy was evaluated by examining the fraction of shared germline variants be-

tween any two samples of a study6 (Figure S1E). Forth, breed validation was performed with using

breed-specific germline variants identified previously.6
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After QC, each sample was genotyped using the KPR de novo assembler and genotyper, with optimized

parameters of N = 1; 000, K = 50, PD = 15 for DLA-88 and PD = 38 for DLA-12, following steps described

previously and outlined in Figure 1.

RNA-seq genotyping validation with WES data

WES data from the same 158 dogs genotyped were downloaded from the SRA database (PRJNA489159).

The sequence reads were first cleaned by Trimmomatic with default setting. Germline variants were used to

validate the pairing of WES and RNA-seq samples via dog IDs (Figure S1F).

For WES read validation, WES read pairs of a sample were mapped with BWA to a database that consists of

all complete contigs assembled from RNA-seq data. All concordantly and identically mapped reads,

including both uniquely and repetitively mapped, were extracted. All RNA-seq contigs of each such map-

ped read were identified. An RNA-seq contig and the genotyping result are considered valid if the contig

has the most or the second most WES reads from the same dog mapped.

For WES contig validation, WES read pairs were used to assemble exon 2 and exon 3 of DLA-I genes inde-

pendently, following steps outlined in Figure 1. WES contigs were then compared with RNA-seq contigs

with BLAST. An RNA-seq contig and the genotyping result are considered valid if the RNA-seq contig is

matched with 100% sequence identify and an aligned length R90 amino acids, which is roughly the size

of an exon, by a WES contig from the same dog.

Manual examination for false positive reduction

Manual examinations were performed to identify false positives originated from misassembly or sequencing

errors as exemplified as follows. First, DLA-88*501:01 and DLA-12*001:01 share long stretch of identical

sequence in the middle. The expression of both alleles in the same sample may result in chimeric assemblies

that consist of the head of one allele and the tail of the other allele, e.g., DLA-12*14:01 and DLA-88*501:New3

in certain samples (Table S5). Unfortunately, the RNA-seq read pairs are often not long enough to identify these

mis-assemblies. To alert the users of potential misassembly, the KPRoutput files have flagged any new alle can-

didates that share >270bp identical sequence with another allele (known or new) in the same sample. Second,

DLA-88*006:New42 represents an artifact assembly caused by sequencing error, as only one read pair out of

443 total supports its linkagebetween positions 466 and 537. Thesemanual examinations excluded 7 new allele

candidates. The known allele, DLA-12*14:01, was also removed if the same sample was found to expressing

both DLA-88*501:01 and DLA-12*001:01.

Allele clustering and bootstrapping

DLA-I alleles were clustered via Clustal-Omega multi-sequence alignment of amino acid sequences en-

coded by exons 2 and 3. Euclidean distance and complete agglomeration method were used in both

sequence clustering and bootstrapping. Heatmaps and dendrograms were created by ‘‘gplot’’ in R.

Parameter optimization and genotyping with the blood RNA-seq dataset

The RNA-seq data were downloaded from the SRA database (PRJNA629466) and quality controlled as

described above (Figure S6). Six samples (SRR11650119, SRR11650123, SRR11650138, SRR11650141,

SRR11650147, and SRR11650153) were selected for simulations (Figure S7), as they represent the majority of

the dogs of the cohort in DLA-I read pair amount and sequencing error rate (Figure S8). The parameter optimi-

zation simulations were performed as described above. Then, all 39 dogs of this cohort were genotyped by KPR

using optimized parameters of N = 30; 000, K = 20, PD = 12 for DLA-88, and PD = 38 for DLA-12 (Figure S12).

QUANTIFICATION AND STATISTICAL ANALYSIS

Paired T tests andWilcoxon tests were conducted onDLA-88 alleles of the 7 samples genotyped by the KPR

software and Sanger sequencing (Table S1). The tests are based on: 1) the alleles by assigning equal value

to each allele genotyped in a sample; and 2) the allele expression levels by using the actual expression frac-

tion of each allele in a sample estimated by KPR or by the number of Sanger sequencing clones, assuming

all genotyped alleles in a sample summing to 1. The same statistical tests were performed on all DLA-I al-

leles genotyped between the tumor and normal samples from the same animals (Table S5). Software com-

parison (Figure 5) was conducted using Wilcoxon rank-sum test on genotyping results of simulated

samples.
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