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Abstract: Polymer fiber composites are increasingly being used in many industries, including the
defense industry. However, for protective applications, in addition to high specific strength and
stiffness, polymer composites are also required to have a high energy absorption capacity. To improve
the performance of fiber-reinforced composites, many researchers have modified them using multiple
methods, such as the introduction of nanofillers into the polymer matrix, the modification of fibers
with nanofillers, the impregnation of fabrics using a shear thickening fluid (STF) or a shear thickening
gel (STG), or a combination of these techniques. In addition, the physical structures of composites
have been modified through reinforcement hybridization; the appropriate design of roving, weave,
and cross-orientation of fabric layers; and the development of 3D structures. This review focuses on
the effects of modifying composites on their impact energy absorption capacity and other mechanical
properties. It highlights the technologies used and their effectiveness for the three main fiber types:
glass, carbon, and aramid. In addition, basic design considerations related to fabric selection and
orientation are indicated. Evaluation of the literature data showed that the highest energy absorption
capacities are obtained by using an STF or STG and an appropriate fiber reinforcement structure,
while modifications using nanomaterials allow other strength parameters to be improved, such as
flexural strength, tensile strength, or shear strength.

Keywords: polymer composites; shear thickening fluid; nanofillers; fiber; ballistic properties

1. Introduction

Over the years, composite materials, especially polymeric fiber composites, have
gained popularity in every industry sector. The high mechanical and thermal strength, low
specific gravity, and weather resistance make these composites a competitive construction
material compared to traditional materials, such as wood, steel, and concrete. Composites
are used extensively in the construction, aerospace, automotive, and sports equipment
sectors. The physical and mechanical properties of polymer composites are closely related
to the type and modification of the polymer matrix, the structure and composition of the re-
inforcement, and the constituent elements. A classical composite material is composed of a
matrix-coated reinforcement. The polymer matrix can be a thermoplastic polymer (polycar-
bonate, polyamide) or a duroplastic resin (epoxy, polyester). The composite reinforcement
can be in the form of fabrics, mats (glass, carbon, aramid, basalt, or hybrid fiber), or powder
fillers dispersed in the matrix. The main function of the composite reinforcement is to carry
external loads. The properties of the fibers forming the composite reinforcement play a key
role here. They should have high tensile strength and Young’s modulus, low elongation
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at break, and low density. Such fibers are referred to as high-performance fibers, which
include (Table 1) glass fibers of E and S type, carbon fibers, and ceramic and polymer fibers
(p-aramids, high-molecular-weight UHMWPE-polyethylene, and aromatic polyesters). A
common characteristic of these fibers is that their tensile strength and Young’s modulus
increase with decreasing diameter, at the expense of decreasing elongation at break. Due to
their properties, these fibers can find potential applications in the arms industry. However,
the most popular and widely used fibers are glass, carbon, and aramid reinforcements [1–4].

Table 1. Summary of the mechanical properties of selected high-strength fibers [4–8].

Fiber Density
(g/cm3)

Tensile
Strength (GPa)

Young’s
Modulus (GPa)

Elongation at
Break (%)

E glass fiber 2.63 3.5 68.5 4.0
S glass fiber 2.48 4.4 90.0 5.7
Carbon fiber

(Celton) 1.80 4.0 230.0 1.8

p-Aramid
(Kevlar 149) 1.47 3.5 179.0 1.6

m-Aramid
(Nomex) 1.40 0.7 17.0 22.0

UHMWPE
(Dyneema SK76) 0.97 3.6 116.0 3.8

Zylon AS 1.54 5.8 180.0 3.5
Zylon HM 1.56 5.8 270.0 2.5

Vectran 1.47 3.2 91.0 3.0
M5 1.70 5.8 310.0 1.4

Boron fiber 2.64 3.5–4.2 420.0–450.0 3.7
Silicon carbide 2.80 4.0 420.0 0.6

Alumina III (Nextel) 2.50 1.7 152.0 2.0

High-strength fibers are also preferred by the arms industry and have replaced steel
structures, with composites reinforced mainly with aramid fabrics. Modern military
conflicts are characterized by increasing asymmetry, i.e., a significant disproportion of
equipment, weaponry, technology, and resources between the fighting sides. The weaker
side usually adopts a strategy of offensive, partisan warfare. The attack-and-escape tactic
is characterized by close-range combat, continuous movement of forces, surprise attacks,
traps, and improvised explosive devices [9]. The experience of Russian troops in the
fighting in Afghanistan and Chechnya shows the effectiveness of partisan tactics. During
ambushes, heavily armored tanks and combat vehicles, due to their heavy weight, had
difficulty performing maneuvers. They became easy targets for anti-tank weapons. At close
range, the classical armor was no obstacle for an anti-tank missile. Asymmetric warfare
forced the vehicle armor and the materials from which it was made to be modified. Until
now, vehicles were reinforced with steel armor. To increase protection, the armor was
thickened, significantly increasing its weight. However, this reduced mobility, increased
fuel consumption, and made air transport impossible. The ideal solution was the use of
polymer composites. Currently, polymer fiber composites are used by the arms industry
to produce not only helmets and inserts for bulletproof vests but also ballistic shields for
light armored vehicles, patrol boats, and helicopters. The biggest advantage of composites
is their low weight in comparison to steel. This translates into a reduction in vehicle
weight, while maintaining full mobility and the same level of crew protection [10]. Resins,
including epoxy, are mainly used as the matrix due to their good mechanical and thermal
properties. They are resistant to moisture and most chemicals (including oils and greases)
and are characterized by low shrinkage after hardening and ease of processing. We can
divide the composite armor into inner cladding and outer ballistic panels. The former is
designed to catch metal pieces of the inner side of the vehicle hull that have broken off after
missile impact [9]. A ballistic shield consists of an outer ceramic layer and a multilayer
laminate underneath. The function of ceramic panels is to absorb the impact energy, reduce



Materials 2021, 14, 3047 3 of 17

the velocity of and crush the projectile blade, and change the direction of penetration. The
composite performs the role of the ceramic. An additional function is to completely break
and catch the projectile or its fragments [11]. Penetration of the laminate by a projectile is a
complex process involving two stages of destruction (Figure 1). First, the impact energy
causes shearing of the facing matrix layers and reinforcement, leading to fiber breakage.
Shear destruction absorbs most of the projectile’s energy, which is lost with the successive
layers. Second, the matrix is destroyed and the fibers are stretched at the point of impact
energy concentration, which leads to interfacial delamination [12,13].
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In practice, layouts of fabric-reinforced epoxy laminates alone do not create an effective
or efficient shield. Adding more layers of fabric increases the thickness and weight of
the armor, which is not a good approach. Therefore, the first and most important stage
of designing composite materials for the arms industry is appropriate selection of the
matrix and the reinforcement; the fundamental requirement is that they must be as light
as possible, be mechanically strong, and also be able to absorb large amounts of energy.
Therefore, the arms industry is looking for new material and construction solutions, which
is also a challenge for scientists [14–20]. Considering the design assumptions, the roles
and tasks of composite materials in ballistic shields, and the required mechanism of
action of structural materials used in the arms industry, the current work focuses on the
development of hybrid composites (materials consisting of two or more types of matrixes
or/and reinforcements) [21]. Hybrid fiber composites are obtained by modifying the matrix
and reinforcing it by introducing nanofillers into it, grafting nanofillers on the surface of the
fibers, impregnating fabrics using a shear thickening fluid (STF) or a shear thickening gel
(STG), or using a combination of these techniques. In addition, the physical structures of
the composites are modified by the hybridization of fibers; the appropriate design of roving,
weaving, and mutual orientation of fabric layers; and the development of 3D structures.

The constant development of weapons and warfare agents and the numerous methods
of modifying polymer composites in order to improve their performance in protective
applications confirm that the topic of hybrid fiber composites dedicated to the arms industry
is interesting for scientists and important in terms of application. However, there are no
review articles focusing on the achievements in this field to date. Therefore, this article
discusses the modifications used to improve the ability of composites to absorb energy
and other mechanical properties. The composites are categorized based on three basic
fabrics: glass, carbon, and aramid. The focus is on the technologies of the applied solutions,
in particular matrix modification and reinforcement with nanofillers and STFs. Their
effects on the properties of composites are analyzed, and basic knowledge of the design
assumptions related to the selection of fabrics and their orientation is assessed.

Based on the review, the best possibilities for energy absorption are revealed by using
an STF or STG and an appropriate structure of the fibrous reinforcement. Modification with
nanomaterials allows for the improvement of other strength parameters. Unfortunately,
a significant part of the literature does not contain information about the mass of the
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developed hybrid composites, which is important as it largely determines the application
possibilities of the discussed modification methods.

2. Hybrid Composites

In recent years, many scientific publications, including those on composites used in
the arms industry, have been devoted to hybrid polymer composites. The main reason for
developing hybrid polymer composites is the continuous search for new materials that,
in addition to a favorable weight, are characterized by improved functional properties,
including impact strength and durability. A well-designed hybrid composite uses the
advantages of its individual components to minimize the disadvantages resulting from
individual use of those components [22,23].

The continuous development of hybrid composite materials is associated with the
search for new modifiers and nanofillers with unique functional properties, whose small
contribution to the composite significantly improves its properties. Moreover, in polymeric
fiber composites, nanofillers play an important role: when added separately or in several
combinations, they improve the morphology of the composites, which, in turn, translates
into improvement in their functional properties. The structure of the reinforcement is also
important in terms of the weave and fiber structure, the arrangement of reinforcement
layers in relation to each other at different angles, the use of different fibers, and the use of
appropriate surface preparation of the reinforcing material [3,4,23].

2.1. Composites with the Addition of Nanofillers

There are many publications on the preparation of polymer nanocomposites in which
nanofiller particles are uniformly distributed and one of the dimensions of these particles
does not exceed the nano size. In addition to fibrous materials, nanoparticles in the form of
plates, spheres, tubes, or rods can also be used as reinforcement in these composites. These
include inorganic nanofillers, such as bentonite, silica, and metals (copper, zinc, silver, etc.)
and their oxides, as well as organic ones, such as carbon black, graphene, graphite, carbon
nanotubes (CNTs), and polymethyl methacrylate (PMMA) (Figure 2) [24].
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Figure 2. Summary effect of individual matrix modifications and fibrous reinforcement on the performance of epoxy composites.

Compared to fiber composites, composites reinforced with hybrid nanoparticles and
fibers show improved mechanical and fatigue properties, a higher Young’s modulus, and
better abrasion resistance. They show increased impact energy absorption. This allows for a
reduction in the number of fiber reinforcement layers, resulting in less thickness and weight.
Introduction of conductive nanoparticles, such as carbon black, CNTs, graphite, graphene,
or metals, gives composites the ability to conduct electricity. Due to these advantages,
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composites are used mainly in the arms industry, in the production of smart vests, helmets,
and armor [23,25–28].

A composite is reinforced with nanoparticles by dispersion of the nanofiller in the ma-
trix [23] or impregnation of the fibers or both techniques [26]. An interesting phenomenon
of nanofiller growth on glass fibers was described by Nasser et al. They placed the fabric in
zinc salt solution and coated the fabric fibers with a ZnO layer, which increased the stiffness
and tensile strength and improved the adhesion of the fibers and the matrix as well as the
energy absorption mechanism [29]. The following sections of this paper present the effects
of the abovementioned methods on the mechanical strength of composites reinforced with
glass, carbon, and aramid fibers. For composites dedicated to arms applications, fabrics
impregnated with liquids (STF) and gels (STG) thicken in shear [27] or by the growth of
nanofillers on them [30]. An STF is a non-Newtonian liquid consisting of two dispersion
phases. The first phase is usually ethylene glycol (average molecular weight of 200, 400, or
600 g/mol) or propylene glycol (average molecular weight of 400 g/mol), in which silica
with a particle size between 100 and 750 nm, calcium carbonate, or PMMA (the second
phase) is usually dispersed (Figure 3) [3,31–33].
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Figure 3. STF fabrication scheme based on the procedure in [34].

The use of an STF increases the friction between the fabric of the fibers and energy
absorption. This allows for a reduction in reinforcement layers, and thus, the thickness
and weight of the composite, while maintaining the same strength. The use of larger SiO2
nanoparticles (about 500 nm) decreases the critical shear rate, improving the mechanism of
action and efficiency of the STF. The critical shear rate is defined as the value of the shear
rate at which a sharp increase in viscosity is observed (Figure 4). The STF changes from a
liquid state to a nearly solid state [3,35]. The STG is a polymer that changes from a liquid
state to a rubbery state when subjected to shear [36]. Similar to an STF, the use of an STG
reduces the impact force by several tens of percentage points.

Additionally, an STF is more stable and insensitive to moisture. The hygroscopic
nature of glycol in an STF makes it prone to absorbing moisture, which weakens the shear
mechanism [27,36,38].

2.1.1. Glass-Fiber-Reinforced Polymer Composites

Glass-fiber-reinforced polymer composites make up about 90% of all polymer fiber
composites used in industry. Glass fibers in the form of roving, mats, fabrics, and chopped
fibers are mainly used in the manufacture of boat hulls, yachts, tanks, bathtubs, roof
gutters, pipes, and machine housings [5,39]. To improve the mechanical properties of
epoxy-glass composites, Tate et al. separately introduced 6, 7, and 8 wt% of nanosilica,
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20 nm in size, into the matrix. Improvements in mechanical properties were observed in
all samples containing the filler (Table 2). The composite containing 6 wt% of nanosilica
showed the highest increase in tensile strength (22%) and elongation and interlaminar
shear strength (ILSS) (26%). The composite containing 7 wt% of nanosilica had the highest
elastic modulus and flexural strength [40]. Ravi et al. investigated the effect of reinforcing
the composite with PMMA and silicon carbide (SiC) beads. The addition of only PMMA
(10 vol%) to the matrix increased the flexural strength and flexural modulus at the expense
of elasticity compared to the composite reinforced only with glass fabric. The introduction
of both PMMA beads (10 vol%) and SiC particles (1 vol%) increased the tensile and flexural
strengths by 8% and 37%, respectively, compared to the fiber composite and 32% and 23%,
respectively, compared to the sample containing PMMA [41]. Rahmat et al. prepared
glass-fiber-reinforced composites with boron nitride nanotubes (BNNT). The addition of
1% BNNT improved the impact strength, flexural strength, and shear strength, on average,
by 22%, 15%, and 8%, respectively [42]. Zeng et al. improved the mechanical properties of
composites by grafting the glass fabric with multiwalled carbon nanotubes (MWCNTs).
The fabrics were impregnated in a suspension of nanofillers in ammonium persulfate (APS)
and ethanol solution. An increase of approximately 33% in flexural and tensile strengths
was observed for the epoxy–glass composite containing carbon nanotubes compared to
the reference sample. The Young’s modulus and flexural modulus increased by 41%
and 36.7%, respectively, and the ILSS increased by 40.5%. The researchers also found
that fabric impregnation eliminates the disadvantages that occur with dispersion in the
matrix, i.e., the tendency to form agglomerates and the uneven dispersion of the nanofiller
between layers and along fabrics in the infusion method. In addition, APS facilitated and
affected the uniform saturation of the glass fabric and improved interfacial adhesion [43].
Vigneshwaran et al. investigated the mechanical properties of epoxy–glass composites
upon the addition of 0.2, 0.6, and 1 wt% graphene nanoplatelets (GnP). One-half of the
nanofiller was dispersed in the matrix, while the other half was used to coat the glass mat.
Compared with the reference sample, the laminate containing 1 wt% GnP had twice the
tensile strength and a 70% higher Young’s modulus. In addition, there was a 45% increase
in impact strength and a 38% increase in energy absorption. The composite also exhibited
87% less surface damage area. Impregnation of the mat with GnP improved the adhesion
of the fibers to the matrix [44].
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Table 2. Summary of publications in which the epoxy matrix was modified with nanofillers.

Ref. Reinforcement
Fiber Type Filler Content Effect

[40]
Tate et al.

Glass fiber

SiO2 6, 7, and 8 wt%

Increase in tensile, flexural, and
interlaminar shear strengths

Increase in modulus and
elongation

[41]
Ravi et al.

PMMA 10 vol%
Increase in tensile strength,

flexural strength, and modulus
Improved thermal stability and

abrasion resistanceSiC 1 vol%

[42]
Rahmat et al. BNNT 1 wt% Increase in flexural, shear, and

impact strengths

[44]
Vigneshwaran et al. GnP

0.2, 0.6, and 1 wt% (of
which 50% was used to

impregnate the fiber)

Increase in impact energy
absorption, tensile strength, and

modulus
Reduction in surface damage area

Improved adhesion between
components

[45]
Tareq et al.

Carbon fiber

Nanoclay 2 wt%

Increase in flexural strength and
modulus when added separately

Higher stiffness and GnP with the
best thermomechanical stability in

samples with nanoclayGnP 0.1 wt%

[46]
Moghimi et al. MWCNTSiO2

0.2 and.7 wt%
Increase in tensile strength and

Young’s modulus
Reduction in the abrasion

coefficient Improved interfacial
adhesion

0.7 and 0.2 wt%

0.45 and 0.45 wt%

[47]
Khan et al.

N-CFRP Improvement of tensile and
flexural strength and modulus by

modified graphite
G-CFRP

E-CFRP

[48]
Suresha et al.

Aramid fiber

MWCNT 0.15, 0.3, and 0.5 wt%
Increase in tensile strength,
flexural strength, modulus,

hardness, and impact strength

[49]
Dharmavarapu and

Reddy

SiO2 modified with
APTMS 0.5, 1, and 2 vol%

Improved tensile strength, flexural
strength, impact strength, and

hardness Increase in impact
energy absorption

Nasser et al. investigated the interfacial shear strength (IFSS) of epoxy composites
reinforced with glass fibers coated with ZnO nanoparticles (NPs) and nanowires (NWs).
The fibers were functionalized with an oxidizing mixture (sulfuric acid and perhydrol) to
increase adhesion and enhance coverage. The wall strength at a quasi-static strain rate
increased for ZnO NWs and NPs by 96% and 44%, respectively. At medium and high
strain rates, IFSS saps of 29% and 68% were observed for ZnO NWs, respectively, and
27% and 22% for ZnO NPs, respectively. This result indicates the viscoelastic nature of the
material, which can compensate for impact energy. This effect also reduces the probability
of delamination or cracking of the reinforcement [29].

2.1.2. Carbon-Fiber-Reinforced Polymer Composites

Carbon-fiber-reinforced polymer composites are extremely strong, lightweight, rigid
structural materials resistant to high temperatures, friction, and corrosion. Because of
these unique properties, they are used at a large scale in aviation, the automotive industry
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(machine skeletons and shells), armaments (ballistic shielding), and electronics (shielding
enclosures) [25,50–55]. Tareq et al. investigated the effect of adding nanoclay and graphene
to the carbon-fabric-reinforced composite matrix. Laminates containing 2 wt% nanoclay
had the highest stiffness and the highest increase (28%) in the flexural modulus. Samples
with graphite had the highest strength. The addition of 0.1 wt% of this filler resulted in a
21% increase in flexural strength. Compared with these samples, the composite containing
both nanoadditives showed lower modulus and flexural strength. This was due to the
dispersion time being too short [45]. Moghimi et al. also investigated the synergistic
effect of reinforcing epoxy–carbon composites with two types of nanofillers. They used
multiwalled carbon nanotubes (MWCNTs) and nanosilica in three ratios: 0.2%/0.7%,
0.7%/0.2%, and 0.45%/0.45% by weight. The sample containing equal amounts of both
nanoadditives had the best mechanical and tribological properties. The tensile strength
and Young’s modulus increased by 25.2% and 31%, respectively; the coefficient of friction
decreased by 88%; and the wear resistance increased by 98%. SEM analysis showed good
dispersion of nanofillers in the matrix, which improved interfacial adhesion [46]. Khan
et al. carried out the functionalization of graphite nanoparticles in two ways: attachment
of (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and attachment of epichlorohydrin
(EP). In addition to a reference sample, they fabricated graphite-reinforced epoxy–carbon
composites: unmodified (N-CFRP), GPTMS-modified (G-CFRP), and EP (E-CFRP). The
best mechanical properties were found for G-CFRP. The modulus and flexural strength
increased by 34% and 36% for G-CFRP, by 16% and 16% for E-CFRP, and by 10% and 3%
for N-CFRP, respectively. The tensile strength and Young’s modulus increased by 36% and
29% for G-CFRP and by 14% and 7% for N-CFRP, respectively. For E-CFRP, the tensile
strength increased by 20% and Young’s modulus decreased by less than 10% [47]. Wang
and Cai performed carbon fabric impregnation using a spray method (Table 3). The spray
solution was a suspension of graphene nanoplatelets in an epoxy–acetone mixture. They
prepared four laminates containing 0%, 0.1%, 0.3%, and 0.5% by weight of graphene. The
uniform coating of the fabrics with the nanofiller increased the interfacial bonding and
fracture toughness. The flexural modulus increased with the amount of filler. The sample
containing 0.3% GnP showed the highest increase in flexural strength (27.2%) and the ILSS
(24.5%) [56]. Badakhsh et al. performed a two-step carbon nanotube (CNT) impregnation of
carbon fabrics. First, the cleaned fabrics were coated with nickel using electroplating. Then,
CNTs were applied to the fabrics by gas phase chemical deposition. Nickel catalyzed the
deposition and growth of CNTs. The highest efficiency was achieved at 15 wt% of nickel. In
addition, the researchers developed a composite consisting of a carbon fabric coated with
only a nickel layer and an epoxy resin in which CNTs were dispersed. For the composite
reinforced with the Ni-CNT-modified carbon fabric, the flexural strength increased by 52.9%
compared to the reference sample. The ductility index was 40% lower than that of the
composite with dispersed CNTs [57]. Nasser et al. also deposited ZnO nanoparticles and
wires on carbon fibers that were pre-functionalized with 70% nitric acid. The composites
containing ZnO NWs showed a decrease of 62% and 73% in the IFSS, respectively, at
medium and high strain rates; for ZnO NPs, the decrease was 40% and 58%, respectively.
The results show an increase in the ballistic performance of composites reinforced with
impregnated fibers [58]. Selver investigated the strength of epoxy–carbon and epoxy–glass
composites reinforced with a shear thickening fluid. The STF was prepared by dispersing
(10%, 15%, and 20% by weight) nanosilica in PEG. Glass- and carbon-fabric-reinforced
composites containing 15 wt% of silica showed a 12% and 10% increase in tensile strength,
respectively, and a 24% increase in Young’s modulus. Energy absorption also increased (up
to 27%). However, the flexural strength of these composites deteriorated compared to the
reference sample [59].
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Table 3. Summary of publications in which the reinforcement was modified with nanofillers.

Ref. Reinforcement Fiber Type Filler/Impregnator Effect

[43]
Zeng et al.

Glass fiber

MWCNTs modified with APS
Increase in tensile strength, flexural

strength, and modulus
Improved ILSS and interfacial adhesion

[29]
Nasser et al.

ZnO nanoparticles functionalized
by piranha solution

Decrease in IFSS at medium and high
and increase at low strain rates
Improved interfacial adhesionZnO nanowires functionalized by

piranha solution

[56]
Wang and Cai

Carbon fiber

GnP
Increase in flexural strength,

interlaminar shear, flexural modulus,
and thermal conductivity

[57]
Badakhsh et al.

Nickel (galvanization): phase I
CNT (gas-phase deposition):

phase II

Improved flexural strength
Decrease in electrical resistance and

ductility index

[58]
Nasser et al.

ZnO nanoparticles functionalized
by 70% nitric acid Decrease in IFSS at medium and high

strain ratesZnO nanowires functionalized by
70% nitric acid

[60]
Jia et al.

Aramid fiber

Grafting of APS by γ-ray and
chemical treatment

Increase in fiber surface roughness and
IFSS

[30]
Malakooti et al. ZnO nanowires Increase in Young’s modulus, tensile

strength, and impact strength

[61]
Zhang and Teng

PDOPA functionalization and
ZnO nanowire coating

Increase in UV resistance fiber surface
roughness

Improved IFSS and interfacial adhesion

2.1.3. p-Aramid-Fiber-Reinforced Composites

In the arms industry, p-aramid fibers, known commercially as Kevlar (DuPont) or
Twaron (Teijin), are the main reinforcement of polymer composites used for helmets, bullet-
proof vests, body armor, and ballistic shields [4,19,62,63]. Suresha et al. reinforced epoxy–
aramid composites by dispersing them in a matrix of 0.15, 0.3, and 0.5 wt% MWCNTs. The
addition of the filler improved the interfacial adhesion. The sample containing 0.3 wt%
MWCNTs had the best mechanical properties. The tensile strength and Young’s modulus
increased by 46% and 22.1%, while the flexural strength and modulus increased by 74% and
54%, respectively. Additionally, impact strength improved (31.2%) [48]. Dharmavarapu and
Reddy investigated the effect of adding (0.5%, 1%, and 2% by volume) modified nanosilica
on the mechanical properties of epoxy–aramid composites. The silica was surface-treated
with 3-aminopropyltrimethoxysilane (APTMS) by acid hydrolysis. The composite con-
taining 1 vol% of nanofiller had the highest mechanical strength. The tensile strength,
flexural strength, impact strength, and hardness increased by 27.5%, 17%, 67%, and 14%,
respectively, compared to the reference sample. The addition of 1 vol% of modified nanosil-
ica improved the energy absorption from 6.5 to 8.2 J [49]. APTMS can also be used to
modify fibers. Jia et al. performed multistep grafting of 3-aminopropyltrimethoxysilane
onto an aramid surface using γ-radiation, 1, 4-dichlorobutane, and sodium hydroxide. The
modified fiber surface exhibited increased roughness. APTMS formed chemical bonds
with the epoxy resin, resulting in improved interfacial properties. The IFSS of the laminate
containing the modified aramid reinforcement increased by 51.03% compared to the ref-
erence sample [60]. Malakooti et al. subjected composites reinforced with aramid fabric
impregnated with ZnO nanowires to ballistic and strength tests. The tensile strength and
Young’s modulus of the composites increased by 13.2% and 8.8%, respectively, and the
impact resistance increased by 66%. The presence of ZnO nanowires on the fiber surface
increased the friction between the yarns and reduced their mobility in the fabric [30].
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Aramid fibers show sensitivity to UV radiation. Zhang and Teng showed that after 168 h of
UV exposure, epoxy composites reinforced with modified and impregnated aramid fibers
showed 97.2% of the original tensile strength value. The fibers were functionalized with
poly-L-3, 4-dihydroxyphenylalanine (PDOPA) and coated with ZnO. PDOPA facilitated the
grafting and growth of ZnO nanowires and, as a whole, increased the surface roughness
and improved the matrix–reinforcement adhesion [61]. Liu and Ávila studied the effect
of the presence of an STF on composites reinforced with aramid fabrics. STF-reinforced
composites based on silica and CaCO3 (75% and 25%, respectively, by weight) prepared
by Ávila showed the best results in ballistic tests. The work required to stop bullets was
40% less compared to the reference sample. The researchers showed that the presence
of an STF increased the friction between the yarns and led to deformation of the bullets.
Additionally, the STF allowed the reduction of reinforcement layers from 32 to 19, while
maintaining the same ballistic properties of the composite [64] (Table 4). The laminates
made by Liu additionally reinforced with an STF based on silica and CNTs had more than
50% higher puncture resistance, absorbed 65% more energy, and thus, could withstand
more impact force [65]. Dixit showed that STF impregnation increases energy absorption
of the reinforced fabric by 10% more compared to pure Kevlar fabric. Additional coating of
ZnO fibers increased the absorption by 36% compared to the control sample [66]. Zhao et al.
focused on the impregnation of aramid reinforcement using an STG. They made 5-, 10-, 15-,
and 20-layer laminates reinforced with an STG, and corresponding reference samples. In
the ballistic tests, the impact force recorded by the detector decreased (from 805 to 223 N) as
the layers of the STG-reinforced composite increased (from 5 to 20). For the reference sam-
ples, the impact force decreased from 1125 to 460 N. Additionally, composites containing an
STG with carbon black absorbed 21.6% more impact energy. The addition of STG allowed
for increased friction between the fibers, enabled the composites to absorb more energy,
and improved their ballistic properties [28,38]. He et al. demonstrated synergies between
STF and STG used to impregnate Kevlar fabric. Compared to composites impregnated
with an STF alone, composites impregnated with a hybrid showed increased mechanical
strength, elastic modulus, and impact resistance. Reducing fabric layers improved the
energy dissipation mechanism and reduced weight and thickness. The addition of STG
stabilized the protective coating of the STF, which increased the friction between fibers and
their strength [37].

2.2. Hybridization of Fiber Reinforcement of Polymer Composites

Due to (fibrous) reinforcement, two types of hybrid composites are distinguished,
layered (interply) and interwoven (intraply), which are shown in Figure 5.The first type,
interply, consists of stacked layers of individual reinforcements in the form of fabrics or
mats (Figure 5A).

In intraply, each reinforcement, in the form of a fabric or a mat, consists of several
types of fibers, e.g., carbon and glass (Figure 5B) [67–69]. To obtain hybrid composites with
the best possible mechanical strength, it is necessary to select appropriate fiber types. It
is assumed that one is an expensive fiber with high Young’s modulus, and the other is a
cheaper fiber with low Young’s modulus. The next step is to determine the order/sequence
of their arrangement. The first layers are of a hard shear-resistant material that absorbs the
impact energy. The middle and back layers should consist of tensile-resistant fibers. They
accept and distribute the remaining energy. Usually, the top layers consist of fiberglass or
p-aramid materials [70]. Randjbaran et al. showed that using glass fabric instead of Kevlar
fabric in the first layer enables higher energy absorption [71]. The middle part is mostly
carbon fiber reinforcement [72–74]. As the volume percentage of carbon reinforcement
increases, the flexural and tensile strengths of the composite increase [75]. Carbon material
is not recommended for use as the top layers. As mentioned earlier, glass reinforcement is
preferred at the front, while Kevlar is used for the back layers [71,74,76].
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Table 4. Summary of publications that used reinforcement impregnated with an STF/STG.

Ref. Reinforcement
Fiber Type

Impregnation
Type

Filler in
STF/STG Filler Content Effect

[59]
Selver

Glass fiber

STF

SiO2 10, 15, and 20 wt%

Improvement in tensile
strength, Young’s modulus,

and energy absorption for 10
and 15 wt%

Decrease in flexural strength
and modulus for all samplesCarbon fiber

[64]
Ávila et al.

Aramid fiber

SiO2

0, 25, 50, 75, and
100 wt% of the
filler mixture Increase in the impact energy

absorption and friction
between fibers

CaCO3

0, 25, 50, 75, and
100 wt% of the
filler mixture

[65]
Liu et al.

CNT
Increase in resistance to fiber

pull-out strength and
puncture

Increase in energy absorptionSiO2 71 wt%

[66]
Dixit et al.

SiO2 65 wt% Increase in fiber pull-out
strength and impact energy

absorptionImpregnation of
ZnO nanowires

[38]
Zhao et al.

STG

Increase in impact energy
absorption and friction

between fibers

[28]
Zhao et al. Carbon black

Increase in impact energy
absorption

Mechanical–electrical
coupling in the form of a
change in resistivity as a

function of impact energy, due
to addition of carbon black

[36]
He et al. STF + STG SiO2 (STF)

Increase in impact strength
and modulus

Improved energy dissipation
mechanism

Reduction in composite
weight and thickness

STF stabilization and increase
in traction between fibers, due

to addition of STG

2.2.1. Influence of Ply Orientation on the Performance Properties of Hybrid
Polymer Composites

The arrangement of reinforcement (fabrics) layers at different angles plays an impor-
tant role in absorbing impact energy. In the case of unidirectional fabrics, during impact,
the energy is distributed between the fibers along the 0◦ axis. When we apply another
layer perpendicular to the first layer, the energy is distributed along the 0◦ and 90◦ axes.
The trace after the impact resembles a quadrilateral pyramid. By adding more layers at
different angles, the whole gain becomes increasingly isotropic.

The energy is distributed over increasing axes, and the post-impact shape is similar
to a cone [3,77,78]. Figure 6 illustrates the four ways of orienting reinforcement layers.
An increase is observed in the isotropy of the gain with the addition of another layer
and changes in the orientation angle. The impact energy spreads in 10 directions for the
[0/22.5/45/67.5/90] system and only in 4 directions for the [0/0/0/0] system. As previ-
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ously mentioned, this translates into the composite’s ability to absorb energy. Researchers
have shown that layer orientation allows the absorption of approximately 11% to 20%
more impact energy. When orienting layers, it is recommended to keep the angles between
the axes equal and as large as possible. For composites consisting of two, three, or four
layers of woven cloth, the angles (0◦, 45◦), (0◦, 30◦, 60◦), and (0◦, 22.5◦, 45◦, 67.5◦) are
used sequentially. In subsequent layers, the analogy is followed or the given sequence is
repeated several times [4,78–81].
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2.2.2. Effect of 2D and 3D Structure on Mechanical Properties of Hybrid
Polymer Composites

Two-dimensional fabrics are commonly used as reinforcement for composites. Their
properties depend not only on the fiber from which they are made but also on the weave.
There are three basic weaves: linen, twill, and satin. Linen is characterized by symmetry,
durability, and a tendency to fold. Threads of weft and warp pass alternately above and
below each other. Twill is strong, smooth, and well-shaped. Each weft thread passes under
and over the warp thread(s), creating a characteristic twill pattern. In satin weave, the
warp threads are raised above the weft threads, providing the fabric with a smooth surface
and easy draping ability 0 [4,58,82]. Among the aforementioned types, twill exhibits higher
flexural, tensile, and shear strengths [80,83,84]. Cavallaro showed that the use and proper
arrangement of fabrics with different weaves (linen and twill as the outer layer and satin
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as the inner layer) can increase their resistance and energy absorption capacity compared
to laminates containing fabrics of one type [85].

In contrast to 2D fabrics, three-dimensional (3D) fabrics have an additional thread
(binding) in the z direction, which is the thickness. They are characterized by stiffness and
strength in x, y, and z directions; better structural integrity; and stress transfer between
layers. Compared to 2D-reinforced composites, 3D-reinforced composites exhibit higher
impact strength, flexural strength, compressive strength, and interlaminar fracture. Upon
impact, they absorb and dissipate twice as much energy. Unlike 2D fabrics, the damage
area is small and delamination is practically absent [3,83,86,87]. Among 3D fabrics, several
types of structures are distinguished, of which orthogonal ones are the most popular and
most commonly used as reinforcement in composites with increased mechanical strength.
Due to their simple microstructure, high stiffness, strength in all directions, low cost, and
efficient production, 3D fabrics are readily used in the aviation, automotive, and, especially,
arms industries, where 2D/3D fabric hybrids are used as reinforcement for bulletproof
vests or body armor [58,82,88].

3. Conclusions

Fiber-reinforced polymer composites are being increasingly used in the defense in-
dustry. However, for protective applications, in addition to high specific strength and
stiffness, polymer composites are also required to have a high energy absorption capacity.
Furthermore, the properties of polymeric composite materials are still clearly different
from those of metallic and ceramic materials used in industry. Therefore, the first and most
important stage of designing composite materials for the arms industry is appropriate
selection of the matrix and reinforcement to obtain the required mechanism of action. The
literature review presented in this article on improvements in the properties of polymeric
composites provides information about their application in the arms industry. The selection
of specific fillers and other modifiers and their introduction into polymer composites make
it possible to change their properties with respect to the predicted working conditions. In
addition to nanofillers, various types of fibers (glass, carbon, and aramid) and the fabrics
obtained from them, with different weaves, orientations, and impregnation (STF and STG),
are used in polymer composites. Their use mainly improves the composites’ strength
against mechanical damage by enhancing energy absorption, thus reducing the area of
damage. The multiple ways to improve the mechanical strength of composites and the
possibility of their simultaneous use give scientists a wide spectrum of research, as well
as an opportunity to develop new types of hybrid composites with unique properties.
However, the replacement of metal alloys and ceramics by polymeric composite materials,
to ensure economy of production, usually requires a complete change in the concept of
product design. Therefore, a very significant challenge associated with hybrid composites
is their technological and application capabilities. In addition, weight and thickness should
be considered when hybrid fiber composites are designed. Evaluation of the literature
data showed that research on impact-resistant polymer composites should be focused on
the development of hybrid systems, i.e., combining matrix modifications (via STF) and
an appropriate fiber reinforcement structure. Among others, this ability to modify makes
them unique materials for the 21st century.

Author Contributions: Conceptualization, K.C., R.O., and M.O.; methodology, K.C., R.O., K.B., G.B.,
and A.M.; validation, M.O., G.B., and A.M.; formal analysis, K.C., D.K., and K.B.; investigation, K.C.,
D.K., and K.B.; data curation, K.C., R.O., D.K., and K.B.; writing—original draft preparation, K.C.,
R.O., and D.K.; writing—review and editing, R.O., K.B., M.O., G.B., and A.M.; visualization, K.C. and
R.O.; supervision, R.O., M.O., G.B., and A.M.; funding acquisition, M.O., G.B., and A.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Materials 2021, 14, 3047 14 of 17

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barbero, E.J. Introduction to Composite Materials Design; CRC Press: Boca Raton, FL, USA, 2017; ISBN 1-315-29648-9.
2. Borchert, M.; Bruns, T.; Hohendahl, S. Carbon Fiber Reinforced Polymer—The Fabric of the Future? In Proceedings of the

Students International Scientific and Practical Conference. Human. Environ. Technol. 2017, 54–61. [CrossRef]
3. Mawkhlieng, U.; Majumdar, A.; Laha, A. A Review of Fibrous Materials for Soft Body Armour Applications. RSC Adv. 2020, 10,

1066–1086. [CrossRef]
4. Abtew, M.A.; Boussu, F.; Bruniaux, P.; Loghin, C.; Cristian, I. Ballistic Impact Mechanisms—A Review on Textiles and Fibre-

Reinforced Composites Impact Responses. Compos. Struct. 2019, 223, 110966. [CrossRef]
5. Avci, H.; Hassanïn, A.; Hamouda, T.; Kiliç, A. High Performance Fibers: A Review on Current State of Art and Future Challenges.
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2018, 48–49, 34–48. (In Polish)
11. Płonka, B.; Remsak, K.; Rajda, M.; Wilczewski, J. Stopy Metali Lekkich w Wielowarstwowych Pancerzach Pasywnych Dla
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