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Abstract

In Drosophila imaginal epithelia, cells mutant for the endocytic neoplastic tumor suppressor gene vps25 stimulate nearby
untransformed cells to express Drosophila Inhibitor-of-Apoptosis-Protein-1 (DIAP-1), conferring resistance to apoptosis non-
cell autonomously. Here, we show that the non-cell autonomous induction of DIAP-1 is mediated by Yorkie, the conserved
downstream effector of Hippo signaling. The non-cell autonomous induction of Yorkie is due to Notch signaling from vps25
mutant cells. Moreover, activated Notch in normal cells is sufficient to induce non-cell autonomous Yorkie activity in wing
imaginal discs. Our data identify a novel mechanism by which Notch promotes cell survival non-cell autonomously and by
which neoplastic tumor cells generate a supportive microenvironment for tumor growth.
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Introduction

Imbalances in the cell-cell communication that coordinates cell

proliferation, cell differentiation, and cell death can trigger cancer

development. Most epithelial cancers arise from single cells that

have acquired multiple oncogenic lesions while initially being

surrounded by normal cells [1–3]. Cell-cell communication

between oncogenic cells and surrounding normal cells can create

a context that promotes tumor growth and progression.

In Drosophila, the genes avalanche, Rab5, vacuolar protein sorting 25

(vps25) and tumor susceptibility gene 101 (tsg101, also known as vps23

and erupted) are classified as endocytic neoplastic tumor suppressor

genes (nTSGs) because homozygous mutant larvae develop

multilayered and invasive tumors with neoplastic characteristics

[4–9]. Tsg101 and Vps25 are components of the Endosomal

Sorting Complex Required for Transport-I (ESCRT-I) and

ESCRT-II complexes, respectively, and are necessary to regulate

endocytic trafficking of ubiquitylated proteins into internal cellular

compartments [10–12]. Mutations of tsg101 or vps25 cause an

endosomal sorting defect resulting in cell-autonomous activation of

Notch, Jak/Stat and JNK signaling, loss of apicobasal polarity,

and inability to enter a cellular differentiation program [5–8].

Nevertheless, when mutant cells of these nTSGs are surrounded

by wild-type cells, they undergo JNK-mediated cell death [6,13–

15], and only if cell death is blocked, they unleash their tumor-

promoting capacity [6,7].

Unexpectedly, although mutant cells of these nTSGs are highly

apoptotic, they are able to non-cell autonomously promote

overgrowth of adjacent wild-type tissue before they die. This

overgrowth appears to result, at least in part, from altered

trafficking of the Notch receptor [5–8]. Notch is trapped in

abnormal early endsosomes, leading to increased Notch activity as

assessed by transcriptional reporters of Notch signaling. Ectopic

Notch activation induces increased expression of the secreted

cytokine Unpaired (Upd) which stimulates tissue growth in

surrounding wild-type cells through activation of the Jak/STAT

pathway [5,7,8].

In addition to non-cell autonomous overgrowth, our previous

studies have shown that vps25 oncogenic cells can promote non-

cell autonomous resistance to apoptotic signals in neighboring cells

[6]. This is mediated via non-cell autonomous accumulation of

DIAP-1, a potent inhibitor of apoptotic caspases [6,14]. However,

the non-cell autonomous accumulation of DIAP-1 in vps25

mosaics is not mediated via Upd [6] and has remained unknown.

The Hippo/Warts/Yorkie (Hpo/Wts/Yki) pathway is known to

control diap1 expression (reviewed in [16–18]). The core compo-

nents Hpo and Wts negatively regulate the Yki transcription factor

through phosphorylation by Wts [16–18]. Once Hpo and Wts are

inactive, Yki is dephosphorylated and induces target genes such as

diap1 and expanded (ex). Therefore, we considered the Hpo/Wts/

Yki pathway as candidate for non-cell autonomous diap1

expression in vps25 mosaics.
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Here, we show that activation of Notch, but not of JNK or

JAK/STAT, in vps25 mutant cells can induce non-cell autono-

mous protection from apoptosis by inducing expression of diap1.

This increase in DIAP-1 is mediated at the transcriptional level by

Yki activity. Additionally, Notch signaling is both necessary and

sufficient to induce non-cell autonomous activation of Yki.

Therefore, this study identifies a novel mechanism by which

Notch signaling can affect growth and cell survival non-cell

autonomously in tissues mosaic for mutations in endocytic nTSGs

and in general.

Results and Discussion

Imaginal Cells Mutant for vps25 Induce Non-cell
Autonomous Yki Activity

In Drosophila imaginal epithelia, clones of cells mutant for the

endocytic nTSG vps25 can induce neighboring wild-type cells to

express DIAP-1 protein [6]. To identify the mechanism by which

vps25 mutant cells regulate DIAP-1 levels in surrounding normal

tissue, we first addressed if the accumulation of DIAP-1 is a

transcriptional response. Using a diap1-lacZ reporter, an enhancer-

trap insertion that monitors diap1 transcription [19], we found

increased b-Gal labeling surrounding vps25 mutant cells suggesting

a transcriptional response (Figure 1A). Interestingly, the non-cell

autonomous expression of diap1-lacZ is position-dependent and

was not observed around every clone. Specifically, in the eye disc

this non-cell autonomous effect was more pronounced by vps25

clones located anterior to the morphogenetic furrow (MF) as

compared to posterior to the MF. In the wing disc, vps25 clones

located in the hinge and notum did trigger non-cell autonomous

up-regulation of diap1-lacZ, while clones in the center of the wing

pouch did not (see also below).

The non-cell autonomous up-regulation of diap1-lacZ in vps25

mosaics suggests a transcriptional response. The Hpo/Wts/Yki

pathway is known to transcriptionally regulate diap1 [20–24].

Therefore, we tested for an involvement of the Hpo/Wts/Yki

pathway for the non-cell autonomous up-regulation of diap1 by

vps25 mutant cells by assaying the expression of a diap1-4.3GFP

reporter transgene which contains a minimal enhancer responding

to Yki [25]. Consistently, we found that diap1-4.3GFP expression

was increased non-cell autonomously surrounding clones of vps25

mutant cells, shown in Figure 1B for the notum of a wing disc,

providing evidence that non-cell autonomous induction of diap1

expression is mediated via Yki activation.

To assay specifically for Yki activity in vps25 mosaic discs, we

examined the expression of ex-lacZ, a convenient reporter of Yki

activity [26,27]. Compared to controls (Figure 1C), we found

that ex-lacZ was increased non-cell autonomously surrounding

patches of vps25 mutant cells in imaginal discs (Figure 1D).

Again, a position-dependence of vps25 clones was noted,

restricting the non-cell autonomous up-regulation of ex-lacZ to

clones in the hinge, some lateral areas of the pouch and notum

region of the wing disc, similar to diap1-lacZ. It has recently been

reported that RNAi knockdown of tsg101 and vps25 can lead to

autonomous Yki activity via JNK signaling [28]. Consistently, we

observed autonomous and non-cell autonomous induction of ex-

lacZ when vps25 was knocked down using RNAi (Figure S1),

though autonomous induction of ex-lacZ was rarely seen in null

vps25 clones, likely reflecting a difference between hypomorphic

and null conditions. Importantly, regardless of the strength of the

vps25 mutation, a non-cell autonomous induction of ex-lacZ was

consistently observed.

To confirm that the non-cell autonomous increase of ex-lacZ in

vps25 mosaics is indeed due to Yki activity, we genetically removed

one gene dose of a positive regulator of Yki activity, Drosophila

Ajuba Lim protein (djub), thereby reducing Yki activity [29].

Consistently, heterozygosity of djub dominantly suppressed the

non-cell autonomous increase of ex-lacZ seen in vps25 mosaics

(Figure 1E). Taken together, these data suggest that Yki activity is

non-cell autonomously increased in wild-type cells adjacent to

vps25 mutant cells, and this increased activity triggers diap1

transcription promoting non-cell autonomous resistance to apop-

tosis.

Blocking Notch Signaling in vps25 Mutant Cells
Suppresses Non-cell Autonomous Induction of
Yorkie Activity

The signaling events that occur between oncogenic and normal

cells in an epithelium are largely unknown. In order to determine

which signaling pathways could mediate the non-cell autonomous

activation of Yki signaling in vps25 mosaics, we inhibited pathways

known to be activated within vps25 mutant cells in wing and eye

imaginal discs and assayed for effects on non-cell autonomous

induction of the ex-lacZ reporter. JNK signaling is active in vps25

mutant cells (Figure S2A) and mediates autonomous apoptosis of

vps25 mutant cells [6,15]. However, autonomous inhibition of the

JNK pathway using RNAi to the Drosophila JNK ortholog basket

(bsk), expression of a dominant negative form of Bsk, or

overexpression of an inhibitor of the JNK pathway, puckered (puc),

did not block non-cell autonomous ex-lacZ in vps25 mosaics

(Figure 2A and E). In contrast, due to inhibition of JNK-induced

apoptosis under these conditions, vps25 mutant clones are larger

and the non-cell autonomous induction of ex-lacZ is even more

clearly visible. These observations suggest that JNK activation in

vps25 clones does not play a role for non-cell autonomous

activation of Yki signaling.

Jak/STAT signaling is thought to mediate non-cell autonomous

overgrowth surrounding vps25 mutant cells [6–8]. However, we

also detect strong autonomous labeling in vps25 clones using the

phosphoSTAT antibody that detects phosphorylated and thus

activated STAT92 protein (Figure S2B). Therefore, we tested for

an autonomous involvement of Jak/STAT signaling for the non-

cell autonomous control of ex-lacZ in vps25 mosaics. However,

autonomous reduction of Jak/STAT signaling either by RNAi to

stat92E, which encodes the transcription factor in the Jak/STAT

pathway, or expression of a dominant-negative form of Domeless

(domeDN), the receptor of the pathway, did not inhibit the non-cell

autonomous activation of Yki signaling in vps25 mosaics (Figure 2B

and E).

Finally, Notch signaling is known to be ectopically activated in

vps25 mutant cells [6–8] as verified by strong up-regulation of the

Notch signaling reporter Gbe-Su(H)-lacZ (Figure S2C). In contrast

to Jak/STAT and JNK signaling, autonomous inhibition of Notch

signaling in vps25 clones by expression of a dominant negative

form of Notch in vps25 clones lead to suppression of non-cell

autonomous expression of ex-lacZ (Figure 2C). Similarly, Notch

RNAi caused a dramatic decrease in the number of clones that

displayed non-cell autonomous induction of ex-lacZ in vps25

mosaics (summarized in Figure 2E). This was also true when

RNAi to presenilin, a positive regulator of Notch signaling, was

expressed in vps25 mutant cells (Figure 2E). Interestingly, the

activation of Notch and induction of ex-lacZ in vps25 mosaics

appear to be ligand independent, as RNAi to the Notch ligand

Delta had no effect on the penetrance of non-cell autonomous ex-

lacZ in vps25 mosaic wing discs (Figure 2D and E) although knock-

down was effective because Delta protein is lost in Delta-RNAi

clones (data not shown). This ligand-independent control of Notch

activation in vps25 mutants is consistent with previous findings

Notch-Dependent Regulation of Yorkie
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obtained in S2 cultured cells [7]. Taken together, these data

suggest that ligand-independent Notch signaling from within vps25

neoplastic cells induces Yki activity in adjacent, wild-type cells.

Notch is Sufficient to Induce Non-cell Autonomous
Yorkie Activity

Next, we sought to determine if autonomous hyperactivation of

JNK, Jak/STAT or Notch signaling in otherwise wild-type cells is

sufficient to induce non-cell autonomous expression of ex-lacZ.

First, mosaic overexpression of a constitutively active form of

hemipterous (hepCA), the Drosophila JNKK ortholog, yielded very small

clones due to JNK-induced apoptosis. However, the few clones

that did survive showed no apparent effect on ex-lacZ (Figure 3A

and F). Second, we expressed the ligands Upd and Upd2 to

ectopically activate Jak/STAT signaling and saw no effect on ex-

lacZ (Figure 3B and F). These results suggest that the JNK and

Jak/STAT signaling pathways are not sufficient to induce non-cell

autonomous Yki activity.

Finally, we tested if activation of Notch is sufficient to induce

non-cell autonomous expression of ex-lacZ and thus activity of Yki.

Indeed, expression of the activated form of Notch, the intracellular

domain (NICD), is sufficient to induce non-cell autonomous

expression of ex-lacZ in wing imaginal discs (Figure 3C and F).

Similar to diap1-lacZ and ex-lacZ expression in vps25 mosaics, we

noted a position-dependence of NICD-expressing clones for ex-lacZ

expression. To further characterize the position-dependence, we

expressed NICD using dpp-Gal4 along the anterioposterior axis of

the wing disc. Consistently, strong non-cell autonomous ex-lacZ

expression is observed in the hinge region (see arrows in Figure 3D

and D’). In contrast, expression of NICD in the center of the wing

pouch does not cause non-cell autonomous ex-lacZ expression.

Finally, NICD expression was also able to induce non-cell

autonomous accumulation of DIAP-1 (Figure 3E), suggesting that

Notch can control cell survival non-cell autonomously.

In summary, our study identifies a novel role of Notch signaling

for non-cell autonomous control of apoptosis via induction of Yki

activity in neighboring cells. It has previously been shown that

Notch signaling controls cell proliferation both autonomously and

non-cell autonomously in the developing eye [30]. The non-cell

autonomous component of proliferation control was attributed to

Notch-dependent activation of Jak/Stat signaling [31] although

that recently came into question [32]. Nevertheless, Jak/Stat

activation is not sufficient to mediate the effect of Notch on non-

cell autonomous control of apoptosis [6] (Figure 3B,E). Here, we

identify the Hpo/Wts/Yki pathway as a target of Notch signaling

for the non-cell autonomous control of apoptosis both in eye and

wing imaginal discs. Because the Hpo/Wts/Yki pathway also

controls proliferation, it is likely that Notch promotes non-cell

autonomous proliferation through both Jak/Stat and Hpo/Wts/

Yki activities.

It is also interesting to note that this non-autonomous control of

the Hpo/Wts/Yki pathway by Notch occurs in a position-

dependent manner. For example, vps25 mutant clones or NICD-

expressing clones located in the hinge and notum of wing discs

triggered non-cell autonomous up-regulation of ex-lacZ, while

clones in the wing pouch did not (Figure 1D, 3D). Additionally,

vps25 mutant clones located anterior to the morphogenetic furrow

triggered non-cell autonomous up-regulation of ex-lacZ, while

clones in the posterior of the eye disc did not. The reason for this

position-dependence is unknown. However, the regions which do

Figure 1. vps25 mutant cells can induce non-cell autonomous Yorkie activity. Shown are mosaic imaginal discs. Control and vps25 mutant
clones are marked in green. diap1-lacZ and ex-lacZ are detected by b-Gal labeling (red or grayscale). Arrows point to representative examples in the
panels. (A,A’) vps25 mutant cells (green) induce non-cell autonomous diap1-lacZ expression (red and gray) in imaginal discs. (B,B’) vps25 mutant cells
(green) induce non-cell autonomous Diap1-4.3GFP (red and grayscale). Please note that GFP is presented in red to match the color code in the other
panels. vps25 mutant clones were identified by ubiquitylation-specific FK1/2 labeling which is known to be increased in vps25 mutant clones [14]
(606magnification). (C,C’) ex-lacZ expression (red and grayscale) in wild-type (wt) control mosaic wing discs. (D,D’) vps25 mutant cells (green) induce
non-cell autonomous ex-lacZ in 71% of wing discs analyzed (n = 28) (red and grayscale). (E,E’) The non-cell autonomous induction of ex-lacZ (red and
grayscale) by vps25 mutant clones (green) can be suppressed by removing one copy of djub (only 29% of wing discs still showed non-cell
autonomous ex-lacZ (n = 28)). Genotypes: (A) yw hs-FLP; FRT42D Tub-Gal80/FRT42D vps25N55 y+; Tub-Gal4, UAS-CD8-GFP/thj5c8 (B) yw hs-FLP; FRT42D
piMyc/FRT42D vps25N55 y+; Diap1-4.3GFP/+ (C) yw hs-FLP; FRT42D Tub-Gal80/ex697 FRT42D y+; Tub-Gal4, UAS-CD8-GFP/+ (D) yw hs-FLP; FRT42D Tub-
Gal80/ex697 FRT42D vps25N55 y+; Tub-Gal4, UAS-CD8-GFP/+ (E) yw hs-FLP/djubDII; FRT42D Tub-Gal80/ex697 FRT42D vps25N55 y+; Tub-Gal4, UAS-CD8-GFP/+.
doi:10.1371/journal.pone.0037615.g001
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not induce Hpo/Wts/Yki signaling non-autonomously correspond

to the zone of non-proliferating (ZNP) cells in the wing disc and

post-mitotic, differentiating cells in the eye disc [33]. Therefore,

one potential reason for the position-dependence may be that the

post-mitotic nature of the cells in the ZNP of the wing pouch and

in the posterior of the eye disc render them inert to growth-

promoting signals that trigger the Hpo/Wts/Yki pathway.

However, while this is one possibility, there may also be additional

mechanisms that influence the response to growth-promoting

signals.

How Notch exerts this non-autonomous effect is an important

and interesting question. Based on its function as a transcriptional

regulator, it is possible that increased Notch signaling in vps25

mutant cells could lead to transcription of a secreted or

transmembrane protein that communicates to surrounding tissue

and induces Yki activity. Expression of proteins known to non-cell

autonomously activate Yki signaling such as Fat, Dachsous (Ds)

and Four-Jointed as well as ds-lacZ (reviewed in [16–18]), however,

are not altered in vps25 mosaic discs (data not shown).

Identification of this non-cell autonomous signaling mechanism

Figure 2. Autonomous inhibition of Notch signaling suppresses non-cell autonomous ex-lacZ in vps25 mosaics. Shown are MARCM-
induced vps25 mosaic wing discs expressing the transgenes indicated. vps25 mutant cells are marked in green. ex-lacZ is detected by b-Gal labeling
(red or grayscale). Arrows point to representative examples. (A,A’,B,B’) Autonomous expression of dominant negative bsk (bskDN; A,A’) (89% of wing
discs showed non-cell autonomous ex-lacZ (n = 9)) and domeless (domeDN; B,B’) (82% of wing discs showed non-cell autonomous ex-lacZ (n = 28)) does
not suppress the non-cell autonomous induction of ex-lacZ in vps25 mosaic discs. (C,C’) Autonomous expression of dominant negative Notch
(NotchDN) suppresses the non-cell autonomous induction of ex-lacZ in vps25 mosaic discs (8% of wing discs showed non-cell autonomous ex-lacZ
(n = 12)). (D,D’) Autonomous RNAi-induced knockdown of Delta (DeltaRNAi) does not suppress the non-cell autonomous induction of ex-lacZ in vps25
mosaic discs (75% of wing discs showed non-cell autonomous ex-lacZ (n = 12)). (E) Summary of the effects on non-cell autonomous ex-lacZ when JNK,
Jak/STAT or Notch activity are autonomously inhibited in vps25 mosaic wing discs. At least 10 discs were assayed/genotype. Genotypes: (A,B) yw hs-
FLP/UAS-bskDN or UAS-domeDN; FRT42D Tub-Gal80/ex697 FRT42D vps25N55 y+; Tub-Gal4, UAS-CD8-GFP/+ (C) yw hs-FLP; FRT42D Tub-Gal80/ex697 FRT42D
vps25N55 y+; Tub-Gal4, UAS-CD8-GFP/UAS- NotchDN (D) yw hs-FLP; FRT42D Tub-Gal80/ex697 FRT42D vps25N55 y+; Tub-Gal4, UAS-CD8-GFP/UAS-DeltaRNAi.
doi:10.1371/journal.pone.0037615.g002
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may also be critical for understanding tumorigenesis, as mutations

in the Notch pathway, the Hippo pathway and in ESCRT

components have been implicated in many different types of

human cancer (reviewed in [17,34–37]). In conclusion, this study

provides a mechanism by which neoplastic cells influence the

behavior of neighboring wild-type cells, which may be critical for

generating a supportive microenvironment for tumor growth by

preventing cell death and promoting the proliferation of wild-type

cells.

Materials and Methods

Fly Stocks
The following mutants and transgenic lines were used: vps25N55

[6]; djubDII [29]; diap1-lacZ = thj5c8 [19]; diap1-4.3GFP [25]; ex-

lacZ = ex697 [26]; UAS-bskDN [38]; UAS-domeDN [39]; UAS-NICD

and UAS-NotchDN [40]; UAS-NotchRNAi (VDRC); UAS-DeltaRNAi

(VDRC); UAS-psnRNAi (VDRC); UAS-vps25RNAi (VDRC); UAS-

hepCA [41]; UAS-upd [42]; UAS-upd2 [43]; puc-lacZ [44]; dpp-Gal4

and ptc-Gal4 (Bloomington); Su(H)-Gbe-lacZ [45].

Mosaics
Mosaics were generated using the MARCM (mosaic analysis

using a repressible cell marker) technique which allows expression

of transgenes such as UAS-GFP in mutant clones [46]. Heat shocks

were administered for 1 hour at 37uC at 48 and 72 hours after egg

laying to induce clones.

Immunohistochemistry
Imaginal discs were dissected from 3rd instar larvae and stained

using standard protocols. The following antibodies were used:

Figure 3. Activation of Notch signaling is sufficient to induce Yorkie activity. Shown are MARCM-induced mosaic wing discs (A,B,C, E)
expressing the indicated transgenes in otherwise wild-type clones marked in green. (D) expresses NICD under dpp-Gal4. ex-lacZ is detected by b-Gal
labeling (red or grayscale). Arrows point to representative examples. (A,A’,B,B’) Overexpression of hepCA (0% of wing discs showed non-cell
autonomous ex-lacZ (n = 13)) and upd (0% of wing discs showed non-cell autonomous ex-lacZ (n = 11)) does not lead to non-cell autonomous
induction of ex-lacZ. (C,C’) Overexpression of NICD leads to non-cell autonomous induction of ex-lacZ (91% of wing discs showed non-cell
autonomous ex-lacZ (n = 23)). (D,D’) Expression of NICD using dpp-Gal4 induces strong non-cell autonomous upregulation of ex-lacZ in the hinge and
notum, but not the wing pouch. (E,E’) Overexpression of NICD leads to non-cell autonomous accumulation of Diap1 protein. (F) Summary of the
effects on non-cell autonomous ex-lacZ when JNK, Jak/STAT or Notch activity are autonomously induced in wild-type mosaic wing discs. At least 10
discs were assayed/genotype. Genotypes: (A,B) yw hs-FLP; FRT42D Tub-Gal80/ex697FRT42D y+; Tub-Gal4, UAS-CD8-GFP/UAS- hepCA or UAS-upd (C) yw
hs-FLP; FRT42D Tub-Gal80/ex697FRT42D y+; Tub-Gal4, UAS-CD8-GFP UAS-NICD (D) ex-lacZ; dpp-Gal4 UAS-GFP/UAS-NICD (E) yw hs-FLP; FRT42D Tub-Gal80/
ex697FRT42D y+; Tub-Gal4, UAS-CD8-GFP/UAS-NICD.
doi:10.1371/journal.pone.0037615.g003
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mouse a-bGal (1:500; DSHB), guinea pig a-DIAP1 (1:1000; kind

gift of Pascal Meier), and rabbit pStat (1:100; Cell Signaling

Technology). Cy3-conjugated anti-guinea pig and anti-mouse

(Jackson ImmunoResearch) were used as secondary antibodies.

Images were obtained using an OlympusFV500 confocal micro-

scope and processed using Adobe Photoshop CS4.

Supporting Information

Figure S1 vps25 RNAi induces autonomous and non-cell
autonomous induction of ex-lacZ (related to Figure 1).
vps25 was knocked down by RNAi along the anteroposterior

boundary using ptc-Gal4 (grey in A’’). (A) is the merged image of

GFP (ptc-Gal4) and red (ex-lacZ). Yellow stippled lines in (A’)

indicates the ptc-Gal4 expression domain based on (A’’). Both

autonomous and non-cell autonomous (white arrow) expression of

ex-lacZ is detectable. However, in the center of the wing pouch

area (green arrow) neither autonomous nor non-cell autonomous

ex-lacZ is induced, suggesting position-dependence of the location

of vps25 inhibition on ex-lacZ induction. Genotype: ex-lacZ ptc-

Gal4 UAS-GFP; UAS-vps25RNAi

(TIF)

Figure S2 JNK, Jak/STAT and Notch signaling are
activated in vps25 mutant cells (related to Figure 2).
Shown are MARCM-induced vps25 mosaic wing discs with the

indicated gene reporters. vps25 mutant cells are marked in green.

puc-lacZ (A) and Su(H)-Gbe-lacZ (C) are detected by b-Gal labeling

(red or grayscale). Arrows point to representative examples. (A,A’)

puc-lacZ is increased in vps25 mutant clones. (B,B’) Phosphorylated

Stat (pStat) protein (red and grayscale) is increased in vps25 mutant

clones. (C,C’) Su(H)-Gbe-lacZ is increased in vps25 mutant clones.

Genotypes: (A) yw hs-FLP; FRT42D Tub-Gal80/FRT42D vps25N55

y+; Tub-Gal4, UAS-CD8-GFP/puc-lacZ (B) yw hs-FLP; FRT42D Tub-

Gal80/FRT42D vps25N55 y+; Tub-Gal4, UAS-CD8-GFP/+ (C) yw hs-

FLP; FRT42D Tub-Gal80/FRT42D vps25N55 y+; Tub-Gal4, UAS-

CD8-GFP/Su(H)-Gbe-lacZ

(TIF)
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