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Abstract: Sleep disturbances are common in Alzheimer’s disease and other neurodegenerative disor-
ders, and together represent a potential therapeutic target for disease modification. A major barrier
for studying sleep in patients with dementia is the requirement for overnight polysomnography
(PSG) to achieve formal sleep staging. This is not only costly, but also spending a night in a hospital
setting is not always advisable in this patient group. As an alternative to PSG, portable electroen-
cephalography (EEG) headbands (HB) have been developed, which reduce cost, increase patient
comfort, and allow sleep recordings in a person’s home environment. However, naïve applications
of current automated sleep staging systems tend to perform inadequately with HB data, due to their
relatively lower quality. Here we present a deep learning (DL) model for automated sleep staging of
HB EEG data to overcome these critical limitations. The solution includes a simple band-pass filtering,
a data augmentation step, and a model using convolutional (CNN) and long short-term memory
(LSTM) layers. With this model, we have achieved 74% (±10%) validation accuracy on low-quality
two-channel EEG headband data and 77% (±10%) on gold-standard PSG. Our results suggest that DL
approaches achieve robust sleep staging of both portable and in-hospital EEG recordings, and may
allow for more widespread use of ambulatory sleep assessments across clinical conditions, including
neurodegenerative disorders.

Keywords: deep learning; EEG headband; sleep staging; machine learning; neurodegenerative
disease; sleep

1. Introduction

It is increasingly recognized that sleep abnormalities often accompany neurodegener-
ative disorders and in some cases are considered a core manifestation of the disease [1].
Research is now focused on determining whether sleep disturbances antedate disease onset
and/or represent a biomarker of disease progression [1].

The gold standard in sleep assessment is polysomnography (PSG). However, there
are several factors that limit the usefulness of PSG for studying sleep in patients with
neurodegenerative diseases. First, it is relatively expensive, and thus many PSG studies are
statistically under-powered. Second, the unnatural environment and discomfort associated
with the numerous electrodes and wires may disturb the subject, and results using PSG
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may therefore not accurately reflect sleep in the home environment [2]. Third, patients
with dementia are prone to delirium and it is not always ethically feasible for all clinical
populations to undergo inpatient PSG [3]. Finally, the proportion of subjects in need of
formal sleep assessments outweighs the capacity of accredited PSG sleep laboratories,
limiting access to diagnostic services.

Because of these limitations there is a desire to move toward inexpensive, comfortable,
in-home sleep measurements. However, with portable EEG measurement devices, the
data quality is often a key concern. PSG provides high-quality data collected under tightly
controlled conditions from multiple simultaneous recordings, monitored in real time by
trained technicians. In contrast, portable headsets are used in uncontrolled environments
and are limited in the type and amount of data collected (e.g., number of simultaneous
EEG electrodes and physiological measurements). A common form of in-home EEG
measurement device is a headband (HB), where the electrodes are placed on a fabric band
wrapping the circumference of the subject’s head. In headbands, electrodes are often placed
on a subject’s face and forehead, where hair is not a concern. This concentration over frontal
regions causes the data to be susceptible to corruption by ocular artifacts created by eye
blinks, flutters, and eye movements as well as muscle artifacts from the frontalis muscle [4].
However, this electrode placement functions remarkably well in detecting slow wave
power [5], which is critically important in the assessment of Alzheimer’s disease [6].

Computer-aided diagnosis has been used effectively for some time in various health-
care applications [7–11], and several deep learning (DL) methods and neural network
architectures have been proposed to automate sleep stage scoring using single, double,
or multichannel PSG EEG data [12]. During the sleep staging process, the EEG signal is
divided into periods of Wake, rapid eye movement (REM) and non-REM sleep (NREM).
The NREM stage is further split into stages N1, N2 and N3. Convolutional neural networks
(CNN), recurrent neural networks (RNN) or a mixture of both have been applied with a
high degree of success in EEG processing for sleep stage classification [13–15]. Convolu-
tional neural networks are particularly efficient at extracting time-invariant and localized
information [16]. In EEG processing, convolutional layers replace the task of manual feature
engineering by relying on the network’s training ability to learn relevant features. Whereas
recurrent neural networks impose a structure to learn relationships between consecutive
data points in a sequence.

However, current machine learning (ML) models built for PSG data typically fail
to generalize well on EEG data collected from a HB. The significant difference in the
distribution between HB and PSG data is reinforced by using a covariate shift similarity
test [17]. The test identifies a covariate shift between two datasets based on whether the
origin of any sample from either set can be correctly identified. A simple classifier was
trained to predict whether a sample was collected with PSG or HB and was able to correctly
predict the origin 99% of the time. This highlights the differences in characteristics and
distribution between both types of EEG. These differences explain why models built for
PSG cannot necessarily be applied to HB data with an expectation of the same degree of
success. Here we present a model that is more robust than current automated sleep staging
solutions and is able to perform sleep staging accurately on both PSG and HB data.

Limited studies applying ML approaches to HB recordings have been promising. We
found only one publicly available HB dataset, collected using the Dreem Headband (Dreem,
San Francisco, CA, USA) [18], and only a handful of studies on sleep staging with HB
EEG [2,5,19–22]. For example, Levendowski and colleagues [22] compared simultaneous
recordings from 47 participants, using a commercially available three-channel EEG record-
ing device (Sleep Profiler, Advanced Brain Monitoring, Carlsbad, CA, USA) and PSG, and
found that the overall agreement between the technologist-scored PSG and the automated
sleep staging of the EEG device was 71.3% (kappa = 0.67). Given that the five technologists
in the study had an overall interscorer agreement of 75.9% (kappa = 0.70), it was concluded
that the autoscored frontal EEG was as accurate as human-staged PSG, except for sleep
stage N1. Similarly, Lucey and colleagues [5] compared the same three-channel EEG de-
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vice (Sleep Profiler, Advanced Brain Monitoring, Carlsbad, CA, USA) with simultaneous
PSG in 29 participants and found similar agreement (kappa = 0.67). However, in this
study, the two technologists had extremely high interscorer agreement for the PSG data
(kappa = 0.97, 80.8–98.8% depending on stage), so there was a substantial drop compared
to the autoscored EEG. Of the HB sleep staging solutions studied, only one attempted deep
learning. Arnal and colleagues achieved an accuracy of 83.5%, compared to the interscorer
agreement of 86.4% [2], using a long short-term memory (LSTM)-based model. This model
used 25 nights of HB EEG collected with the Dreem Headband, and incorporated heart
rate, respiration rate and respiration rate variability into their algorithm.

Here, we present an automatic sleep staging method for two-channel HB EEG data
based on a CNN + LSTM architecture. The model was trained and tested with data
from 12 overnight EEG recordings from 12 different participants. We achieve a mean
accuracy of 74% when sleep staging HB data, compared to 68% when using a traditional
ML pipeline. Additionally, when balanced accuracy is taken into consideration, the deep
learning method outperforms traditional automated techniques by 20%. The increase in
balanced accuracy implies consistent performance across all sleep stages.

Our model’s predictive ability on low-quality data indicates its potential in clinical
and research applications. By advancing the usability of EEG headband data, this model
can dramatically expand formal sleep staging in an ambulatory setting, paving the way
for larger studies in key populations such as Alzheimer’s disease. Additionally, the DL
model’s predictive power may also benefit future work on computer-aided diagnosis of
neurodegenerative diseases.

2. Materials and Methods
2.1. Data Collection

The data was collected from a group of 12 subjects overnight at the University of
British Columbia Hospital Blackmore Centre for Sleep Disorders. The subjects (6 male,
6 female) were between the ages of 21 and 61. Participants were simultaneously monitored
with a PSG setup, as well as a Cognionics 2-channel EEG headband (Cognionics, San Diego,
CA, USA). Data collection was approved by Vancouver Coastal Health Authority-UBC and
University of British Columbia Office of Research Ethics (ethics protocol H16-00925).

An overnight attended level 1 PSG was performed using standard electrode mon-
tages. This included EEG (channels F3-M2, F4-M1, C3-M2, C4-M1, O1-M2 and O2-M1),
electrooculography (EOG), electromyography (EMG), electrocardiography (ECG), oronasal
thermal airflow sensor, pulse oximetry, respiratory inductance plethysmography acoustic
sensor and audio-equipped video PSG as recommended by American Academy of Sleep
Medicine (AASM) criteria (version 2.4, 2017) [23]. The headband setup was performed
according to the Cognionics manufacturer instructions [24]. Both PSG and HB EEG record-
ings used adhesive foam electrodes (Kendall Medi-Trace Mini, Davis Medical Electronics,
Vista, USA). The overnight PSG was scored by a Senior Polysomnographic Technologist
and interpreted by a board-certified sleep physician using standard AASM criteria based
on 6 EEG channels, 2 EOG channels and 1 EMG channel [23]. The manually scored PSG
labels were used for both the PSG and HB recordings. To control for any possible temporal
misalignment between the two systems, we performed both automatic correlation checking
of lagged signals and manual inspection. In Figure 1, we report the distribution of the
assigned sleep stage labels. The dataset is highly unbalanced toward the N2 and Wake
classes, the N2 class being twice more frequent than the Wake class and roughly seven
times more frequent than the N1 class. This label imbalance is to be expected, since the
majority of sleep is usually spent in the N2 stage [25].
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Figure 1. Distribution of sleep stages assigned by the Senior Polysomnographic Technologist (Wake:
22.45%, N1: 6.95%, N2: 47.86%, N3: 11.07%, rapid eye movement (REM): 11.66%).

The HB EEG recordings were taken between nodes F3-A1 (channel 1) and F4-A2
(channel 2). The characteristics of the raw recorded HB data are reported in Table 1.

Table 1. Headband data characteristics.

Bandwidth Sample Rate Amplifier Gain Resolution Noise

0–131 Hz 500 samples/sec 6 24 bits/sample 0.7 µV

2.2. Data Preprocessing

Slightly different preprocessing pipelines were applied to PSG and HB data, as pre-
sented in Sections 2.2.1 and 2.2.2.

2.2.1. Preprocessing PSG Data

Following the sleep scoring, only two PSG channels (F3-M2 and F4-M1) were used
for the remainder of the study, to most closely match the electrode placement of the HB. A
Finite Impulse Response (FIR) bandpass filter with cutoff frequencies of 0.5 and 12 Hz was
applied to these collected PSG channels. The data were then downsampled to 25 Hz and
separated into nonoverlapping 30-s epochs.

2.2.2. Preprocessing HB Data

The HB EEG data was visually inspected to identify segments which were corrupted
beyond interpretation due to hardware error and a section of 50 min was removed from
one subject. The erroneous epochs were likely due to electrodes losing contact with the
skin surface.

The same bandpass filtering and epoching as described in Section 2.2.1 was applied to
the HB data.

2.3. HB Data Cleaning

In addition to preprocessing, we implemented a simple data screening algorithm to
automatically remove corrupted epochs from the HB data only. An example of a corrupted
epoch is shown in Figure 2. There are a few key indicators that the signal on the right
(channel 2) is not a valid EEG signal. The first is that the amplitude of the channel 2 signal
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largely exceeds the amplitude of an average EEG signal (generally below 100 µV) [26]. The
second is that there is no visual similarity between the channel 1 and channel 2 signals.

Figure 2. Valid electroencephalogram (EEG) signal shown on the left, corrupted data on the right.

To remove the corrupted data, we filtered the epochs where the correlation between
the signals from channel 1 and channel 2 was low (below 0.9), and the mean amplitude of
at least one channel was high (above 40 µV). We removed only the data in the corrupted
channel, duplicating the valid channel in its place. This method aims to minimize the
amount of valid data being discarded, while making use of the expected correlation
between mirroring channels [27].

A grid search was performed in order to determine the best correlation and amplitude
thresholds. First, ranges of valid amplitude and correlation thresholds were selected by
manual parameter adjustment and inspection of the filtered epochs. Next, a grid search
was performed on each combination of minimum correlation from 0.6 to 0.9 in steps of 0.1
and maximum channel amplitude from 30 µV to 60 µV in steps of 10 µV. For each of these
16 threshold combinations, we performed leave-one-out cross validation 12 times, once for
each subject.

2.4. Data Augmentation

It has been shown that data augmentation can substantially increase accuracy when
using deep learning for EEG analysis [28]. We implemented overlapping windows in order
to artificially increase the size of our dataset, an approach which has yielded promising re-
sults in other literature [29–31]. In this method, we concatenated all contiguous 30-s epochs
of the same sleep stage in the time domain. The concatenated blocks were then redivided
into new 30-s epochs, all overlapping by 75%. This process is illustrated in Figure 3. We
applied this method only on training data to avoid corrupting the prediction results.

To determine the optimal overlap percentage, we generated artificially augmented
datasets using overlap percentages of 75%, 50% and 20%. The optimal overlap percentage
was determined after averaging the results of leave-one-out cross validation over the
12 participants.

2.5. Deep Learning Model Architecture

Based on a review of existing deep learning models for sleep staging using EEG signals,
the most promising architectures for low-quality EEG data were CNN and CNN + LSTM
models [32–36]. We implemented a CNN + LSTM model based on Bresch’s model for
single-channel EEG [37], with the architecture shown below in Figure 4. The model was
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created using Python 3 and the Keras framework with TensorFlow backend version 2.2,
and summarized in Table A1.

Figure 3. Overlapping windows applied over the EEG signal (black line). The dotted vertical lines
delimit two 30-s epochs of the same class. The red, green and yellow rectangles correspond to the
newly generated epochs after applying a specified overlap (purple).

Figure 4. Convolutional and long short-term memory (CNN + LSTM) model architecture inspired
by [37].

The model contains three convolutional layers (to learn the useful spatial information),
followed by two LSTM layers (to extract influential temporal information) and a dense
layer. The first convolutional layer has eight filters, and this number doubles with each
convolutional layer. The two LSTM layers have 64 units, with the final dense layer only
containing five, as well as a softmax output activation. The convolutional layers are
particularly effective for extracting time-invariant and localized information. Their function
in the model is similar to the task of manual feature extraction in traditional machine
learning methods. The LSTM layers then impose a structure to learn relationships between
the consecutive data points extracted by the CNN layers.

Implementing regularization is a common method of reducing overfitting in deep
learning models [38,39]. In our model, the LSTM layers are regularized to by adding a
dropout of 0.2. By randomly assigning different nodes to a weight of zero at each iteration,
dropout can simulate a range of architectures, as opposed to one static model layout. This
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minimizes the risk of certain nodes developing large weights based on the training data,
reducing generalizability [40]. To further reduce the model’s reliance on individual features
we implemented L2 weight decay with parameter 0.001.

2.6. Model Training

To guide the training of the model, we use the categorical cross entropy loss function.
When the dataset is unbalanced (the distribution is skewed toward some labels), the
model’s predictions tend to become biased toward the most common labels. Our dataset is
highly unbalanced with the most frequent class, sleep stage 2, comprising 47% of the data.
To address this, we apply a per-class weight to the categorical cross entropy loss function:

L(y, ŷ) = −
m

∑
i = 1

w(yi)yi log(ŷi) (1)

where y and ŷ are the true labels and the predictions, respectively, and L(y, ŷ) is the loss.
The relative weight of label yi in the dataset (the number of yi labels divided by the number
of examples in the dataset) is defined as w(yi). The parameters of the model are updated
at each training iteration using an Adam optimizer [41] with an initial learning rate of
5 × 10−5, β1 = 0.99 and β2 = 0.999.

Training was performed using leave-one-out cross validation, for 200 epochs per fold,
using a batch size of 64. This process was completed using a NVIDIA Titan RTX GPU
(Nvidia, Santa Clara, CA, USA), and a 4.0 GHz Intel processor (Intel, Mountain View,
USA). Each training epoch took about 3 s to complete, with the entire process taking
approximately 2 h.

2.7. Traditional Sleep Staging Techniques

As well as using our deep learning model for sleep staging, we also attempted multiple
traditional processing pipelines. The highest accuracy of these supervised modeling
techniques was achieved using extracted features and an ensemble bagged trees model.

After a similar preprocessing pipeline to that described in Section 2.2, we extracted
features in the following categories:

• Frequency domain;
• Time domain;
• Higher-order statistical analysis (HOSA)-based;
• Wavelet-based.

In total, 62 features per EEG channel were extracted and are listed in Table 2. The
computed values for the features were normalized using Min-Max feature scaling for a
final value between 0 and 1.

Table 2. Type and number of features extracted from each EEG channel.

Feature Category Feature Group Feature Size

Frequency Domain
RSP 11
HP 15
SWI 3

Time Domain
Hjorth 3

Skewness 1
Kurtosis 1

HOSA Bi-Spectrum 20

Wavelet Relative Power 8

Total Features 62

As a classic baseline approach, the ensemble-bagged trees model was trained on these
features using leave-one-out cross validation.



Sensors 2021, 21, 3316 8 of 17

3. Results
3.1. Deep Learning Model Performance

Combining the model architecture, data cleaning and data augmentation methods
described previously, we performed leave-one-out cross validation for each participant.
We achieved a mean prediction accuracy of 74.01% (standard deviation 10.32%) with HB
data and 76.98% (standard deviation 10.05%) with PSG data. These results are summarized
in Figure 5.

Figure 5. Per-patient validation accuracy during leave-one-out cross validation for the convolutional
and long short-term memory (CNN+LSTM) model with headband (HB) and polysomnography (PSG).

The similarity in sleep staging accuracy achieved with HB and PSG demonstrates this
model’s robustness to variance in data source and thus quality. In Table 2, we include the
confusion matrices for each subject for both HB and PSG.

Furthermore, we report the average stage-wise performance of the deep learning
CNN+LSTM model over 12 folds, also known as the percent correct recall. The results
shown in Table 3 highlight the model’s similar performance across sleep stages N2, N3,
REM and Wake despite the unbalanced label frequencies. Especially notable is the high
accuracy achieved for sleep stage N3, which comprises only 11% of the dataset, and may
be particularly important for risks of dementia [6]. The accuracies achieved for stage
N1 are considerably lower, as is commonly the case with both manual sleep staging and
automated methods [42,43].

Table 3. Average stage-wise performance over all folds for the deep learning model.

Data N1 N2 N3 REM Wake Accuracy Balanced Accuracy

HB 29.80% 74.87% 84.02% 73.96% 80.60% 74.01% 68.65%

PSG 31.08% 77.82% 85.27% 75.38% 84.64% 77.00% 70.84%

To provide an interpretation of the model’s predictive behavior, we followed a similar
approach to Chambon and colleagues [13]. We analyzed whether the model learned to
discriminate between sleep stages based on frequency bands, which is a common approach
among human sleep scorers. For example, the relative spectral density of the δ band
(0.5–4 Hz) is often used by human scorers to classify epochs as “deep sleep” (sleep stage
N3). We studied how the model’s predictive behavior changes with respect to the following
frequency bands: δ (0.5–4 Hz), θ (6–8 Hz) and α + β (>8 Hz). We filtered the test data into the
aforementioned frequency bands and passed these individually into the pre-trained model.

The model associates higher frequencies with the Wake stage, and its predictive power
for sleep stage 3 does not decrease when given the delta band of a signal (Figure 6). These
results point to the use of frequency bands for the sleep stage prediction of Wake and N3.
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However, the results indicate that the model does not learn to classify sleep stages 1 and 2
based on the presence of theta frequencies.

Figure 6. Confusion matrices for inputs passed through the following bandpass filters: (a) delta; (b) theta; (c) alpha and beta.

3.2. Baseline Model Performance

The ensemble bagged trees method presented in Section 2.7 achieved an accuracy
of 67.53% (standard deviation 11.94%) with HB data, and accuracy of 73.07% (standard
deviation 6.46%) with PSG data, as shown in Figure 7.

Figure 7. Per-patient validation accuracy during leave-one-out cross validation for the ensemble
bagged trees model with headband (HB) and polysomnography (PSG).

We report the average stage-wise performance of the ensemble bagged trees method
over all 12 folds, shown in Table 4. This model performs best on N2 and Wake stages
for both HB and PSG data, while performing comparatively poorly on N1, N3 and REM
sleep stages.

Table 4. Average stage-wise performance over all folds for the ensemble bagged trees method.

Data N1 N2 N3 REM Wake Accuracy Balanced Accuracy

HB 4.11% 82.32% 49.65% 28.26% 80.03% 67.53% 48.88%

PSG 13.13% 88.36% 35.90% 55.17% 83.49% 73.06% 55.21%

The balanced accuracy, which is computed as the mean of all percent recalls of the
labels, is also reported with 48.88% and 55.21% on HB and PSG data, respectively.

The low accuracies for N1, N3 and REM and high accuracies for N2 and Wake are
justified by the dataset bias toward the N2 and Wake labels. This implies that the ML model
is overfitting the dataset, and does not provide any meaningful predictions on the data.
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4. Discussion

We have shown that a DL sleep staging model achieves 74% accuracy on low-quality
headband EEG data, compared to 77% with gold-standard PSG. The model performs
well across all sleep stages, leading to a balanced accuracy of almost 20% more than
any machine learning sleep staging method attempted. We also show that this model
achieves an especially high accuracy for sleep stage N3, with acceptable performance for
REM sleep classification, both of which may be highly relevant to the pathophysiology
of neurodegenerative disorders [1,6]. These results were attained without any extensive
preprocessing or special artifact removal procedures. Our findings address the major
barrier preventing more widespread use of HB for ambulatory sleep assessment, largely
related to poor performance in automated classification tasks.

4.1. Deep Learning Model Comparison

As previously noted, the architecture of our deep learning solution was adapted from
a model created by Bresch and colleagues [37]. However, our implementation has a few key
differences. Firstly, we reduce overfitting by regularizing the LSTM layers with dropout
and weight decay. Secondly, the CNN output in Bresch’s architecture is flattened, which
discards the temporal structure of the signal. Instead of flattening the CNN output, we
directly pass the time sequence of the extracted features to the downstream LSTM layers.

Another key difference between our model and Bresch’s is the input data. For our
use-case, we have two-channel EEG data, downsampled to 25 Hz as opposed to one 100 Hz
channel. Finally, due to our substantially smaller dataset, we include a comprehensive data
cleaning and data augmentation preprocessing pipeline, before passing the signal to the
deep learning model, something which is not done by Bresch and colleagues.

Using Bresch’s architecture before our adjustments resulted in a mean accuracy over
12 folds of 70.83% (standard deviation 10.55%), while after our adjustments, the results
improved by almost 4%.

4.2. Baseline Model Comparison

We present a comparison between the results of the CNN+LSTM model and the ML
model described in the previous sections. The accuracies and balanced accuracies shown
in Tables 3 and 4 demonstrate the deep learning model’s superior adaptability to changes
in data quality. The DL model shows a 2% difference between balanced accuracies when
trained on PSG versus trained on HB. The ML model, on the other hand, shows a difference
of 6%. The smaller gap between PSG and HB results points to a more robust model, indicat-
ing that data quality is not a significant variable with respect to sleep staging performance.

When comparing the two models’ results directly, the DL model has a higher accuracy
and balanced accuracy both with HB and PSG data. Specifically, we see an additional
increase of 6.50% in accuracy and 19.77% in balanced accuracy using HB data, when
compared to the ML model. Similarly, we see an additional increase of 3.94% in accuracy
and 15.63% in balanced accuracy using PSG data. The higher accuracy indicates an
improvement in overall predictive capability, while the higher balanced accuracy indicates
an improvement in the model’s generalizability across all sleep stages.

Stage-wise comparison of the model performances show that the DL model’s N2
accuracy decreased slightly from 82.32% on HB (and 88.36% on PSG) to 74.87% on HB (and
77.82% on PSG), in exchange for a significantly greater increase in the under-represented
labels (N1, N3 and REM). The largest of these reported increases is in stage N3, where an
additional 34.37% on HB data (and 49.37% on PSG data) is gained.

4.3. Electrode Comparison

The EEG recordings in this study used gel electrodes that balance ease of use, patient
comfort, and signal quality (Kendall Medi-Trace Mini, Davis Medical Electronics, Vista,
USA). New developments of dry and semi-dry electrodes have been promising [44–47],
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and while we anticipate similar sleep staging results using our DL model with dry and
semi-dry electrode variants, additional studies are needed to test this hypothesis.

5. Conclusions

We demonstrate that a simplified two channel HB EEG device can be used to accurately
stage sleep when combined with a DL data analysis model. The DL model outperforms tra-
ditional machine learning approaches, and may allow for wider application of ambulatory
sleep assessments across clinical populations, including neurodegenerative disorders.

Author Contributions: Conceptualization, B.A.K., M.J.M., M.S.M. and H.B.N.; methodology, B.A.K.,
A.A.C., S.K.C., M.A.M., D.Z., J.V., M.J.M. and H.B.N.; software, A.A.C., A.K., M.A.M., S.K.C., D.Z. and
A.M.P.; validation, A.A.C. and S.K.C.; formal analysis, A.K., S.K.C. and A.A.C.; investigation B.A.K.,
M.J.M., J.V., M.S.M. and H.B.N.; resources M.J.M. and H.B.N.; data curation, B.A.K., A.K., M.A.M.;
writing—original draft preparation, A.A.C., S.K.C., A.M.P., M.A.M. and D.Z.; writing—review and
editing, all authors; visualization, S.K.C., A.A.C., A.M.P. and M.A.M.; supervision M.J.M., M.S.M. and
H.B.N.; project administration, M.J.M., M.S.M. and H.B.N.; funding M.J.M. and H.B.N. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the John Nichol Chair in Parkinson’s Research. B.A.K.
was funded by Michael Smith Foundation for Health Research, Killam Trusts, and CIHR Banting.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
Vancouver Coastal Health Authority-UBC and University of British Columbia Office of Research
Ethics (protocol code H16-00925 approved on 7 March 2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding authors. The source code created in this study can be found at: https://bitbucket.org/
cap131/headbandsleepscorer/src/master/ (accessed on 2 May 2021).

Acknowledgments: The authors of this study acknowledge the project guidance given by Terry Lee
and Mohammad Kazemi at the University of British Columbia, through the Electrical and Computer
Engineering Capstone Program.

Conflicts of Interest: H.B.N. is a paid, independent consultant to Biogen and Roche Canada. M.J.M.
has received honoraria from Sunovion Pharmaceuticals and Paladin Labs, Inc.

Appendix A

Table A1. Convolutional and long short-term memory (CNN + LSTM) model summary.

Layer Type Output Shape Param #

Conv1D (None, 2993, 8) 136

Activation (ReLU) (None, 2993, 8) 0

MaxPooling1D (None, 997, 8) 0

Conv1D (None, 990, 16) 1040

Activation (ReLU) (None, 990, 16) 0

MaxPooling1D (None, 330, 16) 0

Conv1D (None, 323, 32) 4128

Activation (ReLU) (None, 323, 32) 0

MaxPooling1D (None, 107, 32) 0

LSTM (None, 107, 64) 24,832

LSTM (None, 64) 33,024

Dense (None, 5) 325

Total Params 63,485

Trainable Params 63,485

Non-Trainable Params 0

https://bitbucket.org/cap131/headbandsleepscorer/src/master/
https://bitbucket.org/cap131/headbandsleepscorer/src/master/
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Table 2. Confusion matrices for deep learning model predictions on each subject.
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