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Abstract

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically significant viral diseases facing the
global swine industry. Viremia profiles of PRRS virus challenged pigs reflect the severity and progression of infection within
the host and provide crucial information for subsequent control measures. In this study we analyse the largest longitudinal
PRRS viremia dataset from an in-vivo experiment. The primary objective was to provide a suitable mathematical description
of all viremia profiles with biologically meaningful parameters for quantitative analysis of profile characteristics. The Wood’s
function, a gamma-type function, and a biphasic extended Wood’s function were fit to the individual profiles using Bayesian
inference with a likelihood framework. Using maximum likelihood inference and numerous fit criteria, we established that
the broad spectrum of viremia trends could be adequately represented by either uni- or biphasic Wood’s functions. Three
viremic categories emerged: cleared (uni-modal and below detection within 42 days post infection(dpi)), persistent
(transient experimental persistence over 42 dpi) and rebound (biphasic within 42 dpi). The convenient biological
interpretation of the model parameters estimates, allowed us not only to quantify inter-host variation, but also to establish
common viremia curve characteristics and their predictability. Statistical analysis of the profile characteristics revealed that
persistent profiles were distinguishable already within the first 21 dpi, whereas it is not possible to predict the onset of
viremia rebound. Analysis of the neutralizing antibody(nAb) data indicated that there was a ubiquitous strong response to
the homologous PRRSV challenge, but high variability in the range of cross-protection of the nAbs. Persistent pigs were
found to have a significantly higher nAb cross-protectivity than pigs that either cleared viremia or experienced rebound
within 42 dpi. Our study provides novel insights into the nature and degree of variation of hosts’ responses to infection as
well as new informative traits for subsequent genomic and modelling studies.
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Introduction

Porcine reproductive and respiratory syndrome (PRRS) is one

of the most important infectious diseases threatening pig

production worldwide [1]. PRRS reduces reproductive perfor-

mance in breeding animals and increases respiratory problems in

animals of all ages, leading to impaired growth in young piglets

and, in some cases, mortality [2–4]. Infection with the PRRS virus

(PRRSV) results in viremia and virus replication in multiple

organs within the host; the targets for replication are macrophages

in various tissues, primarily the lung but also in lymph nodes,

spleen, placenta and umbilical cord [5–7]. One of the most

significant challenges facing the eradication of the disease is the

persistent nature of the etiological agent, PRRSV, which may

persist within the host for several weeks or months, in some cases

maintaining a sub-clinical lifetime persistence [8,9]. If the

persistently PRRSV infected individuals also remain infectious,

they can drive the epidemiological dynamics of the disease within

the population through perpetuating the cycle of transmission to

susceptible animals [10].

Viremia profiles of in-vivo experimentally PRRSV challenged

pigs are valuable indicators of the severity and progression of the

infection in the host, and thus provide crucial information for the

required subsequent disease control measures [11]. The course of
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a typical PRRSV infection is characterised by an acute viremic

stage lasting approximately 4 weeks followed by a stage

characterised by low levels and eventual resolution of viremia.

Previous studies suggest that in the majority of animals viremia

reaches undetectable levels typically by 4–6 weeks, although the

virus may still be isolated months later in the lymphoid tissues

[12,13].

PRRSV challenge experiments with longitudinal viremia

measures reveal substantial differences in the viremia profiles

between hosts infected with the same PRRSV challenge dose,

pointing to considerable variation in the host response to PRRSV

infections. For example, numerous studies have shown breed

differences in viremia levels and duration and also in antibody

production [11,14–16]. Reiner et al.[17] observed that Pietrain

pigs infected with an attenuated PRRSV strain had longer viremia

lasting until 72 days post infection (dpi), and a less efficient

antibody production than Miniature pigs whose viremia only

lasted up to 35 dpi. Viremia was classified as persistent in Pietrain

pigs, however the profiles revealed both uni- and biphasic curves

which could be a manifestation of viremia reactivation from the

original infection within the host or reinfection between the pigs

[18]. Using longitudinal viremia records collected over a 42 day

period from 531 pigs challenged with a virulent PRRSV strain,

Boddicker et al. [19]reported substantial differences between

individual viremia profiles and also in total viremia, summarised as

‘‘area under the curve’’ (AUC) or viral load (VL). Furthermore,

based on visual inspection, they classified pigs into two categories,

i.e. non-rebounders and rebounders, characterised by mono- and

bi-phasic serum viral profiles, respectively.

Given the apparent diversity in viremia patterns, several

important questions arise. For example, for vaccine development

or consideration of genetic disease control strategies it is important

to determine whether and to what extent the observed differences

in the profiles are influenced by the host and the virus genotype. In

the longitudinal study of Boddicker et al. [20], the VL measure

was found moderately heritable (h2 = 0.3), pointing to significant

host genetic influence underlying disease severity and progression.

Rebound was however not found to be heritable and thus thought

to be controlled more by the virus than the host genotype [20].

However, the low heritability estimate of this trait (0.03) may have

arisen due to the limited dataset, insufficient observations to

capture the rebound phase, or the potential misclassification of

individuals based on visual inspection of the profiles. Furthermore,

there may be other profile characteristics representing host genetic

variation in specific immune functions.

One hallmark of PRRSV is its high genetic diversity due to its

fast mutation rate, resulting in continuous emergence of new

quasi-species that may evade the host’s immune system [21,22].

Antibodies with PRRSV-neutralising activity usually appear from

14–28 days post infection (dpi) and are correlated with the

reduction of PRRSV in the lung and the peripheral blood [23].

Despite conflicting reports on the significance of neutralizing

antibodies (nAb) in anti-PRRSV protection [24], one would

expect that diversity in the nAb response is important for cross-

protective immunity against different PRRSV isolates, mutants or

quasi-species. Thus, it would be useful to know whether host

differences in viremia patterns are also reflected by differences in

the breadth of nAb, and whether these measures are directly

related. For example, one may hypothesize that a host that is able

to clear the virus faster may have a less diverse nAb response than

hosts with persistent or bi-phasic viremia profiles experiencing

more cycles of virus replication and mutation.

From an epidemiological perspective, viremia rebound may

constitute a problem as pigs diagnosed as cleared may have high

levels of infectious virus a few days later. It would be useful to

know whether viremia rebound reflects genuinely viremia

reactivation rather than fluctuations in circulating virus load or

measurement errors, and whether all or only a subset of pigs

experience rebound. In particular, it would be useful to know

whether virus rebound, or persistence, can be predicted based on

early serum profile characteristics.

Addressing the questions raised above would require frequent

repeated measurements of viremia, as well as of nAb diversity, on a

large number of pigs subjected to the same experimental PRRSV

challenge conditions. Such data are now available from the PRRS

Host Genetic Consortium [1]. However, raw viremia data are

inherently noisy and incomplete. Empirical mathematical func-

tions have proven a useful tool for smoothing noisy data profiles

and for exploring characteristics of dynamic patterns [25,26].

Thus, an appropriate mathematical function may be able to

concisely represent the full range of viremia profiles using only a

few parameters. In particular, functions in which individual

parameters represent specific curve characteristics provide an

opportunity to apply rigorous statistical analysis to quantify

differences in viremia patterns.

The primary objective of this study was to find mathematical

functions that adequately represent the full range of viremia

profiles obtained from a large scale PRRSV infection experiment,

and use these to determine quantitative characteristics of infection

dynamics. The functions will be used to derive an objective

method of classification of viremia profiles based on statistical

inference and to assess the relationship between the breadth of

nAb response and viremia profile.

Materials and Methods

Experimental Data
The data analysed in this study was obtained from the PRRS

Host Genetic Consortium (PHGC) trials, the largest PRRSV in-

vivo challenge study to date; a detailed description of the

experimental protocol is outlined in [1,27]. Briefly, viremia data

was obtained from pigs which were experimentally infected with

NVSL 97–7985, a virulent isolate of PRRSV, [28], in eight

separate infection trials (ca. 200 pigs/trial) with an infection dose

of 105 tissue culture dose50 (TCID50). The challenged pigs came

from high health farms that were free of PRRSV, Mycoplasma

hypopneumoniae and swine influenza virus. Pigs were placed

randomly in pens of 10–15 pigs and were infected with PRRSV

after a 7 day acclimation period, i.e. at 0 days post infection

(0 dpi). Blood samples were collected immediately before infection

(0 dpi) and at 4, 7, 11, 14, 19/21, 28, 35, 40/42 dpi and the level

of PRRS viremia was measured using a semi-quantitative

TaqMan PCR assay for PRRSV RNA. The viremia quantity

data from RT-PCR was transformed on the logarithmic scale to

the base 10 before the model fitting. Due to the sensitivity of RT-

PCR the threshold of detection was set at 1 units on the log10 scale

[20].

For the purpose of this study, only individuals with a minimum

of 6 serum viremia observations were retained. This resulted in a

viremia dataset comprising 1371 pigs in total, with over 170 pigs

per trial, with the exception of trial 6 for which data from 89 pigs

with less than 6 viremia observations had to be discarded. The

majority of missing observations in Trial 6 were from 14 dpi

onwards due to the outbreak of a bacterial infection, thus reducing

the potential to capture viremia rebound. All individuals from

Trials 7 and 8 were missing the last observation at 40/42 dpi due

to management issues in the experimental facility.

Statistical Modelling of PRRS Viremia Profiles
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To explore hypotheses surrounding the association between

viremia profiles and the variability of the nAb response to PRRSV,

nAB data from serum collected at 42 dpi was obtained for 490

individuals from the first three trials using a virus neutralization

assay as outlined in [29]. Briefly, serum neutralising assays were

conducted to examine the presence of cytopathic effects on the

homologous PRRSV strain as used in the in-vivo challenge

experiment (NVSL-7985 denoted henceforth as NVSL) and three

additional PRRSV isolates: KS06-72109 (KS06), P-129 and VR-

2332 (VR). These type 2 PRRSV isolates were chosen for genetic

differences based on viral ORF5 sequence. KS06 had been

isolated in 2006 and as a more contemporary isolate is still found

in the field. Excluding the relatedness between P129 and NVSL

(95%), nucleotide comparisons within ORF5 show that the

PRRSV isolates differed from each other by 10% or greater.

Each serum sample was reacted with the panel of four type 2 viral

isolates, where the NVSL isolate served as the homologous virus in

the serum neutralisation assays. Serum samples were considered

positive for PRSSV nAb at a titre of eight or higher. Individuals in

PHGC Trials 1–3 were assigned to one of the following five nAb

categories: 1) failed to produce a nAb response, 2) only produced

antibodies against the challenge virus (homologous nAb response),

3) produced nAb against the original and a different isolate (mild

heterologous response), 4) produced nAb against the original and

two different isolates (moderate heterologous response), 5)

produced nAb against all four isolates (broad response). Analysis

was conducted on the combined nAb categories of no cross

protection (categories 1–2) and cross-protection (categories 3–5) as

this was the most biologically relevant grouping of the nAb classes.

Viremia Profile Characteristics and Mathematical Models
Visual inspection of the individual viremia profiles from the raw

data indicated that the profiles can be empirically grouped into

three categories, illustrated in Figure (1): undetectable viremia

levels at 42 dpi, persistence up to 42 dpi, and apparent clearance

within the first 35 dpi followed by viremia rebound. Thus,

observed profiles were either uni- or biphasic. Apparent viremia

rebound occurred from 28 dpi onwards. A suitable mathematical

model should thus be able to represent both uni-modal clearance

and persistence as well as biphasic viremia rebound. Despite large

inter-host variation in the individual profiles, visual inspection

further indicated that all non-rebound viremia profiles and the

primary phase of rebound profiles are characterised by a relatively

rapid viremia increase towards the peak followed by a gradual

exponential decline. Furthermore inter-host variation in the

profiles is initially small, but increases over time.

Wood’s Model
The Wood’s function, a gamma-type function often used to

empirically describe lactation curves in dairy cattle [25,30,31], was

chosen as candidate model as it appears to satisfy the above

described data characteristics of the uni-modal profiles and the

primary phase of the biphasic profiles. The function is given in

equation (0.1):

y(t)~a1tb1 e{c1t ð0:1Þ

where y(t) represents the level of viremia in the blood (log10 RT-

PCR) at t days post infection (dpi). The constant a1 is a scalar

quantity and impacts upon the magnitude of all the points on the

curve. The parameter b1 is an indicator of the initial rate of

increase to the peak viremia level and the parameter c1 is an

indicator of the rate of decline after the peak and dominates the

function as t?z?. The maximum viremia load is achieved at

time t1~
b1
c1

dpi, and the value of the maximum viremia

isv1~a1
b1
c1

� �b1
e{b1 . Other curve characteristics, such as the rate

of viremia decline at any point in time or the cumulative viremia

load up to a given time t post infection can be readily obtained by

differentiation or integration of the above function.

Extended Wood’s Model
In order to represent the bi-phasic profiles, the Wood’s function

was extended to a biphasic function described by equation (0.2):

y(t)~a1tb1 e{c1tz max (0,a2(t{t0)b2 e{c2 (t{t0)) ð0:2Þ

where the model parameters a1,b1 and c1 define the primary

phase of the rebound profile as described for the Wood’s model

above. Time t0 denotes the onset of the second phase of the

profile, which is assumed to follow the same (Wood’s) shape as the

primary phase and is thus defined by the second set of Wood’s

model parameters: a2,b2,c2. For tvt0 the Extended Wood’s

model is equivalent to the Wood’s model. The Extended

Wood’s model has the derived parameters denoting the time

and value of the first and second peaks respectively:

t1,v1,t2~t0z
b2
c2

,v2~a2
b2
c2

� �
e{b2 . Similarly, rates of viremia

decline or cumulative viremia load at any time post infection

can be calculated through differentiation and numerical integra-

tion of the Extended Wood’s function.

Model Fitting and Parameter Estimation
Both the Wood’s and Extended Wood’s function were fitted to

the individual data profiles using Bayesian inference with a

likelihood framework. This was implemented by using an

adaptive, population based Markov chain Monte Carlo method

with power posteriors as described in [32–35]. The prior

distributions for the function parameters were assumed to be

uniformly distributed within a biologically realistic range. Param-

eters were estimated separately for each pig. The resulting

inferences are based on 3000 samples, thinned from 2|105

iterations of a non-adaptive Markov chain, with the first half of the

chain discarded as burn in. For observations greater than the RT-

PCR measurement threshold of 1 units on the log10 scale the

errors were assumed normally distributed around 0 with a

standard deviation of 0.5 log units, and for observations less than

or equal to the RT-PCR observation threshold the errors were

assumed cumulative normal.

Both the Wood’s and Extended Wood’s functions were fitted to

all pigs. Thus the fitting procedure provided for each individual

pig posterior distributions for every parameter of the Wood’s and

Extended Wood’s function, respectively, from which parameter

means, modes and credibility intervals were derived.

Assessment of Model Fit
The accuracy of the model fit and choice of best model was

assessed based on the Akaike’s Information Criterion (AIC),

together with inspection of the predicted model profiles with 95%

posterior credibility intervals for every individual, to gain insight

into both the accuracy and potential bias of the model predictions

over the time course of the experiment. This included plotting

histograms of the parameter estimates, inspection of the residuals,

as well as calculating the (product moment) correlation between

observations and predictions at each sampling time point.

Statistical Modelling of PRRS Viremia Profiles
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Objective Classification of Profiles
Due to the high degree of fluctuation in the viremia

measurements, classification of the raw data profiles into the

three categories shown in Figure 1 is somewhat arbitrary and not

always straight-forward. However, the two alternative mathemat-

ical viremia models, i.e. the Wood’s and the Extended Wood’s

model, together with statistical measures of goodness-of-fit

provided an objective method for assigning the profiles into uni-

modal and biphasic categories.

An individual was classified as experiencing viremia rebound if

the biphasic Extended Wood’s model had a statistically superior

fit to the data than the uni-modal Wood’s model at the

95% significance level. For this purpose, both models were

separately fitted to the individual’s log10 RT-PCR data and

the Akaike’s Information Criterion (AIC) was obtained. The

AIC difference between the competing models for each

individual pig is analogous to the likelihood ratio test statistic (D)

when adjusted for twice the difference in the number of

model parameters of the two models. The Wood’s model has

3 parameters and the Extended Wood’s model has 7

parameters, thus the AIC difference adjusted for the number

of parameters becomes:AICWOODS{AICEXTENDEDWOODS~D{

2(7{3)~D{8. Thus at the 95% significance level the

required likelihood ratio test, obtained from the chi-

squared distribution, with 4 degrees of freedom, was D~9:488
[36], corresponding to a critical difference in the AIC

ofAICWOODS{AICEXTENDEDWOODS~9:488{8~1:488. Thus,

if the AIC difference was greater than or equal to this value

(1.488) then the profile was classed into the biphasic rebound

category, otherwise it was classed as uni-modal.

Transient experimental persistence henceforth referred to as

persistence was defined as a subset within the non-rebound profiles

according to the Wood’s model prediction at the end of the

experiment, i.e. at 42 dpi. If the model prediction at that time

point remained above the detection threshold of one RT-PCR

unit on the log10 scale then the profile was classified as ‘persistent’

within the 42 day observation period, otherwise it was referred to

as ‘cleared’.

Assessment of Individual Viremia Profile Properties
Description of the individual viremia profiles by analytical

functions provides the opportunity to explore whether viremia

features associated with different phases of the infection are

related, and to construct and test hypotheses. Pearson product-

moment correlations were calculated between individual Wood’s

and Extended Wood’s function parameter estimates and the

derived parameters -(t1,v1,t2,v2) to determine whether general

patterns were apparent in the fitted profiles (e.g. is there an

association between viremia increase before the local peak and

post-peak decrease, etc.). In particular, within the category of

rebounders, associations between the shapes of the viremia curves

describing the primary and the rebound phase of infection (i.e.

tvt0 and twt0, respectively) were tested.

Furthermore, to determine whether the phenomenon of

transient persistence or viral rebound could be predicted by the

shape of the profile during the earlier phase of infection, the

Wood’s model was fitted to the truncated dataset comprising

observations from all pigs (rebounders and non-rebounders) from

0 to 21 dpi only. A linear mixed model analysis (using PROC

MIXED of SAS 9.3) was then carried out to assess statistical

differences in the individual Wood’s curve parameter estimates

associated with the different profile types (cleared, persistent and

rebound), respectively. The dependent variables were the individ-

ual mean values of the estimated posterior distributions of the

Wood’s model and derived parameters obtained from the primary

phase:a1,b1,c1,t1,v1. Fitted random effects were pen within trial

Figure 1. Raw phenotypic data profiles of three representative pigs experimentally infected with PRRSV. The viremia profile categories
are: undetectable within 42 dpi (black dotted line), mono-phasic experimental persistence up to 42 dpi (grey line ), and bi-phasic rebound (black
line).
doi:10.1371/journal.pone.0083567.g001

Statistical Modelling of PRRS Viremia Profiles
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and dam within trial. In the full model the fixed effects were the

rebound class, trial, sex, parity and the interaction between trial

and parity. Fixed and random effects were hierarchically removed

according to statistical significance. Pairwise differences between

the profile classes were assessed using the contrast statement of

SAS PROC MIXED, which uses the F-test statistic.

Association Between Viremia Profiles and Neutralising
Antibody Response

To test the hypothesis whether viremia rebound, clearance or

persistence was associated with greater within host viral diversity

and thus more diverse neutralizing antibodies, logistic regression

was carried out for the 439 pigs with nAB assays, using PROC

GLIMMIX in SAS 9.3, assuming an exponential distribution of

the data, conditional on random effects. In the full mixed model

the dependent variable was the neutralising antibody class (i.e.

binary as the nAB categories were pooled), the independent

variables were the class of the viremia profiles (i.e. cleared,

persistent or rebound). In addition, trial, profile class, parity, sex

and corresponding interactions were fitted as fixed effects and dam

within trial and pen within trial were fitted as random effects.

Similar to the mixed model analysis above, the number of random

and fixed effects in the full model was hierarchically reduced by

examining their impact on the AIC model fit statistics, and

according to statistical significance of individual fixed effects,

respectively.

Results

Classification of Profiles
Visual inspection of the predicted individual profiles (example

shown in Figure 2) confirmed the appropriateness of the statistical

classification method based on goodness of model fit. Only 12 and

4 of 1371 individuals had to be removed as outliers from the

Wood’s and Extended Wood’s analysis, respectively, as several of

their predicted viremia values differed from the corresponding

observed values by more than 2 log differences. Overall 17% of

the individuals were classified to experience viremia rebound while

83% were classified as non-rebounders (Table 1). Within the class

of pigs with a uni-modal viremia profile, 46% of pigs were

classified as pigs with persistent viremia whilst the remaining 54%

of the non-rebounders appeared to have cleared the viremia. The

percentages differed slightly between trials (Table 1). The lower

percentage of rebounding profiles in trials 6–8 (7%, 6%, and 9%

respectively), was possibly due to the higher number of missing

values particularly in the later stage of the infection in these trials.

Trails 7 and 8 were terminated at 35 dpi.

Goodness of Model Fits
Inspection of the individual model fits (e.g. Figure 2), residual

plots (Figure 3), and the Pearson product-moment correlations

(Figure 4), revealed that the vast majority of profiles are adequately

described by either the Wood’s or the Extended Wood’s model.

The mean of the Wood’s model residuals was close to zero at all

sampling times and the majority of the residuals were within 2

standard deviations from the mean residual, with an increased

residual variance and a slight tendency towards over-prediction

from 28 dpi onwards (Figure 3). The Wood’s model Pearson

product-moment correlations (Figure 4) indicated that the model

predictions and the data were highly correlated throughout the

experiment. The average predicted time for the peak viremia was

7 dpi (Figure 4A), which coincided with the time of the second

observation in the experiment, however a small subset of

individuals with flat observations between 4 and 14 dpi contrib-

uted to a bias towards over-prediction at 7 dpi, leading to the

lowest correlation between the predictions and the data being

observed at this time point. The Wood’s model also had a

tendency to over-predict viremia at the late stages between 35–

42 dpi, resulting from the fact that by model definition viremia

levels are always positive (i.e. converge to zero but never reach

zero), whereas data were truncated to zero when viremia was

below the detection level. In fact, only 4 individuals had

observations of viremia level below detection at 19 dpi and

21 dpi, however by 28 dpi 15% of the observations were below

detection. By the end of the experiment 77% of the 492 individuals

with viremia observations at 42 dpi were below detection.

The extended Wood’s model gave a tighter plot of residuals

(Figure 3B) with a reduced overall bias, and stronger correlations

between observed data and fitted values (Figure 4B), than the

Wood’s curve. However, for individual pigs there were wide

posterior predictive intervals (PPIs) around the second viremia

peak for the biphasic profiles (see example in Figure 2D), with this

uncertainty resulting from the fact that the viremic rebound was

generally represented by only one or two data points. As with the

Wood’s model, the Extended Wood’s model had a tendency to

over-predict the initial peak and also to over-predict viremia

around the second peak, a tendency most likely compounded by

the sparse data around these points.

Properties of Individual Viremia Profiles
Shape characteristics. The Pearson product-moment cor-

relations between the individual model parameters (Table 2) reveal

a strong relationship between the individual model parameter

estimates describing the first mode of the viremia profiles

(a1,b1,c1,t1,v1), but not between the parameter estimates related

to the second mode (a2,b2,c2,t2,v2), indicating a higher variation

in the predicted individual profile shapes related to the rebound

phase. In particular the estimates of the Wood’s parameters b1 and

c1 were highly correlated with a correlation of 0.92 and 0.87 for

uni- and biphasic profiles respectively, indicating that a rapid

increase to the peak viremia also corresponds to a rapid post peak

viremia decline during this phase. This was confirmed by highly

negative correlations (r = 20.84 and 20.88) between the deriva-

tives of the viremia functions at 4 and 19/21 dpi for the Wood’s

and Extended Wood’s model, respectively. This association did

not occur for the rebound phase (the correlation between b2 and

c2 was 0.15). As expected, the time of the second peak (t2) and the

value for the time of onset of the rebound phase t0 were highly

correlated; later onset of the secondary phase corresponded to a

later time of peak viremia in the secondary phase. Correlations

between the times and levels of peak viremia (i.e. between t1 and

v1, and between t2 and v2, respectively ) were generally weak.

Furthermore, the correlations between the corresponding Extend-

ed Wood’s model parameters defining the first and second mode of

the viremia curve, i.e. (a1,b1,c1,t1,v1) and (a2,b2,c2,t0,t2,v2),
respectively, were generally weak, with the exception for a

moderately strong negative correlation of 20.52 between the

parameters c1 and c2. Thus a fast viremia decline in the primary

phase tended to correspond to a slower decline in the secondary

phase and vice versa. Interestingly, the analysis revealed an

apparently strong negative association between the predicted peak

viremia and subsequent decline associated with the rebound phase

only (i.e. r(v2,c2) = 20.89, but r(v1,c1) = 0.23).

Is viremia clearance, persistence or rebound

predictable. The final mixed models for original and derived

Wood’s model parameters obtained from the truncated data from

the primary phase only (0–21 dpi), included fixed effects of profile

class (cleared, persistent or rebound) determined on the complete

Statistical Modelling of PRRS Viremia Profiles
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dataset, as well as the trial and the trial by parity interaction, with

pen within trial and dam within trial as random effects.

Statistically significant differences for all the individual Wood’s

curve parameter estimates (i.e. a1,b1,c1,t1 andv1 ) were found

between animals classified into the cleared and persistent viremia

classes, and between those classified as persistent and rebounders,

but not between animals classed as cleared and rebound (Table 3).

Inspection of the pairwise scatter plots of Wood’s model parameter

estimates (Figures 5A-C) shows clustering associated with the

different profile categories, in concordance with the statistical test

statistics (Table 3). Furthermore, identified differences between

parameters corresponding to persistent and non-persistent profiles

are also transparent in plots of the mean viremia predictions

together with their 95% confidence intervals (Figure 5D). Thus,

the results suggest that whereas persistence is predictable based on

the profile of the first 21 dpi, viremia rebound is not.

Association Between Viremia Profiles and Neutralising
Antibody (nAb) Response

The percentages of individuals in each nAb category for each

viremia profile class are presented in Table 4 and odds ratios of

nAb cross-productivity associated with different viremia profiles

classes are presented in Table 5. The final model used to test the

association between the profile-class and the nAb response

contained only the nAb class as dependent variable and the

viremia profile class as independent variable, with no other fixed

or random effects. There was a statistically significant association

Figure 2. Wood’s and Extended Wood’s model fits to viremia data of two representative pigs classified as non-rebounder (top
graphs) and rebounder (bottom graphs). Light-grey regions correspond to 95% posterior predictive intervals (PPI); dark-grey regions
correspond to 50% PPIs. The actual data are shown as green dots and the green solid lines give the best-fit solutions for the Wood’s model (A,C ) and
Extended Wood’s model (B, D), respectively.
doi:10.1371/journal.pone.0083567.g002

Table 1. Summary of the statistical classifications of the viremia profiles from the PRRSV challenge experiment

Number (percentage) of individuals within a specific viremia profile category

Class 1: Uni-modal Class 2: Biphasic

Trial Clearance within 42 dpi Persistence until 42 dpi Rebound

1 79 (61) 50 (39) 55 (30)

2 119 (83 ) 24 (17) 28 (16)

3 51 (37) 86 (63) 36 (21)

4 71 (47) 81 (53) 39 (20)

5 70 (48) 77 (52) 36 (20)

6 35 (35) 66 (65) 8 (7)

7 96 (55) 78 (45) 12 (6)

8 85 (59) 58 (41) 15 (9)

All (% of total) 606 (45) 520 (38) 229 (17)

Classifications of the viremia profiles are based on the likelihood ratio test comparing the Wood’s and the Extended Wood’s models. Trial 6 had 48% death prior to
21 dpi. Due to facility availability issues trials 7 and 8 had to be terminated at 35 dpi. Overall 17% were rebound, 38% were persistent and the remaining 45% were
clearance profiles.
doi:10.1371/journal.pone.0083567.t001
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(at the 95% significance level) between the profile class and the

diversity of the nAb response when the nAb categories were

pooled into two groups (i.e. no nAb cross-protection and cross-

protection). Clearance corresponded to a less diverse nAb response

than persistence and pigs with persistent viremia had a more

diverse nAb response than those with rebound profiles (Table 5).

However, there was no statistical significant difference in nAb

cross-protectivity between pigs that cleared viremia within 42 dpi

and rebounders (Table 5).

The results thus suggest that the slower clearance rate of viremia

in the persistent profiles, but not viremia rebound, is associated

with a more diverse nAb response.

Discussion

Empirical mathematical models have proven useful for describ-

ing the temporal evolution of a response variable and filtering

stochastic noise from dynamic biological systems whilst retaining

the most fundamental features [31,37–39]. Previous studies have

used such models for the quantitative analysis of growth, weight

gain and lactation [37,40]; however to our knowledge this is the

first study in which they have been applied to infection profiles.

The comprehensive PHGC dataset comprising repeated PRRS

viremia measurements from 1371 commercial pigs provided a

unique opportunity to assess the nature and degree of variation in

the host response to PRRSV infection. The main aims of this study

were to obtain a mathematical function to aid the characterisation

and to further our current understanding surrounding the wide

spectrum of observed PRRS viremia profiles.

Using maximum likelihood inference and numerous model fit

criteria, we established that the broad spectrum of observed

viremia trends from 0–42 dpi could be adequately represented by

either the uni- or biphasic Wood’s functions. Representative

parameter estimates of the data resulting in good model fits and

residuals were obtained for the vast majority of individuals, and

pigs could be objectively classified into one of three viremic

categories. This together with the convenient biological interpre-

tation of the model parameters and derived parameter estimates,

such as the time and level of viremia peak, allowed us not only to

quantify inter-host variation, but also to establish common viremia

curve characteristics and determine their predictability.

Assessment of the fitted models revealed a generally close fit of

the Wood’s and Extended Wood’s model to the log transformed

viremia data over the whole 42 day duration of the experiment,

with few exceptions. The lowest data-prediction correlation was

observed at 7 dpi, which corresponds to the average time for the

peak viremia level. The residuals showed that for certain

individuals the model over-predicts the value at this observation.

There are two main factors which may contribute to this lack of fit:

firstly for individuals whose peak viremia may lie between 4–7 dpi,

the lack of data representing the dynamics of the infection during

this period of rapid change may contribute to the over-prediction.

Secondly for individuals with a fairly flat plateau of observations

between 4–14 dpi the issue lies with the Wood’s model itself; in

this case the model systematically predicts a higher and sharper

peak than the data would suggest as it is unable to produce a flat

plateau near the peak. The Wood’s (and Extended Wood’s) model

itself is constrained by the model parameters; the time of the peak

viremia level is dependent on both parameters b1 and c1 which in

turn contribute to the rates of pre-peak viremia increase and post-

peak viremia decline. In contrast, the general tendency to over-

predict viremia from 28 dpi onwards for non-rebounders can

easily be explained by the fact that the Wood’s curve converges to,

but never reaches, zero. This latter property of the Wood’s

function may in fact be a clearer representation of reality; we are

never able to confirm that viremia levels truly reach zero, but only

that they have reached levels below the detection threshold

determined by the accuracy of experimental observations. Note

that theoretically the log- transformed viremia data could reach

negative values which the Wood’s model would be unable to

capture. However such viremia observations never arise in

practice due to the experimental threshold of detection and hence

a function such as the Wood’s model that approaches zero is

appropriate for the current PRRS viremia dataset.

By parsimony, in the absence of more frequent measurements,

the Extended Wood’s model was chosen as it is a simple model

representing the main features of the biphasic profiles. It

encapsulates the assumption that the second phase of the profile

has the same essential shape characteristics as the primary phase.

Furthermore the Extended Wood’s model parameters were also

able to encapsulate the possible anamnestic nature of the immune

response; the parameters allowed for variation in the size, timing,

rate of increase and rate of decline in the secondary phase. The

consistency of the model residuals and correlations indicate that

the Extended Wood’s model provides indeed a good fit during

both phases of the profile; in fact the correlations between the data

and model predictions were highest during the second phase. The

second phase was generally shorter (28–42 dpi) and less severe

Figure 3. The Wood’s model residuals (3A) and the Extended Wood’s model residuals (3B). The red line shows the residual mean and the
blue lines delimit two standard deviations from the mean.
doi:10.1371/journal.pone.0083567.g003
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than the first phase (0–28 dpi), as indicated by greater predicted

rates of viremia increase and decline in the second phase of the

profile (parameter means for the primary and secondary phase

were: mean(b1,c1) = (0.66,0.10) and mean(b2,c2) = (4.67,3.78)),

and lower levels of peak viremia associated with the second phase.

This contrast in timing and size of the primary and secondary

phases supports evidence of the anamnestic nature of an

individual’s immune response in a rebound profile.

Despite the generally good fit of the Wood’s and Extended

Wood’s models, it is likely that a candidate model of greater

mathematical complexity could provide a better empirical fit to

the data; indeed much effort has been dedicated to the

identification of appropriate functions to describe e.g. lactation

Figure 4. The Wood’s(4A) and Extended Wood’s(4B) model mean predictions and data-prediction correlations. The black lines outline
the mean model predictions, and the dashed grey lines delimit the 95% prediction confidence intervals. The dotted black lines joined with crosses
show the Pearson product-moment correlations between observed data and predicted values.
doi:10.1371/journal.pone.0083567.g004
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or growth profiles in livestock [31,40]. Amongst these candidates

are spline functions, which indeed were able to provide a closer fit

to the present viremia data (results not shown). However their

increased complexity requires biological interpretation and does

not lend itself to a quantitative assessment of profile characteristics.

The Wood’s and Extended Wood’s models in contrast constitute

worthy candidates for this analysis, particularly as biologically

meaningful interpretations can be given to their parameters.

The 42 day study period gave rise to uni- or biphasic viremia

profiles only. It is possible that the observed biphasic profiles

represent damped oscillations which are truncated after 6 weeks

post infection. Oscillations often represent negative feedbacks with

delay in biological systems [41]. Such behaviour could arise from

the virus-host immune response interactions. An oscillatory

mathematical function such as a sine function may constitute a

plausible alternative to the Wood’s functions presented here and

would be attractive from the mathematical perspective due to the

few parameters needed to determine the period of the cycles and

damping factor of the oscillations. However the current dataset

doesn’t span a sufficient duration to inform parameter estimates

for such models; data from longer PRRS virus challenge

experiments would be required to test these hypotheses.

Table 2. The Wood’s and Extended Wood’s model parameter’s Pearson product-moment correlations.

Extended Wood’s Parameters a1 b1 c1 t1 v1 a2 b2 c2 t0 t2

a1 - 20.91 20.71 20.81 0.04

b1 20.85 - 0.92 0.59 0.21

c1 20.52 0.87 - 0.26 0.26

t1 20.84 0.52 0.39 - 0.004

v1 0.19 0.12 0.23 20.16 -

a2 20.05 0.07 0.10 20.02 20.01 -

b2 0.02 0.01 0.04 20.03 0.02 20.10 -

c2 0.03 20.30 20.52 0.33 20.27 20.08 0.15 -

t0 0.15 20.14 0.07 20.13 0.05 20.04 20.09 20.09 -

t2 0.17 20.10 0.57 20.20 0.10 20.06 20.05 20.24 0.98 -

v2 0.07 0.25 0.47 20.33 0.30 0.14 0.08 20.89 0.13 0.29

Upper triangle in bold: Wood’s model parameter correlations. Lower triangle: correlations between the Extended Wood’s model parameters.
doi:10.1371/journal.pone.0083567.t002

Figure 5. Woods parameters and mean model predictions for the 3 profile classes. Figure 5A-C. Pair-wise scatter plots and clustering of
primary phase Wood’s model parameters for the 3 profile classes: cleared (blue circles), persistent (pink diamonds) and rebound (black crosses).
Figure 5D. Mean Woods model predictions with the 95% Confidence Intervals (dashed lines) based on the truncated data from 0–21 dpi for
individuals previously classified as rebound (black), persistent (pink) and cleared(blue), respectively.
doi:10.1371/journal.pone.0083567.g005
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One of the advantages of fitting alternative mathematical

functions to viremia data is that it provided an objective method

for distinguishing uni-modal from biphasic viremia profiles based

on statistical inference. This helped to confirm previous observa-

tions from smaller scale studies (e.g. [17] and [20] ) that viremia

rebound is a genuine and common phenomenon in PRRSV

infections. This may have important epidemiological consequenc-

es, as individuals diagnosed as non-viremic at time of sampling

may harbour and shed infectious virus some days later. Similarly,

individuals with persistent viremia profiles are likely to be

infectious for longer. The question thus arises whether serum

viremia persistence or rebound can be predicted, e.g. based early

profile characteristics. Our statistical analyses, using data from the

primary phase (0–21 dpi) of the experimental infection, revealed

that profiles classed as persistent had, on average, a faster increase

to the peak and slower decline from the peak viral load than both

the rebound and clearance profiles. However, the results also

suggest that rebound and clearance profiles cannot be distin-

guished based on information from the primary phase. This result

has however important implications with regards to the following

hypothesis: considering that serum viremia data were only

collected for 42 dpi, one may hypothesise that every pig may

eventually experience rebound, provided that the virus has not

been completely cleared, and that rebound could only be observed

for a subset of pigs in this study due to censoring. However, if this

hypothesis was correct, there would be a higher probability of

observing rebound in individuals with faster viremia decline within

21 dpi. But, since no statistical difference was observed between

rebound and clearance on the truncated dataset, the existing

evidence would suggest that only a subset of pigs experiences

viremia rebound. Furthermore, we also observed that none of the

pigs with non-detectable viremia levels for 2 or more weeks

experienced viremia rebound within 42 dpi (results not shown),

Table 3. Viremia profile class and their Least Square Means (LSM) from the truncated data.

Wood’s parameter LSM (SE): Cleared LSM (SE): Persistent LSM (SE): Rebound PCP PCR PPR

a1 3.83 (0.049) 4.16 (0.051) 3.84 (0.066) ,.01 0.98 ,.01

b1 0.68 (0.011) 0.53 (0.012) 0.68 (0.017) ,.01 0.91 ,.01

c1 0.097 (0.0014) 0.072 (0.0015) 0.096 (0.0022) ,.01 0.92 ,.01

t1 6.90 (0.11) 7.82 (0.12) 6.99 (0.16) ,.01 0.58 ,.01

v1 6.60(0.018) 6.56 (0.019) 6.61 (0.024) 0.02 0.78 0.04

The LSM parameters estimates and standard errors (SE) derived from fitting the Wood’s model to the truncated dataset from 0–21 dpi for pigs whose viremia profiles
were classified as cleared, persistent and rebound, respectively. P-values corresponding to the associated test between the profile groups denoted by the subscript C, P,
R for cleared, persistent and rebound respectively.
doi:10.1371/journal.pone.0083567.t003

Table 4. Neutralising antibody (nAb) data and viremia class.

nAb category (1–5) Class Number Of Individuals Percentage [% of Class]

1 Rebound 6 5.9

2 Rebound 55 53.9

3 Rebound 11 10.8

4 Rebound 21 20.6

5 Rebound 9 8.8

Total (1–5) Rebound 102 -

1 Cleared 21 9.4

2 Cleared 104 46.6

3 Cleared 51 22.9

4 Cleared 33 14.8

5 Cleared 14 6.3

Total (1–5) Cleared 223 -

1 Persistent 16 14

2 Persistent 61 54

3 Persistent 21 18

4 Persistent 11 10

5 Persistent 5 4

Total (1–5) Persistent 114 -

Frequency and percentages of individuals classified as cleared, persistent and rebound, within each neutralizing antibody (nAB) category. nAB category 2 refers to
individuals whose serum contains nAB that can only neutralize the homologous PRRSV strain (NVSL) as used in the in-vivo infections; nAB categories 3–5 correspond to
nAB response to the homologous strain and k-2 other PRRSV strains.
doi:10.1371/journal.pone.0083567.t004
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thus indicating that rebound is unlikely to occur if the serum virus

has been cleared for a period of several weeks.

Analysis of the nAbs of infected pigs collected at 42 dpi

indicated that there was a strong homologous response to the

PRRSV challenge, in agreement with observations from previous

studies [42,43]. Our study not only revealed a high degree of inter-

pig variation in viremia profiles but also high variability in the

range of cross-protection of neutralizing antibodies collected at

42 dpi. Furthermore, a statistical association between the two

quantities was identified, which may point to the host-pathogen

interactions underlying the observed viremia and antibody

patterns. Both virus persistence within the host and cross-

protection of host antibodies have been previously linked to virus

mutation and emergence of quasi-species [9,38]. PRRSV evolves

rapidly in infected pigs with a high mutation rate of 1{3|10{2

substitutions per nucleotide and year [21,44]. Furthermore,

multiple variants of PRRSV were found to exist simultaneously

within individual animals [22]. Thus, in order to efficiently clear

the range of PRRSV quasi-species, a versatile neutralizing

antibody response would be required.

Our study revealed that pigs that manage to clear the virus from

the blood within 42 dpi have on average a less diverse nAB

response than pigs with persistent viremia profiles. In light of the

pathogen co-evolution, these results could be interpreted as rapid

clearance of the virus limiting the duration in which the virus may

evolve, resulting in an efficient, but relatively narrow antibody

response. Persistent profiles, in contrast, may be the result of a host

immune response that is inefficient in clearing the virus but in

which the diversification of the neutralizing antibody response is

driven by rapid virus mutation. Rebound is characterised by two

phases; the viremia decline in the first phase may be caused by an

effective, but narrow nAb response. However, before the immune

response has managed to fully clear the virus within the primary

phase, the emergence of a new quasi-species capable of escaping

the existing antibodies may cause the viremia to increase in a

second phase driving the continual diversification of nAbs that

eventually reduce viremia again. Thus, given that the majority of

rebound profiles are at the declining phase by 42 dpi, viremia

rebound would be expected to be associated with a more versatile

nAb response at 42 dpi than clearance, but a more narrow

response than persistence, which is in agreement with the results,

although the differences were not always found to be statistically

significant.

It should be noted, however, that the observed associations

between the nAB response and viremia patterns may equally arise

from confounding immune quantities affecting both nAB and

viremia, which were not measured in these studies. Indeed, several

alternative hypotheses, not necessarily involving virus mutation,

emerge as potential causes for viremia rebound. For example

viremia rebound may correspond to the second cycle of an

oscillating viremia profile which may arise naturally (and in the

absence of virus mutation) from predator-prey type interactions

between the virus and the immune response [45,46]. Alternatively,

rebound could arise from the heterogeneity of the virus

distribution in various tissues within the host. Previous studies

have observed that although viremia may be below detection in

the serum, persistent infection in the tonsils and lymphoid tissues

can last for longer than 6 months [18]. Thus, the site of replication

may be hidden from the serum and the infection may remain

localised in certain tissues. Rebound may be a manifestation of the

virus from these localised tissue infections being poured back into

the system; thus becoming detectable in the serum. The influx of

virus into the serum may occur in occasional bursts or as a final

out-pouring into the serum determined by some environmental

stimulus, immune response mechanism, or stochastic process. This

second hypothesis would imply that viremia rebound follows more

a distinct bi- or multi-modal pattern rather than a damped

oscillatory behaviour. Virus rebound manifesting itself in biphasic

viremia profiles is a common phenomenon in equine influenza

infections, the causative processes of which remain a mystery [47].

Additional information about virus heterogeneity and/or nAb

characteristics at different stages post infection would be needed to

assess these hypotheses.

Similar arguments may be used to interpret the observed high

inter-host variation in viremia decline post the initial viremia peak.

Variation in the rate of viremia reduction may be a function of the

host’s own immune response, virus mutation mechanisms or the

interaction between both processes. The moderate negative

correlation between parameters c1 and c2 (-0.52) indicates that a

slow decline in the first cycle corresponds to faster decline in the

second cycle and vice versa. This association may be indicative of

the temporal evolution of the immune response. A slow immune

response in the primary phase may prolong the conditions

required to produce neutralising antibodies and thus manifest in

a stronger or more diverse nAb at the end of the second phase.

Conversely, a fast initial immune response may indicate an

effective, but narrow nAb response during the primary phase so

that fewer or less diverse nAB are available for the second phase.

The identified association between nAb and viremia categories

would support this hypothesis, since persistent profiles have the

broadest response of all the profile categories.

From the current study we cannot affirm that there would be

infectious and epidemiological consequences in the secondary

phase of rebound profiles. Inferences made on infectiousness and

epidemiological consequences using the data obtained via

quantitative RT-PCR may be limited due to the potential

discrepancy between the measured viral genome load and the

non-measured true viral load. Thus, the observed secondary phase

of rebound may be the result of detecting circulating junk genomes

rather than genomes of infectious particles and may thus have no

significant epidemiological consequence. However, previous stud-

ies have explored the relationship between diverse viremia

measurements an infectiousness of pigs infected with PRRSV

[29,48,49]. For example, Charpin et al. [48] detected viral

genome in the blood of inoculated pigs from 7–77 dpi using RT-

PCR, whereas viral genome shedding was detectable from nasal

swabs from 2–48 dpi. Furthermore their study concluded that

infectiousness was indeed correlated with the time course of viral-

genome in the blood measured by RT-PCR and that the decrease

in infectiousness was related to the increase in antibodies[48]. In a

study by Rowland et al.[49]it was observed that even when there

Table 5. Odds ratios of the cross protectivity of neutralising
antibodies (nAbs) from individuals from profile Class 1 relative
to that of nAbs from individuals from viremia profile Class 2.

Class 1 Class 2
Odds ratio (95% Confidence
interval) P- value

Clearance Persistence 0.61 (0.38, 0.98) 0.04

Clearance Rebound 0.86 (0.53, 1.38) 0.53

Persistence Rebound 1.40 (0.80, 2.45) 0.24

The columns class 1 and class 2 indicate which two viremia categories are being
compared. The nAb class was a pooled into a binary trait: cross-protective (nAb
class 1–2) or not cross-protective (nAb class 3–5). The 95% significance level was
used (p,0.05). For further explanation see text.
doi:10.1371/journal.pone.0083567.t005
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were low levels of the virus replication the virus was easily

transmitted and it was only by 260 dpi that pigs were no longer

able to transmit the virus to sentinel pigs[49]. Thus it has been

established that some PRRSV-infected pigs can support virus

replication and transmit infection for an extended period far

beyond the duration of the secondary phase of the profiles in our

study. By this logic one may argue that the observed rebound in

viral genome load may indeed have biological consequences in

terms of viral shedding and transmission to susceptible animals.

Previous PRRS studies alluded to the phenomenon of viremia

rebound [14,20,50] based on qualitative inspection of viremia

profiles, but have not analysed the duration, defining character-

istics or relationship with the antibody response of this phenom-

enon. Using data from the first 3 out of the 8 trials analysed in this

study, Boddicker et al. [20] defined biphasic profiles subjectively

by a rebound of 2 units on the logarithmic (base 10) scale of

viremia observations from 21 dpi onwards. Using this definition

rebound was not found to be heritable, indicating that rebound is

more likely to be determined by either the virus or the

environment as opposed to host genetics [20]. However, the low

heritability estimate of this phenotypic trait (0.03) may be due to

poor trait definition arising from too few successive observations to

accurately capture the rebound phase (i.e. between 21–42 dpi),

and hence errors in classifying animals. The statistical classification

used in this study resulted in 22% of the pigs from trials 1–3

classed as rebounders as opposed to the 33% of pigs classed into

the rebound category in the previous study [20].

Lastly, there is accumulating evidence for substantial host

genetic variation in response to PRRSV [1,4], increasing the

potential for the control of PRRS through genetic selection. In

particular, a quantitative trait locus (QTL) was identified for the

area under the viremia curve spanning the first 21 days post

infection [20]. Our study provides opportunity to assess whether

clearance, persistence or rebound, and other derived features, such

as level of or time to peak viremia and the rates of increase and

decline in the profiles are genetically determined, and to

potentially identify QTL associated with these new phenotypes.

The new derived phenotypes may provide deeper insights into the

underlying molecular mechanisms. Furthermore, the hypotheses

for host-pathogen interactions emerging from the current study

will be used to inform and validate process-based dynamic

mathematical models of in-vivo PRRSV infections in future studies.
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