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Skin is a frontline organ that is continuously exposed to external stimuli, including
pathogens. Various immune cells reside in the skin under physiological conditions and
protect the body from the entry of pathogens/antigens by interacting with each other and
orchestrating diverse cutaneous immune responses. To avoid unnecessary inflammation
and tissue damage during the elimination of external pathogens and antigens, skin
possesses regulatory systems that fine-tune these immune reactions. Mast cells (MCs)
are one of the skin-resident immune cell populations that play both effector and regulatory
functions in the cutaneous immune response. So far, the interleukin-10-mediated
mechanisms have mostly been investigated as the regulatory mechanisms of MCs.
Recent studies have elucidated other regulatory mechanisms of MCs, such as the
maintenance of regulatory T/B cells and the programmed cell death protein-1/
programmed cell death-ligand 1-mediated inhibitory pathway. These regulatory
pathways of MCs have been suggested to play important roles in limiting the excessive
inflammation in inflammatory skin diseases, such as contact and atopic dermatitis. The
regulatory functions of MCs may also be involved in the escape mechanisms of antitumor
responses in skin cancers, such as melanoma. Understanding and controlling the
regulatory functions of skin MCs may lead to novel therapeutic strategies for
inflammatory skin diseases and skin cancers.
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INTRODUCTION

Skin is the outermost organ separating the body from the outer environment. As the skin is
constantly exposed to various external stimuli, such as pathogens and physical/chemical trauma, it
has sophisticated barrier systems that protect the body from such stimuli. One such barrier system
includes the immunological barrier, in which skin-resident or infiltrated immune cells exhibit
effector functions to eliminate the pathogens (1). To form this barrier, the immune cells perform
effector functions by interacting with each other and producing various cytokines/chemokines,
leading to inflammation. While inflammation is necessary for efficient protection of the body from
external stimuli such as pathogens and antigens, excess of it can cause undesired tissue damage. To
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minimize tissue damage, multiple regulatory systems must
precisely control the effector functions of immune cells.

Among the immune cells in the skin, mast cells (MCs) are one
of the most abundant skin-resident immune cells, accounting for
approximately 10% of all hematopoietic cells in the skin (2). Skin
MCs consist in connective tissue-type MCs (CTMCs) in mice
and tryptase-positive, chymase-positive MCTC in humans and
are considered to be derived from the bone marrow, yolk sac, and
the aorta-gonad-mesonephros region (3–6). Under physiological
conditions, MCs are localized in the hypodermis and dermis,
mainly around blood vessels, nerve fibers, and hair follicles (7, 8).
Several studies have been performed to elucidate the roles of
MCs in the skin under steady and diseased conditions. MCs play
both facilitating and regulatory roles in a context-dependent
manner (9–13). So far, the interleukin (IL)-10-mediated
mechanisms have mostly been investigated as the regulatory
mechanisms of MCs. However, recent studies have revealed
several IL-10-independent regulatory functions of MCs.

In this review, we discuss the recent findings on the
immunoregulatory functions of skin MCs and their underlying
mechanisms in the context of inflammatory skin diseases and
skin cancers, focusing on contact dermatitis, atopic dermatitis
(AD), and malignant melanoma (Table 1).
CONTACT DERMATITIS

Contact dermatitis, such as metal allergy and plant allergy, is a
prototypic Th1/Type 1 CD8+ T cells (Tc1)-type immune
response of the skin (1). Mouse contact hypersensitivity (CHS)
is one of the most frequently used animal models of contact
dermatitis (22). Small molecules (<500 Da), called haptens, bind
to self-proteins and become antigens to induce CHS. When
foreign antigens invade the skin, they are captured by the skin
dendritic cells (DCs), mainly dermal DCs, which subsequently
migrate to the skin-draining lymph nodes (LNs) and undergo
maturation. The migrated DCs then present the antigens to naive
T cells in an antigen-specific manner and promote their
differentiation into effector T cells (sensitization). When the
same antigens enter the skin, the skin DCs present the
antigens to skin-infiltrated effector T cells in situ and activate
them to produce cytokines and cytotoxic molecules, such as
interferon-g and granzyme B, which lead to antigen-specific
immune responses (elicitation). MCs play a role in CHS
regulation via multiple mechanisms.

Promotion of CHS by MCs
During the sensitization phase in CHS, MCs play promoting role
by interacting with or recruiting immune cells in the skin. Upon
hapten exposure, MCs release tumor necrosis factor (TNF) and
promote the maturation/migration of dermal DC s to the LNs,
leading to the facilitation of sensitization (23, 24). MC-derived
exosome may also be involved in DC maturation (25).
Furthermore, MCs facilitate sensitization by amplifying the
infiltration of neutrophils into the hapten exposed skin, a key
step for sensitization (26, 27), by releasing TNF and histamine
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(26). Recruitment of neutrophils by MCs are also important for
the promotion of elicitation (23, 28). In addition, MCs present
antigens to T cells by acquiring major histocompatibility
complex class II (MHCII) from DCs, and can facilitate
elicitation (29). However, in the elicitation phase, negative
regulatory functions of MCs have also been elucidated as
illustrated below.

IL-10-Dependent Regulation of CHS
Previous studies have investigated the role of skin MCs in CHS
using MC-deficient mice, such as WBB6F1-KitW/Wv (KitW/Wv)
and C57BL/6-KitW-sh/W-sh (KitW-sh/W-sh) mice (Kit-dependent,
constitutive MC deficiency) (9). In these mice, both facilitating
and regulatory roles of MCs have been reported in CHS. For
example, Norman et al. reported that CHS responses in KitW/Wv

mice are reduced when it is induced by low-concentration
hapten (oxazolone) and elevated when it is induced by high-
concentration hapten, suggesting that MCs are necessary for the
development of CHS and to limit the excess inflammation (30).
Grimbaldeston et al. also reported exacerbated oxazolone-
induced CHS responses in KitW/Wv and KitW-sh/W-sh mice. This
exacerbation was eliminated by the transfer of wild-type (WT)
mouse-derived MCs, but not IL-10-deficient (IL-10-/-) mouse-
derived MCs, suggesting that MCs limit inflammation in CHS in
an IL-10-dependent manner (14). Using IL-10 reporter mice, it
was later confirmed that MCs produce IL-10 most abundantly in
the skin one day after the elicitation in oxazolone-induced CHS,
whereas MCs produce minimal IL-10 when CHS was induced
with low concentrations of oxazolone (15).

Because Kit-dependent MC-deficient mice have various
hematological abnormalities other than MC deficiency, it has
been debated whether the exacerbated CHS response in these
mice is solely attributable to MC deficiency. However,
exacerbated CHS responses have also been observed in Kit-
independent MC-deficient mice (9, 11), and MC-specific
depletion of IL-10 (Mcpt5-Cre+Il10f/f mice) recapitulated the
exacerbated CHS phenotype in MC-deficient mice (15). These
results indicate that MCs play a suppressive role in eliciting
oxazolone-induced CHS via IL-10 production. In contrast, these
regulatory functions of MCs were not observed by Dudeck et al.,
in which MC-deficient mice (both Kit-dependent and Kit-
independent MC-deficient mice) were treated with 2-4-
dinitrofluorobenzene-induced CHS, and showed attenuated
CHS responses. Furthermore, MC-specific depletion of IL-10
did not affect the CHS response (23). Thus, MCs seem to change
their roles depending on the type and concentration of haptens,
although the molecular mechanisms underlying the switch of
MC function in each context remain unclear. CHS protocol (e.g.
interval between sensitization and elicitation, skin site of
sensitization), the parameter used to measure inflammation,
and the timing of analysis after the elicitation (e.g. early versus
late phase) are other potential variables that would influence the
functions of MCs or phenotype of MC-deficient mice in CHS. In
the early phase, MCs may facilitate CHS by releasing
inflammatory mediators such as TNF and histamine (23),
while in the late phase, MCs may limit CHS by producing
anti-inflammatory mediators such as IL-10 (15).
May 2022 | Volume 13 | Article 898419
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Maintenance of Regulatory B cells
In addition to MCs, IL-10 is produced by several cell
populations, such as regulatory T cells (Tregs) and regulatory
B cells (Bregs). Both cell populations play crucial roles in the
termination of the CHS response (22, 31). Kim et al. reported
that MCs inhibit CHS responses by maintaining the IL-10+ Breg
number in skin-draining LNs in an IL-5-dependent manner (16).
In oxazolone-induced CHS, KitW-sh/W-sh mice showed an
augmented CHS response, which was accompanied by a
reduced IL-10+ Breg number in the skin-draining LNs.
Reconstitution with MCs restored the population of IL-10+

Bregs in KitW-sh/W-sh mice and suppressed the CHS response.
The level of IL-5 wasmarkedly decreased in the LNs ofKitW-sh/W-sh

mice and was restored by reconstitution of MCs. This recovery
of Breg number and IL-5 level in LNs was diminished under
reconstitution with IL-5-/- MCs. Based on these results, it has been
proposed that MCs perform regulatory functions in CHS by
maintaining Breg number in LNs (16). MCs may increase IL-10
levels in peripheral tissues by producing IL-10 themselves and by
maintaining IL-10-producing cell populations, such as Bregs.

Maintenance of Resident Memory T Cells
Skin-resident memory T (TRM) cells are a subset of memory T
cells that provide local surveillance and do not migrate out of the
skin (32). Upon inflammation, effector T cells infiltrate the skin,
and some of them become TRM cells, mostly CD8+ TRM cells. IL-
7, IL-15, and transforming growth factor (TGF)-b are pivotal
cytokines that generate the skin TRM cells (32). Skin TRM cells
protect the body from the invasion of pathogens; however, they
are also involved in the development of various inflammatory
skin diseases, including contact dermatitis.

Using oxazolone-induced CHS, Gimenez-Rivera et al.
examined the relationship between MCs and CD8+ TRM cells in
skin (17). The authors modified CHS via repeated elicitation at
long intervals (elicitation at 30 days and 60 days after the 1st

elicitation), which led to the accumulation of antigen-specific TRM

cells in the elicited skin. Under these conditions, the CHS response
was significantly increased in KitW-sh/W-sh and Mcpt5-Cre+iDTR
mice. The number of CD8+ TRM cells was significantly higher in
MC-deficient mice than in control WT mice. In addition, the
expression levels of IL-15, but not IL-7 and TGF-b, were
upregulated in MC-deficient mice. In vitro, the MC proteases
such as chymase and carboxypeptidase degraded IL-15. These
results suggest that MCs limit skin inflammation in CHS by
regulating the TRM cell number via IL-15 degradation (17).
Frontiers in Immunology | www.frontiersin.org 3
Programmed Cell Death Protein-1/
Programmed Cell Death-Ligand 1 Signaling
The abovementioned regulatory functions of MCs are exhibited
in a contact-independent manner via cytokine production.
However, MCs can also exhibit regulatory functions by direct
contact via the programmed cell death-1 (PD-1, CD279)/
programmed cell death-ligand 1 (PD-L1, CD274) pathway
(18). The PD-1/PD-L1 pathway is a negative regulator that
coordinates the balance between T cell activation and tolerance
(33). PD-1 expressed on effector T cells binds to PD-L1 expressed
on various tissue-resident and antigen-presenting cells and
transduces signals that inhibit the proliferation of T cells and
their effector functions.

To investigate the mechanisms by which the PD-1/PD-L1
pathway regulates T cell activation in CHS, we induced CHS in
Pdl1-/- mice and found that Pdl1-/- and WT mice treated with the
anti-PD-L1 antibody exhibited an exacerbated CHS response,
indicating that the PD-1/PD-L1 pathway is important for the
negative regulation of the CHS response. However, the effect of
the anti-PD-L1 antibody on the CHS response was abolished in
MC-deficient mice, suggesting that MCs are involved in PD-1/
PD-L1-mediated negative regulation of effector T cells. Skin MCs
highly express PD-L1 in both mice and humans. MCs interact
with T cells in the skin, as revealed by two-photon microscopic
observations. In a co-culture system of effector T cells and MCs,
effector T cell activation was induced by WT MCs, which was
further enhanced by Pdl1-/-MCs or via the blockade of the PD-1/
PD-L1 pathway by the anti-PD-L1 antibody. These results
suggest that MCs directly contact effector T cells in the skin
and negatively regulate their activation via the PD-1/PD-L1
pathway (18).
ATOPIC DERMATITIS

Atopic dermatitis (AD) is a common chronic inflammatory skin
disease. Type 2 cytokines, especially IL-4 and IL-13, are central
mediators that induce various symptoms in AD, such as pruritus
and skin barrier defects (34). The number of MCs is significantly
increased in the skin lesions of AD, suggesting the involvement
of MCs in the establishment of AD. Similar to the studies on
CHS, both pro- and anti-inflammatory functions of MCs have
been reported in the AD model, which may be dependent on the
model used in the study.

Regulatory Function of MCs in AD:
Maintenance of Tregs (Oxazolone-Induced
AD Model)
As mentioned in section 1, oxazolone is a representative hapten
to induce CHS, a type 1 immune response in the skin. Single time
application of oxazolone following the sensitization (at intervals
of 5-7 days) induces CHS. However, repeated and frequent
application of oxazolone (5-10 times at intervals of a few days)
causes type 2 cytokine-shifted inflammation in the skin and is
used as an AD model (35). KitW-sh/W-sh mice exhibited
exacerbated dermatitis, whereas adoptive transfer of WT MCs
TABLE 1 | A summary of references regarding the regulatory functions of mast
cells in the skin.

Mouse model Regulatory mechanisms (reference)

Contact hypersensitivity Production of IL-10 (14, 15)
Maintenance of Bregs via IL-5 (16)
Reduction of TRMs by degradation of IL-15 (17)
PD-1/PD-L1 signaling (18)

Atopic dermatitis Maintenance of Tregs via IL-2 (19)
Malignant melanoma Recruitment of Tregs (20)

Induction of M2 macrophages by histamine (21)
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into KitW-sh/W-sh mice decreased the inflammatory response,
indicating that MCs play a suppressive role in this AD model
(19). The suppressive effects of MC reconstitution were not
observed in Il2-/- MCs, suggesting that MC-derived IL-2 is
involved in the suppression mechanism. Since the ratio of
activated T cells to Tregs in the skin was significantly higher in
KitW-sh/W-sh mice reconstituted with Il2-/- MCs than in those
reconstituted with WT MCs, it was concluded that MCs inhibit
dermatitis by maintaining Tregs via IL-2 production (19).
Exacerbated phenotypes in KitW-sh/W-sh mice have also been
reported in the MC903-induced AD model (36), but the
underlying mechanisms by which MCs suppress inflammation in
this model remain unclear.

Pro-Inflammatory Function of MCs in AD
(House Dust Mite/Staphylococcal
Enterotoxin B -Induced AD Model)
Repeated treatment with Dermatophagoides farinae (house dust
mite: HDM) extract and staphylococcal enterotoxin B (SEB)
induces skin inflammation that mimics AD (37). Clinical scores
were significantly lower in KitW-sh/W-sh mice and Kit-
independent MC-deficient mice (Cpa3-Cre+Mcl-1f/f) than in
the corresponding WT mice, indicating that MCs are required
for maximal skin inflammation in this model (38). Since the Fc
receptor for IgE-deficient (FceRI-/-) mice also showed reduced
skin inflammation in this model, the authors speculated that
MCs facilitate atopic skin inflammation via FceRI-dependent
mechanisms. In another study using the same HDM/SEB-
induced AD model, Serhan et al. revealed that MCs promote
atopic skin inflammation by interacting with the nociceptive
sensory neurons (nociceptors) (39). HDM directly activates
nociceptors, which produce substance P. Substance P induces
the activation of MCs surrounding nociceptors via the Mas-
related G protein-coupled receptor B (MRGPRB), a receptor for
cationic molecules from the MRGPR family. These results
suggest that after exposure to HDM allergens, nociceptors
sense the allergens and induce MC degranulation via the
activation of MRGPRB on MCs, leading to the initiation of
type 2 inflammation.

Therefore, in AD lesions, MCs may play facilitating roles via
the release of various chemical mediators by degranulation,
which may induce both IgE-dependent (FceRI-mediated) and
independent (MRGPRB-mediated) responses. In contrast, MCs
may play regulatory roles in AD by maintaining Treg number
and suppressing Th2 cell activation.
MALIGNANT MELANOMA

Malignant melanoma (MM) is one of the most malignant types
of skin cancer (40). Previous studies on the involvement of MCs
in MM development have mostly been based on histological
analysis investigating the number of MCs surrounding the MM
and its relation to prognosis. Some reports have shown a
correlation between tumor progression and the number of
MCs surrounding the tumors (41, 42), whereas others have
Frontiers in Immunology | www.frontiersin.org 4
shown a decrease in the number of MCs in advanced MM (43, 44);
therefore, the results have not been consistent. Recent studies
using mouse MM models have shown both beneficial and
detrimental roles of MCs in MM development (20, 45).

Kaesler et al. reported the beneficial role of MCs in the
antitumor response in MM (45). The authors first identified
that patients exhibiting better responses to anti-cytotoxic T-
lymphocyte antigen 4 (CTLA4) antibody treatment developed
colitis as an immune-mediated adverse effect with a systemic
lipopolysaccharide (LPS) signature. In a mouse model of MM
using the B16 melanoma cell line, LPS treatment reduced the
tumor volume. MC-deficient mice (Mcpt5-cre+ R-DTAfl/fl)
showed increased tumor volume compared to control WT
mice, and the suppressive effect of LPS treatment on tumor
volume was not observed in MC-deficient mice. Based on these
results, the authors concluded that the effective immune control
of MM by the anti-CTLA4 antibody was dependent on LPS-
activated MCs, which recruit tumor-infiltrating effector T cells
via secretion of C-X-C motif chemokine ligand 10 (45).

In contrast, Somasundaram et al. reported an association
between MCs and resistance to anti-PD-1 therapy in MM (20).
Using humanized mice and melanomas from human patients, the
authors first examined the immune cell changes in tumors after
treatment with anti-PD-1 antibodies. Immunohistochemical and
flow cytometric analyses revealed that MC numbers were increased
in the group resistant to anti-PD-1 antibodies. Furthermore, RNA
sequence analysis of tumors from patients with MM before and
after anti-PD-1 antibody treatment showed an increase in MC
number after treatment, especially in the non-responder group.
Meanwhile, the elimination of MCs with sunitinib enhanced the
therapeutic effects of the anti-PD1 antibody in the humanized MM
model. Mechanistically, numerous Treg infiltrations were observed
around the MCs at tumor sites, correlating with decreased MHC
class I expression in the surrounding tumors. These findings suggest
that MCs may promote tumor progression by downregulating
tumor MHC class I expression by recruiting Tregs, either directly
or indirectly. Histamine from MCs may contribute to tumor
promotion by enhancing peritumoral M2 macrophage
differentiation and suppressing CD8+ T cell activity (21). These
results suggest that the depletion of MCs or downregulation of MC
function can be used as potential therapeutic strategies for MM.
DISCUSSION

As described above, MCs perform immunosuppressive functions
via diverse mechanisms, at least in mice (Table 1). At the initial
stage of inflammation or when the extent of inflammation is low,
MCs may play a role in promoting inflammation. However, at
the late stage of inflammation or when inflammation becomes
excessive, MCs may switch their role from pro- to anti-
inflammatory and fine-tune inflammation to avoid undesired
tissue damage (11, 15). In the cancer environment, where the
activation of innate and acquired immune systems is necessary
for the elimination of tumors, such regulatory functions by MCs
may become deleterious to the host.
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However, many open questions are unanswered. For example,
signals that induce the regulatory functions of skin MCs are not
yet fully understood. As for the signals that induce IL-10
production from skin MCs, a few pathways, such as vitamin D
receptor signaling-dependent pathway and the IgE signaling-
dependent pathway, have been reported (12, 46). Analysis of the
signal-transducing molecules in those pathways may become a
clue to understand the molecular mechanisms by which MCs
acquire regulatory functions. Besides, skin MCs may be
heterogenous populations as reported in MCs in other organs
such as lung (47) and esophagus (48), and MCs with regulatory
functions, such as IL-10-producing MCs, may be a particular MC
subset in the skin. Indeed, while skin MCs under physiological
state are maintained by local proliferation in adult skin (5, 6),
bone marrow-derived MCs appear in the skin in inflammatory
state (49, 50), suggesting that skin MCs may be heterogenous
populations (skin resident MCs versus bone marrow-derived
MCs). We are currently investigating the functional differences
between those MC populations. In addition, since there are
various discrepancies in the pathogenesis of human diseases
and mouse disease models, elucidating the physiological
significance of MCs in human diseases remains a challenge.
Skin organoids/human skin equivalent systems as intermediates
between mouse disease models and human patients constitute a
promising strategy that will likely lead to a better understanding
Frontiers in Immunology | www.frontiersin.org 5
of the role of MC in skin diseases. Human cutaneous MCs
produce minimal IL-10 (51, 52); therefore, whether IL-10-
mediated regulation by MCs, as revealed by mouse studies, is
actually involved in human diseases remains to be verified.
Nevertheless, elucidation of the molecular mechanisms that
control MC function may lead to the development of novel
therapeutic strategies for inflammatory skin diseases and
skin cancers.
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