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Functionally distinct smiles elicit 
different physiological responses in 
an evaluative context
Jared D. Martin1, Heather C. Abercrombie2, Eva Gilboa-Schechtman3 & Paula M. Niedenthal1

When people are being evaluated, their whole body responds. Verbal feedback causes robust activation 
in the hypothalamic-pituitary-adrenal (HPA) axis. What about nonverbal evaluative feedback? Recent 
discoveries about the social functions of facial expression have documented three morphologically 
distinct smiles, which serve the functions of reinforcement, social smoothing, and social challenge. In 
the present study, participants saw instances of one of three smile types from an evaluator during a 
modified social stress test. We find evidence in support of the claim that functionally different smiles 
are sufficient to augment or dampen HPA axis activity. We also find that responses to the meanings of 
smiles as evaluative feedback are more differentiated in individuals with higher baseline high-frequency 
heart rate variability (HF-HRV), which is associated with facial expression recognition accuracy. The 
differentiation is especially evident in response to smiles that are more ambiguous in context. Findings 
suggest that facial expressions have deep physiological implications and that smiles regulate the social 
world in a highly nuanced fashion.

Sweaty palms, a racing heart, a faltering voice. Most people find the evaluative context of public speaking unpleas-
ant. Indeed, the mere anticipation of social evaluation increases activity across almost all body systems related to 
stress, with particularly robust activation in the hypothalamic-pituitary-adrenal (HPA) axis1–4. However, scientific 
inquiry has largely been limited to investigations of the manner in which the body responds to verbal evaluative 
feedback, of the type “that was/wasn’t good.”5,6 Does the HPA axis respond to purely nonverbal feedback, such as 
facial expression? We investigate this question and demonstrate that evaluators’ smiles are sufficient to augment 
or dampen HPA axis activity – depending upon the distinct meaning of the smile in the social-evaluative con-
text. Furthermore, we find that physiological responses to smile meaning are most differentiated in individuals 
with higher baseline high-frequency heart rate variability (HF-HRV), which is associated with facial expression 
recognition accuracy7–9.

Nonverbal feedback in social-evaluative contexts should be at least as impactful as verbal feedback, since non-
verbal signals are experienced by perceivers to be spontaneous reactions10 and thus, honest reflections of internal 
evaluations. In the few studies that have investigated the nonverbal communication of evaluative feedback, par-
ticipants whose audience displayed smiles and other nonverbal expressions of positive evaluation showed lower 
physiological activity than participants met with frowns and similar cues to negative evaluation11–13. Recent the-
ory and empirical evidence suggests, however, that smiles do not all communicate identical, uniformly positive 
messages14–16. Instead, evidence supports the existence of at least three morphologically distinct types of smiles, 
each of which serves a different social function necessary for successful group living: “reward” smiles reinforce 
behavior, “affiliation” smiles signal lack of threat and facilitate or maintain social bonds, and “dominance” smiles 
assert claims to higher status in social hierarchies15,16. In light of their social functions, each of these three smiles 
should carry distinct meanings when displayed by evaluators. The first aim of the present research was to test the 
hypothesis that reward, affiliation, and dominance smiles, delivered as evaluative feedback, influence perceivers’ 
HPA axis activity in a manner congruent with their distinct social meaning. We expected dominance smiles, 
compared to reward smiles, to increase HPA axis activity. In theory, whereas dominance smiles show disdain for 
and reward smiles show approval of performance, affiliation smiles reassure without being indicative of a specific 
evaluation and so were expected to buffer HPA axis activity to a lesser degree than reward smiles.
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The second aim of the present research was to account for variability in participants’ capacity to understand 
the evaluative meanings of each smile. Reward smiles are more unambiguous in meaning across contexts than 
either affiliation or dominance smiles14, which are relevant in more limited contexts. That is, reward smiles can 
reinforce widely varying behaviors in most any social situation, whereas affiliation smiles serve to smooth exist-
ing or potential social bonds and dominance smiles serve to challenge social standing. Individuals who are more 
accurate at recognizing facial expressions should exhibit more differentiated physiological activity in response to 
affiliation and dominance smiles, indicating greater sensitivity to their social-evaluative meanings. Recent empir-
ical evidence suggests that baseline HF-HRV – an index of parasympathetic nervous system activity at the level of 
the heart – is positively associated with facial expression recognition accuracy7–9. We thus tested the hypothesis 
that individuals with higher baseline HF-HRV exhibit more differentiated physiological activity in response to 
smiles presented as evaluative feedback, particularly in response to smiles that are more ambiguous in context 
(i.e., affiliation and dominance smiles).

In an adaptation of the classic Trier Social Stress Test17, male participants (N = 90) extemporaneously 
addressed three topics about themselves in front of a male evaluator who watched them over a web camera. The 
evaluator was, in fact, one of two confederates working for the research team; approximately half of the partici-
pants (Ns = 47 and 43) interacted with each confederate. To increase believability, the evaluator briefly appeared 
live on the computer screen, then turned off his web camera for the remainder of the session. After responding 
to each of the three topics, participants saw videos of their evaluator’s facial expressions, which they believed 
represented spontaneous reactions to their performance that had been extracted by facial recognition software. 
The videos were, in fact, pre-recorded. Participants were assigned to one of three smile conditions such that they 
saw either one reward, affiliation, or dominance smile after each of their responses to the three topics. Along with 
one smile video, participants also saw a control video that showed the evaluator making a neutral response such 
as face scratching or eye blinks. Thus, each participant was exposed to six videos of their evaluator in total (three 
different instances of one type of smile, three neutral videos) with one smile and one neutral video presented 
after each of the three responses. Smile videos were constructed to meet a priori specifications of morphological 
activity associated with each of the three smile types (for further details, see Supplementary Materials)14. Thus, 
smile type was the only feature of the evaluative feedback that varied between conditions. Physiological activity, in 
both the HPA axis and cardiovascular system, was assessed throughout the study; salivary cortisol was measured 
at seven time points, and a continuous electrocardiograph was collected before, during, and after the speech task.

Results
Raw means for total salivary cortisol level by smile condition were consistent with the prediction that reward, affil-
iation, and dominance smiles influence perceivers’ physiological activity in distinctive ways, such that the receipt 
of dominance smiles is associated with higher HPA axis activity relative to the receipt of reward smiles. (AUCi 
– nmol/l: dominance: M = 19.4, SD = 24.74; affiliation: M = 2.43, SD = 22.3; reward: M = 1.21, SD = 21.54). We 
used dummy-coded condition contrasts to directly compare total salivary cortisol responses between smile types 
(“AUCi”, see Methods, below). Compared to reward smiles, dominance smiles induced a greater overall salivary 
cortisol response (b = 18.18, t (86) = 2.93, p = 0.004, CI(95%) = [5.83, 30.54], Δr2 = 0.087). Similarly, even though 
affiliation smiles do not signal a clear social evaluation in this context, compared to such smiles, dominance 
smiles induced a greater overall salivary cortisol response (b = 16.97, t (86) = 2.92, p = 0.004, CI(95%) = [5.41, 
28.53], Δr2 = 0.086).

Further corroborating the finding that dominance smiles induce greater HPA axis activity, participants receiv-
ing reward or affiliation smiles returned to their individual cortisol baseline by 30-minutes post-speech, whereas 
those who received dominance smiles continued to have significantly higher cortisol levels than their individ-
ual baseline. In this ancillary analysis, cortisol values at 20- and 30-minutes post-speech were predicted from 
dummy-coded condition contrasts and average baseline cortisol level. Intercepts for each smile condition at both 
20-minutes post-speech (reward, b = 0.23, t (86) = 1.49, p = 0.14, CI(95%) = [−0.08, 0.53]; affiliation, b = 0.25, t 
(86) = 1.79, p = 0.08, CI(95%) = [−0.03, 0.53]; dominance, b = 0.57, t (86) = 4.47, p < 0.0001, CI(95%) = [0.31, 
0.82]) as well as 30-minutes post-speech (reward, b = −0.02, t (86) = −0.13, p = 0.9, CI(95%) = [−0.32, 0.28]; 
affiliation, b = 0.03, t (86) = 0.2, p = 0.84, CI(95%) = [−0.25, 0.31]; dominance, b = 0.36, t (86) = 2.82, p = 0.006, 
CI(95%) = [0.11, 0.61]) show that mean salivary cortisol values for the dominance group continued to be signif-
icantly greater than zero up to 30-minutes post-speech, which was not the case for the other groups. This shows 
that individuals receiving dominance smiles take significantly longer to return to their individual cortisol base-
line, thus corroborating findings from the AUCi analysis.

We also tested the prediction that baseline HF-HRV is positively associated with differentiation in HPA axis 
activity in response to affiliation and dominance smiles. We again created dummy-codes for smile feedback con-
dition in order to compare the effect of smile feedback between conditions. We entered these dummy-codes 
along with a continuous measure of baseline HF-HRV and the dummy-code by HF-HRV interaction terms into 
a linear regression model. Results from this analysis confirmed our expectations. With those who received dom-
inance smiles as the dummy-coded reference group, baseline HF-HRV was positively correlated with salivary 
cortisol responses (b = 9.72, t (84) = 2.02, p = 0.046, CI(95%) = [0.14, 19.29], Δr2 = 0.04). Comparing the linear 
association between baseline HF-HRV and salivary cortisol responses between individuals who received domi-
nance versus affiliation smiles, the comparison of simple slopes was significant (b = 14.63, t (84) = 2.40, p = 0.018, 
CI(95%) = [2.54, 26.83], Δr2 = 0.057), indicating that the relationship between baseline HF-HRV and salivary 
cortisol is more positive for those receiving dominance compared to affiliation smiles as evaluative feedback 
(Fig. 1).

Convergent evidence that baseline HF-HRV is positively associated with greater differentiation of phys-
iological responses to affiliation and dominance smiles comes from cardiovascular data. Again, we created 
dummy-coded condition contrasts and entered them into a linear regression model along with baseline HF-HRV 
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and the HF-HRV by smile feedback dummy-code interaction terms. With the dummy-coded condition contrasts 
referenced on participants who received affiliation smiles, baseline HF-HRV was negatively associated with heart 
rate during the speech task (b = −5.84, t (84) = −2.85, p = 0.006, CI(95%) = [−9.91, −1.76], Δr2 = 0.086). A 
comparison of the linear association between baseline HF-HRV and heart rate between individuals who received 
affiliation versus dominance smiles reveals that the relationship between baseline HF-HRV and heart rate was 
more negative for those exposed to affiliation compared to dominance smiles as evaluative feedback (b = −7.28, 
t (84) = 2.19, p = 0.032, CI(95%) = [−13.92, −0.66], Δr2 = 0.051).

Since indicators of HF-HRV reactivity (i.e., baseline – task) have also been associated with facial expres-
sion recognition accuracy18, we conducted ancillary analyses of the association between reactivity measures of 
HF-HRV and perceivers’ physiological activity in response to smile feedback. Specifically, we calculated a dif-
ference score between task level HF-HRV and baseline by subtracting task HF-HRV, assessed during the first 
2.5 minutes of the speech, from baseline HF-HRV. Higher values on this difference score reflect greater with-
drawal of vagal influence over the heart during task, compared to baseline. We entered the difference score into 
a model similar to the one employed in the cortisol and heart rate analyses, entering dummy-coded condition 
contrasts along with the continuous HF-HRV difference score and the condition by difference score interactions. 
Table 1 reports these findings. HF-HRV reactivity was positively associated with physiological responses to social 
evaluation, regardless of the type of smile feedback a participant received (i.e., HF-HRV reactivity did not interact 
with experimental condition: see Table 1). These findings strengthen the conclusion that higher baseline HF-HRV 
is associated with more differentiated physiological responses to smiles as evaluative feedback.

Analyses were conducted in the “R” statistical environment19. All results reported in the present work remain 
significant when adding a dichotomous predictor to account for which of the two confederates a participant inter-
acted with, as well as when statistically accounting for factors known to influence levels of physiological activity 
(caffeine use, depression severity).

Discussion
In the present study, we observed that smiles with different social functions16, when delivered as evaluative feed-
back in a stressful social context, exert distinct influences on perceivers’ physiological activity. Dominance smiles 

Figure 1.  Physiological Response to Smiles as Evaluative Feedback Depends on Baseline High Frequency Heart 
Rate Variability. Salivary Cortisol: Total salivary cortisol (nmol/l: dominance: M = 19.4, SD = 24.74, N = 27; 
affiliation: M = 2.43, SD = 22.3, N = 36; reward: M = 1.21, SD = 21.54, N = 27) in response to social evaluation 
was greater for those receiving dominance smiles as evaluative feedback relative to the two other types of smiles. 
The difference in total salivary cortisol response between the affiliation and dominance groups increased as HF-
HRV increased. Heart Rate: Heart rate assessed during the speech task (bpm: dominance: M = 83.51, SD = 9.84, 
N = 27; affiliation: M = 82.13, SD = 14.43, N = 36; reward: M = 85.93, SD = 12.65, N = 27) was not significantly 
different between conditions. The difference in heart rate between the dominance and affiliation groups 
increased as HF-HRV increased. Dotted lines between the +/− 1 SD bars indicate a statistically significant 
simple slope for baseline HF-HRV in that feedback condition; solid lines are not significant below the 0.05 level.
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(compared to reward or affiliation smiles) were associated with increases in heart rate and salivary cortisol that 
mirror the influences of negative verbal feedback20. In contrast, reward and affiliation smiles exerted influences 
similar to the effects of displays of friendliness21 and positive social evaluation12, such that, compared to domi-
nance smiles, they buffered physiological activity. The findings thus provide further evidence for the view that 
smiles do not constitute a homogenous category of “positive” nonverbal feedback. The findings also contribute 
to a body of literature that proposes a role for cortisol in adaptive responding to the social environment22. In 
particular, cortisol appears to support the detection of social threat and coordinate biological activity needed to 
adequately respond to the threat.

The present research also contributes to a growing literature on individual differences in sensitivity to the 
meaning of facial expression. Specifically, baseline HF-HRV was negatively related to participants’ physiologi-
cal activity when they received affiliation smiles, and was positively related to their physiological activity when 
they received dominance smiles as evaluative feedback. The observed relationship between HF-HRV and phys-
iological responsiveness to specific smile meaning is consistent with a claim of the Neurovisceral Integration 
Model according to which HF-HRV indexes an individual’s capacity to respond appropriately to social stimuli23. 
Conversely, individuals with particularly low baseline HF-HRV may be at risk of poor socio-emotional outcomes 
due to deficits in both understanding as well as responding to the social signals of others. A number of pathologi-
cal and pre-disease body states are related to lower HF-HRV, including heightened inflammation and obesity24,25. 
As such, these body states may fundamentally change an individual’s ability to respond physiologically to the 
social world, and in light of the present findings, may be associated with deficits in understanding the expressions 
of others. A compelling avenue for future research therefore is to investigate how individuals with relatively low 
HF-HRV recognize and respond to the expressions of others.

Future research should also consider how affective disorders associated with lower HF-HRV, such as anxiety26 
and depression27, relate to cognitive and physiological responses to social stimuli. Given the social stress proce-
dure implemented in the present work, an especially fruitful avenue for future research on the social functions 
of smiles lies in the relationship between smile processing and social anxiety. Social anxiety disorder involves the 
fear of embarrassing oneself in front of others in performance or evaluative situations28. Although research con-
sistently documents that individuals with social anxiety disorder exhibit heightened negative affect both in antici-
pation of and in response to social evaluation29,30, findings are mixed31,32 regarding how these individuals respond 
to positive and supportive social signals. Social anxiety was not accounted for in the present study. Although 
randomization into condition likely mitigated any effect of social anxiety on the present findings, future work is 
needed to investigate how individuals with social anxiety respond to facial expressions as evaluative feedback. A 
crucial comparison in this work will be to assess differences in affective and physiological responses between the 
relatively unambiguous reward smiles and the less clear affiliation smiles.

One limitation of the present research is that the experimental design contained no “neutral” feedback con-
dition. It would be hard to create such an experience, since neutral feedback is interpreted in highly varied ways 
across individuals. However, methods to create such a control condition could be imagined for future research. 
Along similar lines, future research could also directly compare the effects of receiving dominance smiles with the 
effects of receiving more overt signals of negative evaluation such as disgust, contempt, and anger. By employing 
the present paradigm to test the physiological effects of facial expressions beyond the smiles tested here, research-
ers could not only more clearly describe the unique effects of receiving social functional smiles but also under-
stand the effects of facial expressions on perceivers’ physiological activity more generally.

The present work includes other limitations that warrant comment, two of which concern the participant sam-
ple. First, the sample size in this study may have been relatively small given the size of the effects detected. Since, 
to our knowledge, no work has explored the effect of receiving social functional smiles as social evaluation, a pri-
ori power analyses were difficult to conduct. We estimated required sample size from extant studies with methods 
and aims as similar to the present research as possible12. Following these guidelines, 90–100 participants is typical 
for a study of this nature involving three between-subjects conditions. Post-hoc power analyses using G*Power33 
indicate that achieved power was modest for the critical comparisons within the HPA axis (dominance vs. affilia-
tion: β = 0.72; dominance vs. reward: β = 0.81). In light of the achieved power, we recommend that future studies 
of this sort rely on no fewer than 35–40 participants per between-subjects condition to ensure adequate power.

(N = 90) b (s.e.) vs. Affiliation vs. Dominance

Reward

  Cortisol (AUCi) 7.04 (4.39) 0.95 (5.60) 1.30 (5.83)

  Heart Rate 6.44** (2.31) −0.32 (2.94) −1.97 (3.06)

Affiliation

  Cortisol (AUCi) 7.99* (3.46) — 0.36 (5.16)

  Heart Rate 6.12** (1.82) — −1.65 (2.71)

Dominance

  Cortisol (AUCi) 8.35* (00.0) —

  Heart Rate 4.47* (2.01) —

Table 1.  Associations Between HF-HRV Reactivity and Physiological Responses to Social Evaluation. 
Unstandardized regression coefficients quantifying the association between HF-HRV reactivity (baseline – task) 
and physiological responses are reported in the left-hand column, for each group. Differences between groups 
are reported in the middle and right-hand columns. *p < 0.05; **p < 0.01; ***p < 0.001.
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Second, the present sample was restricted to men. Although we limited the sample to males for reasons that 
were established and justified before the research was conducted (see Methods, below), generalizations from our 
findings are necessarily limited. Since sex effects are observed in research on the perception of facial expression 
of emotion34,35, future work should determine what portion (if any) of the currently documented effects are con-
tingent upon the sex of the smiler or perceiver. Some work suggests that men respond more to threats of physical 
aggression whereas women respond more to condescending behaviors and social aggression36. Thus, men and 
women may respond to the same type of smile in different ways and may also use each of the smile types with 
varying degrees of frequency37.

The present research demonstrates that functionally different smiles are sufficient to augment or dampen HPA 
axis activity in accordance with the social functional meaning associated with each smile. Furthermore, physi-
ological responses to each functionally distinct smile are most differentiated in individuals with higher baseline 
HF-HRV, suggesting that HF-HRV is a useful individual difference moderator of the ability to respond to the 
social environment in a flexible and nuanced fashion. We may therefore conclude that smiles coordinate the phys-
iological activity that supports interpersonal encounters to a previously undocumented degree, and that facial 
expressions help regulate the social world, in part, through their impact on the physiological activity of perceivers.

Methods
Participants.  Ninety-two male undergraduates at a large university in the Midwest participated in exchange 
for credit in an introductory Psychology course. Participants provided written consent, indicating full under-
standing of the requirements for participation. The research protocol was reviewed and approved under the 
University of Wisconsin – Madison Institutional Review Board. All research was conducted in accordance with 
institutional guidelines and regulations.

Due to the robust sex differences in cortisol responses to laboratory stressors38 and the variability in corti-
sol responses introduced by oral contraceptive use39, only males were invited to participate in this study. Since 
females generally outperform males in the accurate recognition of positive facial expressions40, the expectation 
was that the present study would underestimate the effects of smiles on physiological responses. Pre-inclusion cri-
teria limited participation to U.S.-born, English-speaking males without a diagnosed heart condition and not cur-
rently taking medications that alter hormone levels. Participants were instructed to refrain from exercise on the 
day of the study and to avoid alcohol and caffeine consumption within twenty-four hours of their participation. 
Due to a network failure, data collection from one participant was terminated before experimental manipulation. 
Furthermore, data from a second participant were excluded from analysis due to the presence of an abnormal 
heart rhythm resembling premature beats41 which made it difficult to score the data and conflicted with the 
pre-inclusion criterion of cardiac health. The exclusion of all data from these two participants left a final sample 
of ninety participants (dominance: N = 27; affiliation: N = 36; reward N = 27).

Data collection was limited to the number of participants that could be involved during one academic semes-
ter, not to exceed 120 participants (40 per condition). Participants were randomly assigned to one of three smile 
experimental conditions as well as one of two confederates. Given that some participants did not show up for 
their assigned experimental sessions, a certain amount of imbalance between the number of participants in each 
condition and assigned to each confederate is to be expected.

At the conclusion of the study, participants underwent a funneled debriefing. First, they were asked if they 
thought they knew what the study was about. In this general interview, no participants brought up suspicions 
about deception. We then asked participants if they found anything strange about the study or were suspicious of 
anything. In a logistic regression model with experimental condition and confederate as predictors of a dichoto-
mous (“yes”/“no”) suspicion outcome, no significant differences were detected by experimental condition (all ps 
> 0.2) or by confederate (p = 0.93). Participants who thought the study was slightly strange indicated that they 
were unsure how the filler video was related to the study, were unaccustomed to providing saliva samples, or were 
uncomfortable giving speeches.

Procedure.  In order to reduce variation due to diurnal changes in cortisol levels, experimental sessions took 
place in the afternoon. Upon arriving at the experimental laboratory, the participant encountered another male 
“participant” who was actually a confederate—one of the two whose stimuli were validated in a separate study (see 
Supplemental Material for further information). The experimenter then entered from a nearby room and told the 
two men that he had randomly assigned them to different tasks in the study: the participant was always assigned 
to “give the speech” and the confederate was always assigned to “judge the speech.” After the participant and 
confederate had provided informed consent, the participant supplied the first of seven saliva samples (collection 
method described below) and completed an online questionnaire assessing his compliance with pre-restriction 
criteria (alcohol and caffeine use) as well as other medical information (prescription and recreational drug use). 
The men were told that only the person giving the speech (always the participant and never the confederate) had 
to answer the online questionnaires and provide the saliva samples because it directly pertained to giving the 
speech; the confederate waited with the participant and the experimenter while the participant responded to the 
surveys and provided the saliva sample.

The experimenter then demonstrated a facial expression recognition software, the Computer Emotion 
Recognition Toolbox42. The participant and confederate were informed that the program could extract mean-
ingful facial expressions from live video feed. The experimenter used the computer’s built-in web camera and the 
participant’s face as the live feed in a demonstration in order to increase believability in the software’s (actual) 
capabilities.

Next, the participant and confederate were separated. Leaving the confederate behind in the initial room, 
the experimenter mentioned that a second experimenter would arrive shortly to provide the confederate with 
further instructions and tasks. The experimenter escorted the participant to a psychophysiology lab in the same 
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building. There, the experimenter attached sensors to the participant’s chest and explained that they would be 
used to measure aspects of his cardiovascular reactivity. The experimenter sat with the participant in the experi-
mental room while a research assistant in an adjacent control room recorded a 3-minute baseline measure of the 
participant’s heart activity.

After completion of this baseline recording, the experimenter informed the participant that he would deliver 
his speech to the “other participant” via Skype. He would not see the evaluator as his web camera would be turned 
off in order to avoid distraction. The format of the speech involved answering three questions in sequence, with 
two minutes to respond to each question. The participant was also told that at the conclusion of every two-minute 
speech period, he would see videos of several of the evaluator’s facial expressions. The participant was told that 
the videos had been “randomly extracted by the facial expression software” while the evaluator watched the par-
ticipant’s speech. This led the participant to believe that the videos conveyed authentic evaluative responses by the 
confederate. The facial expressions displayed in these videos constituted the experimental manipulation.

When the participant indicated that he had understood the speech task, the experimenter gave him a sheet 
of paper with the three questions he was required to answer, and then sat with the participant for three min-
utes while the participant prepared his speech. A continuous cardiovascular recording was taken during this 
three-minute “anticipation” period. After the time was over, the second saliva sample was taken.

Next, the experimenter launched Skype. In order to enhance believability, the confederate appeared live on 
the participant’s screen and waved “hello.” The experimenter asked the evaluator to turn off his camera “so as 
not to distract” the participant during the speech. With the participant no longer able to see the evaluator, the 
experimenter asked the participant to begin his speech. Participants responded to each question in order, with 
two minutes for each question: (1) What makes you happy? (2) What do you like most and least to eat?, and (3) 
What is your favorite part of living in Madison, Wisconsin? These questions were designed to be personal and to 
contain enough positive material to make the smiles sent by the evaluator appear plausible.

At the conclusion of each two-minute speech period, the experimenter stopped the participant and showed 
him two videos of the evaluator that were “randomly extracted” when he was listening to the participant’s speech. 
From the other room, the confederate dropped each video into a network-based folder in order to simulate the 
facial expression recognition program extracting and sending the videos in real time. Each participant saw 6 vid-
eos in total, 2 after each question. 3 of the 6 total videos were smiles and the other 3 were a set of different neutral 
videos—evaluators faced the camera with a neutral expression and made occasional small, non-evaluative move-
ments such as face scratching. The smile videos were three different short video clips of the same confederate 
making only one smile type (dominance, reward, or affiliation). Participants were thus exposed to three different 
examples of the same type of smile. In sum, smile type was manipulated between-subjects with the 3 neutral 
videos retained across participants. At the conclusion of the speech task, the third saliva sample was taken. The 
speech task lasted between 7–8 minutes, during which a continuous cardiovascular recording was taken.

Immediately upon concluding his final speech, the participant was directed to reflect on his performance, 
focusing on how he felt and what his evaluator thought. A continuous cardiovascular recording was taken during 
this five-minute reflection period. After the reflection/recovery period, the participant was detached from the 
sensors and led to the final room by a second experimenter who was blind to the participant’s video feedback 
condition.

In the last room, the participant watched a filler video available on YouTube from the series “The Life of Birds” 
(available at https://www.youtube.com/playlist?list=PLB1F251E81DE15E9B) which provided a neutral experi-
ence during which cortisol recovery was assessed. The video was the same for all participants. The remaining four 
saliva samples were taken at 10-minute intervals from the cessation of the speech task. At the conclusion of the 
filler video, and after completing verbal questions assessing deception suspicion, the participant was debriefed 
and dismissed.

Physiological Measures: Collection and Analysis.  Cortisol.  Saliva samples were obtained with cot-
ton salivettes (Fisher Scientific Company, LLC). Participants were instructed to let the cotton salivette touch all 
parts of their mouth (under their tongue, between their teeth and their cheeks) without chewing on it. Saliva 
collection was strictly timed for two minutes, after which the sample was returned to its plastic casing. Samples 
were frozen after collection and stored at −20 C. At the conclusion of the study, samples were express shipped to 
Dresden, Germany where they were single-assayed at the lab of Dr. Clemens Kirschbaum (T.U. Dresden). Samples 
were assayed using the chemi-luminescence assay, which has a high sensitivity of 0.16 ng/mL (IBL-International, 
Hamburg, Germany) and intra and interassay CVs of <10%. In total, saliva samples were collected at seven 
time points during the study and assayed for unbound cortisol. Due to skewness, all cortisol values were first 
log-transformed. Salivary alpha amylase was assayed but is not reported in these analyses.

In order to test our hypotheses with regard to the HPA axis, Area Under the Curve with respect to increase 
(AUCi)43 values were calculated for the cortisol response of each participant. AUCi scores index total cortisol 
response over a given period of time, referenced to each individual’s baseline cortisol level. We averaged the two 
cortisol values collected before experimental manipulation (receipt of smile feedback) as a pre-speech baseline.

Heart Rate.  Continuous EKG recordings were sampled at 1000 Hz via one of the bipolar inputs available on 
the SynAmps2 Headbox (Compumedics Neuroscan Ltd., U.S.A). Ag/AgCl spot electrodes were placed in a 
thoracic-modified lead-II configuration to maximize detection of R-spikes while minimizing movement arti-
facts. We calculated mean heart rate values separately for the baseline period, the “anticipation” period, the speech 
period, and the post-speech period.

https://www.youtube.com/playlist?list=PLB1F251E81DE15E9B
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Data Processing.  EKG data were first scored offline using OpenANSLAB44, manually inspected for artifacts, and 
the resultant inter-beat-interval series were extracted and saved. CMETx software (available at http://apsychos-
erver.psych.arizona.edu) was then used on the extracted inter-beat-interval to quantify HF-HRV.
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