
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Global Transitions Proceedings 2 (2021) 476–483 

Contents lists available at ScienceDirect 

Global Transitions Proceedings 

journal homepage: http://www.keaipublishing.com/en/journals/global-transitions-proceedings/ 

Classification of Covid-19 patients using efficient fine-tuned deep learning 

DenseNet model 

Maneet Kaur Bohmrah 

a , ∗ , Harjot Kaur b 

a Guru Nanak Dev University, Amritsar, India 
b Guru Nanak Dev University, Gurdaspur, India 

a r t i c l e i n f o 

Keywords: 

COVID-19 

DenseNet 

Deep learning 

Convolutional Neural Network 

Optimizers 

a b s t r a c t 

As COVID-19 pandemic caused completely spoils the livings, almost more than one year passed, still lives were 

not on the track. It is important to diagnose the COVID-19 patients earlier and provide the prompt treatment. 

The Convolutional Neural Network (CNN), a deep neural network that specializes in image processing and image 

classification. In this paper, a fine tuned DenseNet201 model was proposed which is used to classify Chest X 

ray images. Firstly, different DenseNet121, DenseNet169 and DenseNet201 model trained and tested on the 

same dataset. With the experiment, it is observed that DenseNet201 model performs well as compared to other 

dense models. Furthermore, DenseNet201 experiments over different optimizers and it is noticed that RMSprop, 

Adagrad and Adamax performs better. Proposed model achieves accuracy of 95.2% as compared to other models. 

We experimentally determine that RMSprop optimizer with DenseNet201 produces better results as similar to 

Adam and Adamax widely used optimizers. 
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. Introduction 

In an unforeseen situation, our civilization is yet again fighting a

ovel coronavirus, SARS-CoV-2 (Severe Acute Respiratory Syndrome

oronavirus-2), in another historical battle. According to a study, the

irus originated in Wuhan, China, around December 2019. As Soon af-

er, the coronavirus was dubbed COVID-19, and due to it communicable

roperties spreads quickly across the world, prompting the World Health

rganization (WHO) to proclaim a global pandemic in March 2020 [1] .

However, given the significance of the human community, it has be-

ome necessary to develop an autonomous approach that can diagnose

OVID-19 in a short amount of time. A crucial key initiative is accurate

nd effective COVID-19 patient detection, so that positive cases undergo

rompt treatment and are properly segregated from the general pop-

lation; a precaution believed critical in preventing the spread of the

isease [ 2 , 3 ]. In recent years, AI techniques have been widely used in a

ariety of challenges ranging from classification, segmentation, and face

dentification to upgrade-resolution and image enrichment in computer

ision and medical image analysis [4] . As COVID-19 is a respiratory dis-

ase which directly harms the lungs and cause difficulty in breathing.

or the diagnosis of COVID patient’s chest X-ray images plays a vital

ole. For the accurate and fast results these images can be examined us-

ng the Deep learning techniques which is already proves its excellence

n the field of image processing and analysis [ 5 , 6 ]. 
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In this paper, a novel approach is presented for the detection of

OVID-19 images using deep learning DenseNet201 model. The sug-

ested DenseNet model modification ensures flow of information by di-

ectly connecting all layers in the network to their feature maps. The

eedforward method is maintained by obtaining additional values from

rior layers and passing feature maps from the previous layers on to

ll subsequent levels [7] . Using the TensorFlow Python library, the sug-

ested model was tested in practice and yielded encouraging results for

nalysis of the data. The main contribution of this can be summarized

s follows: 

• Provide a literature survey, authors using DenseNet model for the

classification of X-ray images. As none of paper explains the differ-

ent DenseNet models and claims which optimizer provide the best

results. 

• We conduct an extensive evaluation on three different DenseNet

models using same dataset and the result shows DenseNet201 per-

forms well which further used to design a fined tuned DenseNet

model, a proposed model. 

• DenseNet201 shows the best result which is further used to design

proposed model. Pre-trained DenseNet model tuned and trained over

the different optimizers. 

• RMSprop and Adagrad, Adamax optimizers perform well with the

DenseNet201 model. 
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Table 1 

Overview of DenseNet Model with different 

number of layers. 

DENSENET MODEL Dense layer 

DenseNet121 428 rows x 3 columns 

DenseNet169 596 rows x 3 columns 

DenseNet201 708 rows x 3 columns 
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The rest of the paper is structured as follows: Section 2 represents

he related work; Section 3 defines the concepts of DenseNet model with

ifferent number of layers. Further, Section 4 describes the different op-

imizers used in the article and section 5 represents the proposed work

ollowed by result analysis done in Section 6 . Last but not the least con-

lusion is summarized in Section 7 . 

. Related work 

Computer vision assists us in developing autonomous systems that

o tasks that are similar to and, in some circumstances, better than hu-

an vision. One of the most important contributions of computer vi-

ion is in the field of medicine improved illness diagnosis, therapy, and

revention using data on medical imaging [8] . A deep neural network

xcellently performs in the field of image processing and Convolutional

eural Networks (CNN) widely used for this purpose. As there are var-

ous forms of CNN such as Resnet, VGG, Xception and many more [9] .

his section represents the deep learning techniques used for the classi-

cation of COVID chest X-ray images. Moreover, abundant of research

ork done on CNN model used for COVID-19 detection but this paper

oncentrate only on the DenseNet CNN model, hence we explored only

hose author’s work proposed by various researchers and experts where

enseNet model used in their research works. 

In this section, we focus on deep learning DenseNet model which

lso a type of CNN model. Further, we summarize some related and ex-

sting work where DenseNet model used to classify the COVID-19 chest

-ray images. In the paper [10] , author experiments the various deep

earning models and DenseNet121, DenseNet169 and DenseNet201. To-

al 746 images were used by the author for the training and testing

f the models. With the experiments, author shows DenseNet201 per-

orms excellently as compared to other deep learning models. In the pa-

er [11] , author proposed a CNN model and compared with pretrained

eep learning model. Author used two data sets of 111 images and 6290

hest X- ray images. Author also used DenseNet201 for the compar-

sons. Though in his experiments, DenseNet201 doesn’t perform well

nough. 

In the article [12] , author proposed a fused DenseNet model which

s a concatenation of two DenseNet model. Furthermore, author used

used DenseNet for the classification of 9208 chest X-ray images and

chieved accuracy of 97.99%. In the article [13] , author runs various

eep learning models for the classification of covid19 patients. Author

lso includes DenseNet121 model for the experiment and total 5000

mages were used to train and test the model. 

In the article [14] , author proposed a model by fine tuning the pre-

rained DenseNet201 model and further used for the classification of

50 chest X-ray images. In the paper [15] , author used DenseNet CNN

odel to classify the 2482 CT scan images. Preprocessed and augmented

ataset used for training of the model. 

In the paper [16] , author proposed DenseNet-OTLS for the effec-

ive detection of COVID-19. All the three DenseNet121, DenseNet169

nd DenseNet201 were used for the experiment and total 640 images

ere used to train and test the model. Author worked on two factor

ingle learning rate and Composite learning rate for the optimization of

enseNet model. 

In the article [17] , author proposed a CovidDenseNet model using

enseNet121 for the diagnosis of COVID-19. Author experiments both

wo and three class classification and patient’s wise k-fold was also per-

ormed more than 13,800 chest radiography images were used for the

xperimentation. Further, Grad-CAM used to highlight the infected re-

ions of lungs for better clarity in reading images. 

With the study of all the articles mentioned above DenseNet CNN

odel performs well as compare to other CNN models but there is a gap

hich DenseNet model performs well under which circumstances and

urthermore we try to explore the working of different optimizers with

his research article. 
477 
. Deep learning CNN model 

Deep learning [18] focuses on several levels of abstraction, with

igher layers representing more abstract data knowledge. As an alterna-

ive to traditional machine learning techniques for identifying COVID-

9 chest X-ray images, neural networks can be used. Every layer of the

NN in DenseNet is interconnected to every other layer in the network

n a feed-forward way, which reduces the chance of gradient vanishing,

educes the number of parameters to train, reuses feature maps, and

ach layer takes all previous layer features as inputs [ 19 , 20 ]. Table 1

xplains the dense layers for the different DenseNet models. Mainly,

enseNet model consist of many dense blocks and one dense block con-

ains convolutional layer, ReLU layer and batch normalization. On the

ther hand, two dense blocks connected with convolutional and max

ooling layer and the last dense block connected with global average

ooling and softmax classifier [21] . 

. Optimizers 

Optimization Algorithms, also known as Optimizers, are essential for

mproving the accuracy of a neural network. In a traditional approach,

yper parameters of a model were tuned using optimizers according

o their design. An optimizer’s job is to manipulate the weights and

earning rates of our model’s nodes during the training phase so that

he loss function is effectively minimized [ 22 , 23 ]. 

.1. Stochastic Gradient Descent or SGD 

Stochastic Gradient Descent or SGD is a version of Gradient (or slope

f a function) Descent, which is the simplest basic optimization algo-

ithm. Although too simple to be employed in Deep Learning, the latter

as a wide range of applications in Linear Regression, Classification,

ackpropagation, and other areas, with the benefit of ease of computa-

ion and implementation. Stochastic (means random) Gradient Descent,

n the other hand, chooses a few sample data rather than the complete

ataset for each round, resulting in a significant increase in estimating

peed [24-26] . 

.2. Root mean square propagation or RMSprop 

RMSprop is a gradient-based optimizer that uses an adaptive learn-

ng rate that changes over time rather than considering the learning rate

s a hyper-parameter. RMSprop, or Root Mean Square Propagation, has

n unusual fact related with it: despite its popularity, it is an optimizer

hat has never been released. In his online course on Neural Networks

or Machine Learning, Geoff Hinton, the father of backpropagation, pro-

osed it. 

.3. Adaptive Gradient Algorithm (Adagrad) 

Although the Adaptive Gradient Technique (Adagrad) is quite simi-

ar to the stochastic gradient descent algorithm, show that it does not use

daptive gradients to improve robustness. One of Adagrad’s key advan-

ages is that it eliminates the need for manual learning rate calibration,

hereas it’s most serious fault is the aggregation of squared gradients

n the denominator. 
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Fig. 1. Deep Learning DenseNet Model. 

Table 2 

Hyper-parameters used for the 

proposed model. 

Hyper-parameters Value 

Learning Rate(LR) 1e-4 

Batch size 3 

Epochs 10 

Optimizer RMSprop 

Dropout rate 0.2 

Activation function Softmax 
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.4. Adadelta 

AdaDelta is a modified successor to Adagrad and another part of the

amily of stochastic gradient descent algorithms. The default learning

ate has been removed from the update rule, thus there is no need to

hange its default value. It also offers adaptive hyper-parameter tweak-

ng approaches and is visibly resistant to chaotic gradient details. By

roviding a fixed size, it imposes constraints on the aggregate previous

radients [27-29] . 

.5. Adam or Adaptive Moment Estimation 

The most prevalent optimizer is Adaptive Moment Estimation, or

dam. It has a lot in common with RMSprop and Adagrad. Adam em-

loys the L2 norm, often known as the Euclidean norm, for optimization.

t is known for its great efficiency, adaptability, and speedier conver-

ence [30] . 

.6. Adamax 

Adamax and Adam were both introduced in the same paper. It’s a

ariation of the Adam optimizer that uses infinity or max norm for opti-

ization. Adamax will outperform Adam with data that is convention-

lly unstable in terms of gradient updates (for example, a dataset with

everal misfits) [ 31 , 32 ]. 

. Proposed methodology 

In this article, author proposed a new model using the pre-trained

enseNet201 model. This study chose to employ a densely connected

eural network, the DenseNet model, for the proposed model, as shown

n Figure 2 Fig. 2 . The goal of using a DenseNet model is to ensure that

eatures propagate flawlessly across the network without efficiency de-

letion, even as the depth is increased. Let summarized the whole pro-

ess of proposed model in further paragraphs. 

.1. COVID-19 dataset 

The proposed model evaluated on Covid data set collected from Kag-

le repository. The data set consist of chest X-ray images categorized into

 classes Covid, normal and viral pneumonia and further this data set di-

ided into train and test folders for the experimentation work. The train

ata set containing 111 images of Covid,70 images of normal and 70 im-

ges of viral pneumonia. For the validation 20% of data from train folder

aken. The test data set contains 26 images of Covid, and 20 images of

ormal and 20 images of viral pneumonia. Fig. 3 Figure 3 explains the

ample images from the data set it is clearly observed the normal im-

ge of chest X-ray contains the white opacity surrounded by the lungs

ere as this opacity reduces in case of viral pneumonia and this opacity

lmost zero for Covid chest X-ray images. 

.2. Transfer learning and fine tuning for proposed model 

The main principle behind transfer learning is that the skills learned

hen studying a model can be applied to a different learning assign-

ent. CNNs are based on a series of deeper layers, with input passing

hrough a number of them. The input data may be lost before it reaches

he network’s final layer. 

.3. COVID-19 detection using DenseNet model 

Each layer in DenseNet receives extra inputs from all preceding lev-

ls and sends its own feature-maps to all subsequent layers. Each layer

eceives a collective knowledge from the levels above it. Because each

ayer receives feature maps from all previous layers, the network can be
478 
hinner and more compact, resulting in fewer channels (and hence im-

roved computing efficiency). Figure 1 Fig. 1 explains the architecture

f DenseNet model used for image classification. 

.4. Model training and hyper-parameters 

Hyper-parameters are the parameters which plays an important role

n training the model and values selected for the hyper-parameters

argely affects the model accuracy. Most commonly known hyper-

arameters for the deep learning model are learning rate, batch-size,

umber of epochs, number of dense layer and weights. The hyper-

arameter defines the proposed model were mentioned in the Table 2 . 

The overall design of the proposed fine-tuned DenseNet201 model

efined in the Figure 2 Fig. 2 . DenseNet201 model is used for the

roposed methodology as we already performed experiment with

enseNet121, DenseNet169 and DenseNet201 on the same data set. For

he proposed methodology we used the concept of data augmentation

n the chest X-ray images. After data augmentation images were ready

or the input to the model and different optimisers SGD, RMSprop, ada-

rad, adadelta, adam and adamax with the same learning rate. All the

op layers containing the dense blocks were freeze as these layers al-

eady trained on the ImageNet database. Further, dense layer with the

ctivation function at output layer softmax is added for the classification

f data set containing three classes normal, Covid and viral pneumonia.

e trained are model by using the hyper-parameters already defined in

able 2 . Complete model runs for 10 epochs with the batch size equal

o 3. 

. Experimental results 

.1. Metrics for model evaluation 

To evaluate categorization predictions, four types of metrics were

omputed. 

.1.1. True Positive (TP) 

label prediction done by model for an input image and image actu-

lly belongs to the same label i.e. an Chest X-ray that is classified as

OVID and is actually belongs to COVID Class. 

.1.2. True Negative (TN) 

label prediction made by model for an input image and image actu-

lly does not belong to that class i.e. model predicted an image does not

elong to NORMAL class and that image actually not NORMAL. 
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Fig. 2. Architecture of proposed methodology 

Fig. 3. Sample images of COVID, NORMAL and VIRAL PNEMONIA from the 

dataset. 
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Fig. 4. Graph Training and validation accuracy of DenseNet201 using SGD Op- 

timizer. 

Fig. 5. Graph for Training and validation loss of DenseNet201 using SGD Opti- 

mizer. 
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.1.3. False Positive (FP) 

image classified as COVID by the model but actually not belongs to

OVID class. 

.1.4. False Negative (FN) 

image classified as not COVID but actually belongs to COVID class. 

These four outcomes were explained with the help of confusion ma-

rix and better defined the results of the proposed model. Moreover,

ccuracy, Precision, Recall and F1-score are the four vital metrics used

or the classification and Eqn 2 and 3 Eqs. (1) –(4) explain all the four

etrics. 

ccuracy = 

𝑇 𝑃 + 𝑇 𝑁 

(1)

𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑁 + 𝐹 𝑃 

479 
recision = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑃 
(2) 

ecall = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑁 

(3) 

F1 score is the harmonic mean of precision and recall. 

 1 score = 2 ∗ 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(4)

.2. Results analysis 

In this section, we discuss the various computed results. The first part

f our experimentation is the exploration of different DenseNet models.

able 3 explains the accuracy and other evaluation metrics for the entire

hree different layers DenseNet model. 

Further, we experiments the different optimizers and the Figs. 4 –

5 Figure 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 shows the train-

ng and validation accuracy and loss against the different optimizers.

able 4 represents the performance of all the optimizers used in the ex-

erimentation work whereas Figure 10 and 11 Figs. 10 and 11 shows the

erformance of the proposed methodology. On the other hand, with the

elp of confusion matrix one can understand the how accurately a model

dentify the images. The diagonals values should be higher as compared

o the other values for a model represents the higher performance. Figs.

6-20 Figure 16, 17, 18, 19 and 20 represents the confusion matrix and

igure 18 fig. 18 is the confusion matrix for the proposed methodology.

Table 5 compares the proposed methodology with the existing art of

ork. 
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Table 3 

Comparison of Training and Validation accuracy for COVID dataset on DenseNet model with 

different number of layers. 

DenseNet model Training Accuracy Validation Accuracy Precision Recall F1-score 

DenseNet121 90.05% 86.00% 0.77 0.63 0.63 

DenseNet169 91.54% 84.00% 0.78 0.68 0.68 

DenseNet201 95.52% 86.00% 0.92 0.91 0.91 

Table 4 

Comparative analysis of DenseNet model using different optimizers 

Optimizers Training Accuracy Validation Accuracy Precision Recall F1-score 

SGD 87.56% 76.00% 0.83 0.69 0.63 

Root Mean Square Propagation (RMSprop) 95.2% 86.00% 0.92 0.91 0.91 

Adaptive Gradient Algorithm (Adagrad) 91.54% 88.00% 0.82 0.78 0.77 

Adadelta 45.77% 28.00% 0.47 0.52 0.48 

Adaptive Moment Estimation (Adam) 88.56% 86.00% 0.85 0.71 0.65 

Adamax 94.53% 86.00% 0.89 0.86 0.86 

Fig. 6. Graph for Training and validation accuracy of DenseNet201 using 

Adadelta Optimizer. 

Fig. 7. Graph for Training and validation loss of DenseNet201 using Adadelta 

Optimizer. 

Fig. 8. Graph for training and validation accuracy of DenseNet201 using Ada- 

grad Optimizer. 

Fig. 9. Graph for training and validation loss of DenseNet201 using Adagrad 

Optimizer. 
480 
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Fig. 10. Graph for training and validation accuracy of proposed methodology 

Fig. 11. Graph for training and validation loss of proposed methodology 

Fig. 12. Graph for training and validation accuracy of DenseNet201 using Adam 

optimizer 

Table 5 

Comparison of proposed technique with the existing work for the diag- 

nosis of Covid-19 patients. 

Article DenseNet model Accuracy Optimizer used 

[10] DenseNet121 75% Adam 

optimizer DenseNet169 85% 

DenseNet201 85% 

DenseNet CNN [15] DenseNet121 92% Not defined 

CovidDenseNet [17] DenseNet121 92.91% Adam optimizer 

Proposed model DenseNet201 95.2% RMSprop 

Fig. 13. Graph for training and validation loss of DenseNet201 using Adam 

optimizer. 

Fig. 14. Graph for Training and Validation Accuracy of DenseNet201 using 

Adamax optimizer. 

Fig. 15. Graph for training and validation loss of DenseNet201 using Adamax 

optimizer. 

481 
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Fig. 16. Confusion Matrix for DenseNet201 using Adadelta Optimizer (worst 

performance). 

Fig. 17. Confusion Matrix for DenseNet201 using Adagrad Optimizer. 

Fig. 18. Confusion Matrix for Proposed methodology (Best performance). 

Fig. 19. Confusion Matrix for DenseNet201 using Adam Optimizer. 

Fig. 20. Confusion Matrix for DenseNet201 using Adamax optimizer. 
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. Conclusion 

In this paper, a fine tuned DenseNet model proposed for the

lassification of COVID-19 patients. DenseNet121, DenseNet169 and

enseNet201 were experimented on the same dataset and with the

ame hyper-parameters values and RMSprop optimizer. DenseNet201

rovides better results as compared to the other DenseNet models.

enseNet201 tuned and using RMSprop optimizers performs well. For

uture work, more research can be done on the DenseNet201 and op-

imization of these models for accurate and effective classification of

OVID-19 using Deep learning models. While the results are intrigu-

ng, more research on a larger sample of COVID-19 photos is needed to

rovide a more credible estimate of accuracy rates. 
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