
diagnostics

Review

Advances in Diagnostic Bronchoscopy

Yi-Cheng Shen 1,2 , Chia-Hung Chen 1,2,3,*,† and Chih-Yen Tu 1,2,3,*,†

����������
�������

Citation: Shen, Y.-C.; Chen, C.-H.;

Tu, C.-Y. Advances in Diagnostic

Bronchoscopy. Diagnostics 2021, 11,

1984. https://doi.org/10.3390/

diagnostics11111984

Academic Editor: Byeong-Ho Jeong

Received: 28 September 2021

Accepted: 20 October 2021

Published: 26 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical
University Hospital, Taichung 40447, Taiwan; greywolf0127@gmail.com

2 Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40447, Taiwan
3 School of Medicine, China Medical University, Taichung 40447, Taiwan
* Correspondence: hsnu758@gmail.com (C.-H.C.); chesttu@gmail.com (C.-Y.T.);

Tel.: +886-4-22052121 (ext. 2623) (C.-H.C.); +886-4-22052121 (ext. 3485) (C.-Y.T.);
Fax: +886-4-22038883 (C.-H.C. & C.-Y.T.)

† Authors contributed equally as the co-corresponding author.

Abstract: The increase in incidental discovery of pulmonary nodules has led to more urgent require-
ment of tissue diagnosis. The peripheral pulmonary nodules are especially challenging for clinicians.
There are various modalities for diagnosis and tissue sampling of pulmonary lesions, but most of
these modalities have their own limitations. This has led to the development of many advanced
technical modalities, which have empowered pulmonologists to reach the periphery of the lung safely
and effectively. These techniques include thin/ultrathin bronchoscopes, radial probe endobronchial
ultrasound (RP-EBUS), and navigation bronchoscopy—including virtual navigation bronchoscopy
(VNB) and electromagnetic navigation bronchoscopy (ENB). Recently, newer technologies—including
robotic-assisted bronchoscopy (RAB), cone-beam CT (CBCT), and augmented fluoroscopy (AF)
—have been introduced to aid in the navigation to peripheral pulmonary nodules. Technological
advances will also enable more precise tissue sampling of smaller peripheral lung nodules for local
ablative and other therapies of peripheral lung cancers in the future. However, we still need to over-
come the CT-to-body divergence, among other limitations. In this review, our aim is to summarize
the recent advances in diagnostic bronchoscopy technology.
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1. Introduction

The early detection of lung nodules for diagnosing curable lung cancer is very im-
portant [1,2]. The National Lung Screening Trial demonstrated the utility of low-dose
computed tomography (CT) scans to increase early detection and reduce mortality from
malignant tumors [3,4]. This trial reported 39.1% of subjects in the low-dose CT screening
group as having at least one positive result [3]. Approximately 80% of these lesions were
peripheral pulmonary lesions (PPLs), according to the National Lung Screening Trial and
the NELSON trial. The increase in the incidental discovery of pulmonary nodules has led
to more urgent requirement of tissue diagnosis [3,5].

There are various modalities for the diagnosis and tissue sampling of pulmonary
lesions, but most of these modalities have their own limitations. CT-guided transthoracic
needle aspiration has a higher yield for peripheral small lesions, compared with bron-
choscopy, but faces difficulty in reaching lesions over central and mediastinum areas [6].
A previous study demonstrated that transthoracic biopsy for malignant lesions has 93%
sensitivity, 100% specificity, and a 25% complication rate; pneumothorax accounted for 24%
of complications [7]. Conventional bronchoscopy has lower sensitivity for malignant lesion
diagnosis, and is poorer for lesions of less than 20 mm in diameter [7,8]. Although con-
ventional bronchoscopy has a lower diagnostic yield than CT-guided transthoracic needle
biopsy (TTNB) for the diagnosis of peripheral pulmonary lesions, the risks of complication
are significantly lower.
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This has led to the development of many advanced technical modalities, which have
empowered pulmonologists to reach the periphery of the lung safely and effectively. These
techniques include thin/ultrathin bronchoscopes, radial probe endobronchial ultrasound
(RP-EBUS), fluoroscopy, and navigation bronchoscopy—including virtual navigation bron-
choscopy (VNB) and electromagnetic navigation bronchoscopy (ENB). Recently, newer
technologies—including robotic-assisted bronchoscopy (RAB), cone-beam CT (CBCT), and
augmented fluoroscopy (AF)—have been introduced to aid in navigation to PPLs. Techno-
logical advances will also enable more precise tissue sampling of smaller peripheral lung
nodules for local ablative and other therapies of peripheral lung cancers in the future.

PPLs are defined as lesions located in the bronchi that are not visible under bron-
choscopy [9]. Diagnosis of PPLs suspected of malignancy remains a challenge. However,
there are no clear guidelines for these various endobronchial modalities. The American
College of Chest Physicians’ lung cancer guidelines recommend minimally invasive modal-
ities, and take factors such as lesion characteristics, patient’s condition, physician’s skill,
and complications into account [3,5,10–15]. Various navigational bronchoscopies have been
developed for PPLs, increasing the diagnostic yield. Minimally invasive transbronchial
treatment may also work by using more accurate three-dimensional (3D) imaging in the
future [16,17].

Several factors may increase the diagnostic yield of transbronchial needle aspiration,
such as lesion size of more than 3 cm, upper and middle lesion location, the presence of
the CT bronchus sign [18–24], operator skill, adequate sampling tools, use of real-time
sampling guidance, rapid on-site evaluation (ROSE), and the type of sedation used for the
procedure [25–30].

Nodule size is an important factor in diagnostic yield [21,31,32]. However, Seijo et al.
reported that lesion size (<3 cm vs. >3 cm and <2 cm vs. 2–3 cm) did not seem to
show a statistically significant difference, which is also consistent with the findings of the
NAVIGATE study and Chavez et al. [33–35]. The diagnostic yield of different locations
(upper lobe vs. middle lobe vs. lower lobes) did not show a statistically significant
difference; this result is consistent with the findings of the NAVIGATE trial [33,34]. The
American College of Chest Physicians’ guidelines for the diagnosis of lung cancer also
revealed that the sensitivity of bronchoscopy for diagnosing lesion in peripheral lung was
lower than that in central lung [36].

Seijo et al. and the NAVIGATE study also reported the presence of the bronchus
sign as a significant factor in diagnostic yield. [33,34] However, a retrospective study re-
vealed no significant difference in diagnostic yield with and without the CT bronchus
sign [30]. The experience of the operator is also a factor affecting the diagnostic yield
in some studies [29,31], but this was not consistent in another cohort [30]. Moreover,
a lower diagnostic yield (64.9%) was noted in centers with low procedural volumes
(0–4 cases/month) in the NAVIGATE study [34], but another study showed that this
factor does not affect the diagnostic yield [30].

A retrospective review based on the Tsuboi classification reported better yields and
sensitivity with types I and II compared to type III; this result was consistent with the
findings of Tsuboi et al. [37]. In Tsuboi type I (the bronchus ends in the lesion) and Tsuboi
type II (nodule in the bronchus), the instruments can directly reach the lesion. In Tsuboi type
III (lesion compressing the bronchus), the instruments cannot get through the compressed
bronchus, making the diagnosis more difficult. It is possible that transbronchial sampling
instruments will be better able to reach these lesions in the future [38]. The bronchoscopic
diagnostic yield for PPLs is 53–65% using various sampling tools [39]. After the fifth biopsy
specimen being sampled, the cumulative diagnostic yield reaches a plateau. Therefore, at
least five biopsy specimens and washing after brushing are required in order to improve
the diagnostic yield [21,40]. Furthermore, moderate sedation has also been found to affect
diagnostic yield in a meta-analysis [27]; this cohort revealed that the use of conscious
sedation in patients can result in better diagnostic yield, consistent with the study by
Bowling et al. [28].



Diagnostics 2021, 11, 1984 3 of 25

More recently, CT-to-body divergence has been put forward as a concept of the
difference between pre-procedure planning CT and actual navigational bronchoscopy. The
divergence of the mapping guided by navigational software, the true anatomy, the lung
volumes, and the position of the target found during bronchoscopy may be caused by
factors including atelectasis, nodule movement with respiration motion, and the physical
changes between the planning phase and the procedure [16,41,42]. In this review, our aim
is to summarize the recent advances in navigational bronchoscopy technology.

In 1966, Professor Shigeto Ikeda, the father of flexible bronchoscopy, introduced to the
world the first flexible bronchoscope [43]. Professors Becker, Hurter, and Hanrath invented
the RP-EBUS probe for target lesion confirmation prior to biopsy in 1992–1996 [44,45], and
Professor Noriaki Kurimoto presented the guide sheath system of the RP-EBUS probe
in 2004.

2. Endobronchial Ultrasound (EBUS) and a Guide Sheath (GS) (1992–1996, 2004)

According to the American College of Chest Physicians’ guidelines, RP-EBUS-guided
lung biopsy can be used as an important means of diagnosis of PPLs, and should be
prioritized [46].

Kurimoto et al. introduced a technique of EBUS with a guide sheath (EBUS-GS) to
improve the diagnostic yield of PPLs (Supplementary Material Figure S1). The overall
diagnostic yield of the EBUS-GS was 77% [47].

Pulmonologists can check the relative position of PPLs and instruments, and perform
sampling under visualization by using the RP-EBUS. When the wire arrives at the target,
the physician removes it and inserts the probe of RP-EBUS in the GS, while keeping the GS
in place. After localization, the radial probe is withdrawn and the sampling instruments
are inserted into the GS, and specimens can be collected [47]. A systemic review and
meta-analysis indicated good performance of RP-EBUS-guided lung biopsy compared with
the conventional bronchoscopic lung biopsy modality [32].

The diagnostic yield was affected by the lesion size and probe location [32]. A meta-
analysis revealed that the diagnostic yield was better for lesions with a diameter larger than
20 mm than for the lesions with a diameter of less than 20 mm. Many studies showed that
positioning the probe within, adjacent to, and outside the lesions has the highest, lower,
and lowest diagnostic accuracy, respectively [21,35,48–50]. The overall complication rate of
RP-EBUS in the diagnosis of PPLs was 1.08–2.8%, including 0.8–1.4% pneumothorax, 1.1%
bleeding, and 0.3–0.5% pneumonia [32,51–54].

3. Ultrathin Bronchoscopy (UTB) (1996)

The conventional bronchoscope is limited by its large size, and cannot reach PPLs
in more distal locations. The first thin bronchoscopy for PPLs in adult patients was
invented in 1885 [55]. An ultrathin fiberscope with a 2.7 mm external diameter and 0.8
mm internal diameter, with a working channel, was introduced in 1996. The ultrathin
bronchoscope can be used through the tracheal tube during mechanical ventilation [56].
However, the smaller working channel of the pediatric bronchoscopes limits the instrument
to adequate and high-quality specimens. A prospective randomized control trial compared
the UTB with a 2.8 mm outer diameter (OD) and 1.2 mm working channel with a standard-
size bronchoscope, and the diagnostic yield of the UTB was lower than the yield of the
standard-size bronchoscope. UTB was not better than standard bronchoscopy, possibly
because of the small working channel, which is too small to obtain enough high-quality
specimens [57]. Moreover, the ultrathin bronchoscope can reach more distal areas, but the
location cannot be directly visualized through bronchoscopy, and needs to be confirmed
by fluoroscopy or RP-EBUS. To break this limitation, ultrathin bronchoscopes with a 2.8–
3.5 mm OD and proper-sized working channel have been developed to allow the use of
RP-EBUS and more elasticity to pass smaller airways. The study revealed that the 3 mm
OD ultrathin bronchoscope with a 1.7 mm working channel (Figure S2), compared with
the 4 mm OD conventional bronchoscope, can reach more distal areas and has a better
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diagnostic yield [58]. A retrospective study also demonstrated that the diagnostic yield
of RP-EBUS was significantly higher in ultrathin bronchoscopy without a guide sheath
than in conventional bronchoscopy with a guide sheath, both under fluoroscopic guidance.
There was no significant difference in the complication rate between the two groups [59].

4. Virtual Bronchoscopic Navigation (VBN, VNB) (2002)

Virtual bronchoscopy (VB) is not an endoscopic procedure; it is an imaging modality
that utilize non-contrast-enhanced computed tomographic (CT) images to reconstruct
3D airway images that appear similar to those visualized during invasive bronchoscopy.
Virtual bronchoscopic navigation (VBN) uses virtual bronchoscopy CT imaging to guide
the bronchoscope to PPLs in the lungs (Figure S3).

A meta-analysis revealed that navigation bronchoscopy has a significantly higher
overall diagnostic yield than non-navigation bronchoscopy for PPLs [18]. Another system-
atic review and meta-analysis of randomized control trials revealed contrasting findings,
which demonstrated that the overall diagnostic rate was similar in VBN-assisted (VBNA)
and non-VBN-assisted (NVBNA) groups [60]; nevertheless, the VBNA group had signifi-
cantly shorter total examination time compared with the NVBNA group; this result was
consistent with the findings of Xu et al. and Liu et al. [49,61]. Furthermore, the sub-analysis
also revealed the superiority of VBNA over NVBNA among patients with PPLs less than
20 mm in diameter, but the subgroup analysis for lesions more than 20 mm in size revealed
the diagnostic yield to have no significant difference between the two groups. The study
by Xu et al. including 105 patients showed no significant difference between the pres-
ence or absence VNB under the EBUS group, whether lesion size was less than 20 mm or
20–30 mm [49]. A study including 129 patients compared different VBN software, and the
results revealed that VINCENT version 5.5 better reproduced peripheral bronchi than the
LungPoint system [62].

Despite experience with numerous bronchoscopic techniques, numbers of peripheral
pulmonary lesions still present significant challenges for interventional pulmonologists.
Electromagnetic navigation bronchoscopy (ENB) systems were introduced to overcome
such limitations. Schwarz et al. [63] first demonstrated their acceptable diagnostic yield
(69%) and safety by using an ENB system (superDimension) for diagnosing PPLs.

5. Electromagnetic Navigation Bronchoscopy (ENB) (2005)

ENB utilizes a planning phase CT scan to reconstruct a virtual bronchoscopic image
with an additional navigational tool—an electromagnetic field—which provides dynamic
and temporally tracked guidance during bronchoscopy. ENB has been used in clinical prac-
tice since 2005, but more widely used in recent years [63,64]. The American College of Chest
Physicians’ guidelines for the diagnosis of lung cancer specifically state the increased yields
and safety of ENB, and recommend ENB as the preferred diagnostic modality for suspicious
PPLs if equipment and expertise is available [36,65]. The US National Comprehensive Can-
cer Network (NCCN) guidelines also mention that navigational bronchoscopy may benefit
patients with peripheral nodules. [66] Electromagnetic navigation bronchoscopy (ENB)
systems rely on a magnetic field around the patient to detect a tracked device in order to
obtain the position overlaid on the virtual bronchoscopic map. This is an integration of an
electromagnetic tracking system and VBN, which includes a virtual pathway as a map dur-
ing bronchoscopy, reconstructed by using pre-procedure high-resolution three-dimensional
(3D) CT imaging. The system can synchronize the imaging to the EM field via selected
points and provide a route to the lesion. Then, the physicians can track the synchronized
probe during bronchoscopic navigation. The probe in the working channel can further
pass the tip of the scope into smaller areas, and drive along the map to reach the target [67].
Then, the operator can use RP-EBUS and fluoroscopy for real-time confirmation of the
target location before sampling instrument insertion. In addition to specimen sampling,
fiducial markers placement and dye marking can also work via this system.
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There are two commercially available ENB systems—the superDimensionTM Sys-
tem, and the SPiN Thoracic Navigation SystemTM—in the USA. Both systems need
pre-procedure CT imaging and overlay the electromagnetic field on reconstructed four-
dimensional (4D) CT scan imaging. These two systems have distinct advantages, depend-
ing on the different setting and lesion characteristics. When using the superDimension™
system, the procedure can be performed in the operating room or the endoscopic room.
When using the SPiN Thoracic Navigation System™, because room mapping is not needed,
the procedure can be carried out in either of these rooms.

6. SuperDimensionTM System

The superDimension system utilizes a static inspiratory breath-hold CT chest scan
for the planning phase. A sensor-locatable guide is tracked on the navigation system,
synchronized with reconstructed CT imaging, and is inserted into an extended working
channel (EWC) through a bronchoscope (Figure S4).

The EWC has various angles—including 45◦, 90◦, and 180◦—to offer elasticity during
navigation and remain in site after the locatable guide is shifted to the sampling instruments.

7. SPiN Thoracic Navigation SystemTM

The SPiNDrive system uses inspiratory- and expiratory-phase chest CT imaging
during the planning phase to observe lesion movement due to the respiratory cycle. The
electromagnetic generator is mobile, and can be placed in different locations. The system
incorporates skin-tracking pads with electromagnetic sensors. These pads are put on the
patient’s chest wall, and can track the patient’s breathing motion and help to reconstruct
a 4D map for navigational bronchoscopy and sampling guidance [68,69]. The SPiNDrive
system has combination of a locatable guide and EWC, and the use of a tip-tracked biopsy
instrument allows continuous direct navigation.

Moreover, there is the SPiN Perc™ system, which can help the physician to conduct
percutaneous or transthoracic needle aspiration (TTNA) biopsies in the same procedure.
This modality is used for patients with lesions located too peripherally in the lung(s) to
be reached. Several studies demonstrated diagnostic a yield increase from 70 to 80% by
using this approach, with 17% and 21% pneumothorax rates, respectively; the rate of pneu-
mothorax was higher than with bronchoscopy, and similar to CT-guided TTNA [68–70]. A
multicenter prospective trial using ENB with TTNA has been conducted, and the results are
pending [71]. Both the superDimension and SPiN systems can be used for more accurate
localization and dye-marking of PPLs. The SPiN platform also can use the SPiN Perc for
PPLs near the pleural surface, or that are difficult to reach within the same procedure. These
two systems provide a stabilization-assisted system, which is fixed to the procedure table
with mobile ergonomic arm. The bronchoscope can be fixed to this system and stabilized in
the immovable position when the target is reached. This can decrease the device movement
and allow the scope and instrument to remain stable and more precise—especially during
tissue sampling and instrument exchange [72].

8. LungCare Navigation System

The latest ENB system, LungCare, has been approved for clinical usage since 2016 in
China. This system has a workstation with computer software, a locatable wire, a position
detection wire, and an electromagnetic board, and can be used in combination with guide
sheaths, puncture needles, and different sized bronchoscopes, because of its different types
of locatable wires [73,74]. The position detection wire can sense respiratory movement, and
provides continuous synchronization with the workstation during the procedure. Three
position detection wires with three electrodes attached to a patient’s chest can transfer a
signal to the workstation.

Technical problems with the stability and extension of the probe–instrument complex
can exist—for example, catheter slippage under significant torque, or during instrument
exchanges. Moreover, visualization at the distal divergence is not real-time, and makes
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bronchoscopy sharply angulated and subject to torque. However, ENB is still the most
used modality to reach the PPLs, and as an alternative to transthoracic biopsy in patients
with higher risk. Additionally, the location of peripheral nodules with indocyanine green
injection for precise resection can also work with ENB [75,76].

Several meta-analyses reported 65–82.5% sensitivity for diagnosing PPLs, and 0–5%
complications [27,34,77–81]. While previous studies have reported efficacy and safety, with
a low complication rate, in the diagnosis of PPLs using ENB, the technique highly depends
on operator skills and anatomy. Several studies have reported larger lesion size, upper
and middle lobe lesions, presence of the bronchus sign, and lesion visualization via RP-
EBUS, and concurrent use of ENB with RP-EBUS has been reported to improve diagnostic
yield [27,79,80]. The registered data of the AQuIRE Registry revealed that several centers
have worse diagnostic yield with ENB (38.5%) compared to RP-EBUS (57%), which may
be because specialized centers have better efficacy than the community [39]. A single-
center retrospective study revealed a lower diagnosis rate, which may have been caused
by the type of sedation [31]. Respiratory variation, coughing, respiratory distress, and
other irritations during the procedure may affect the diagnostic yield [82]. Most previous
ENB studies reported higher diagnostic yield for patients undergoing the procedure with
general anesthesia [29,77,79,83,84], which suggests that the sedation quality during ENB
can affect diagnostic yield. However, Cherian et al. recently reported that ENB has high
diagnostic yield and safety even when performed by an operator without formal training
and in low-resource settings under moderate sedation [30].

The prospective multicenter NAVIGATE study revealed a 73% diagnostic yield with a
pneumothorax rate of 4.3% and hemorrhage rate of 2.5%. Multivariate predictors of better
diagnostic yield include the use of less than three sampling tools, lymph nodes biopsied,
the bronchus sign being present, multiple lesions being biopsied, and a procedure time of
less than 60 min. [34] Another systemic review and meta-analysis of 40 studies and 3342
participants reported a pool sensitivity of 77% and a specificity of 100% for malignancy,
with a receiver operative characteristic of 0.955 and pneumothorax rate of 2.0%. The mean
distance from the sensor tip to the center of the lesion, the number of samples, and the
cancer prevalence affect sensitivity [81].

It is worth mentioning that a cohort study revealed that ENB is more cost-effective
when the likelihood of an accurate diagnosis is equal to that of TTNA. This can happen
in certain subgroups in whom TTNA is unlikely to achieve an accurate diagnosis, or is
performed by experienced operators to reach a high accuracy with ENB [85].

ENB systems elevate the potential for PPL diagnosis and sampling; however, they
lack peripheral visualization during navigation. This led to the introduction of robotic
bronchoscopy. The robotic system uses a virtual map generated from reconstructed 3D CT
and EM field mapping as an ENB system, along with advanced robotic arms.

9. Robotic Bronchoscopy

Robotic bronchoscopy systems are the newest technique and least invasive modality
for the diagnosis of PPLs. There are two systems, including the Monarch™ Platform (Auris
Health©, Redwood City, CA, USA, FDA approved in March 2018) and the Intuitive Ion™
robotic platform (Intuitive Surgical©, Sunnyvale, CA, USA, FDA approved in February
2019) [68,86,87]. These systems can reach more peripheral areas of the lungs, have more
delicate control and navigation to the target, and show more stabilization during tissue
sampling—especially when the target is an eccentric lesion via peripheral TBNA. In ad-
dition, because the robot-assisted system uses a smaller bronchoscope, it also has direct
visualization for more distal areas [68,88]. The two systems both have similar equipment,
including the bronchoscope, robotic arms, a tower, and a controller.

10. The Monarch™ Platform

The MonarchTM system (Auris Health©, Redwood City, CA, USA) is composed of a
6.0 mm, 130◦ articulating outer sheath and a 4.4 mm bronchoscope with a 2.1 mm working
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channel that can flex 180◦ in any direction beyond the sheath. With the use of a handheld
controller, it allows the pulmonologist to navigate the tortuous and more distant areas of
the lungs, along with continuous visualization. All parts of the scopes can independently
lock into position for stability during instrument exchange and tissue sampling. The
operator can control the instrument more precisely and guide it further, to the periphery
of the lung lesions, compared to the conventional bronchoscope [89]. The MonarchTM

system uses similar equipment to ENB, including direct visualization, real-time and virtual
bronchoscopy, electromagnetic navigation, and robotic real-time data that can precisely
localize the bronchoscope. Fluoroscopy and RP-EBUS can also be integrated within the
system to confirm more precise positioning during procedures [88–90].

A retrospective multicenter study using the Monarch™ system in 165 patients with
167 lesions demonstrated successful navigation of 88.6% and diagnostic yield of 69.1–77%
for the lung nodules. The average size of target lesions was 25.0 ± 15.0 mm. A total
of 71% of the lung nodules were located in the outer third of the lung, and 63.5% of
patients had a bronchus sign. The yields of concentric, eccentric, and absent RP-EBUS
views were 81.5, 71.7, and 26.9%, respectively. The rate of pneumothorax was 3.6%, 2.4%
required chest tube placement, and airway bleeding was 2.4% [88,91]. A prospective
multicenter pilot and feasibility study (BENEFIT) using the Monarch™ system reported
success rate of 96.2% for lesion localization using RP-EBUS, and a diagnostic yield of
74.1% in 54 patients. Median lesion size was 23.0 mm (IQR, 15 to29 mm), and 59.3% of
patients had a bronchus sign. Peripheral lesions with a concentric RP-EBUS view had
a diagnostic yield of 80.6%, and those with an eccentric view had a yield of 70%. The
diagnostic yield of eccentric lesions was significantly higher than the previously reported
yield of 30–40%. [21] The rate of pneumothorax was 3.7%, and the rate of requiring tube
thoracostomy was 1.9%. [92] Another prospective multicenter study (TARGET) using
the Monarch™ Endoscopy Platform is currently enrolling patients, and aims to enroll
1200 patients at up to 30 investigative sites to evaluate the clinical safety and diagnostic
accuracy of robotic-assisted bronchoscopy with biopsy [88,93].

11. Intuitive Ion™ Robotic Platform

The IonTM endoluminal system (Intuitive Surgical©, Sunnyvale, CA, USA) uses fiber-
optic shape-sensing in conjunction with real-time and virtual bronchoscopy. The scope
consists of an ultrathin, fully articulating catheter with a 3.5 mm outer diameter, 2.0 mm
working channel, and a vision probe in the working channel. The catheter includes fiber-
optic shape sensors that provide real-time, accurate location and shape feedback. The
system can keep the catheter in its current formation and reach further lesions stably. The
optical probe is withdrawn upon reaching the target, and the instrument can be inserted in
the remaining sheath. This system provides a custom-designed flexible needle (Flexision™,
Intuitive Surgical©, Sunnyvale, CA, USA) that can be passed through the positioned
catheter, which can be advanced through tortuous airways with smaller radii, and can then
be deployed into the target lesion in a direct fashion [68,88]. The user operates the system
via a trackball and scroll wheel, which are combined with a distal tip articulation system to
provide direct visualization during the navigation process. Navigational bronchoscopy,
RP-EBUS, and fluoroscopy can be integrated into the tower systems [94].

Fielding et al. performed the first human feasibility study using the IonTM endolu-
minal system on 29 patients with a mean lesion diameter of 12.2 mm in the axial plane,
and reported 96.6% localization and tissue sampling success. The overall diagnostic yield
and diagnostic yield for malignancy were 79.3% and 88%, respectively. The CT bronchus
sign was present in 58.6% of cases, and approximately half of the cases had an eccen-
tric RP-EBUS view. The high yield—especially for the eccentric RP-EBUS view—was
attributed to the ability to visualize peripheral airways and to deploy the TBNA needle
perpendicular to the airway towards the lesion. No pneumothorax or major bleeding were
encountered. However, procedure times averaged 95 min initially, and then shortened to
61 min [87]. A prospective single-arm multicenter clinical study (PRECIsE) using the IonTM
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endoluminal system is in progress, and is expected to enroll 360 patients, with the primary
outcomes assessing navigation and biopsy success, and secondary outcomes assessing
complications [95].

Due to the robotic systems retooling the bronchoscope into one with accurate mo-
tion, adjustable angulation, and better stability, the robotic platforms have the ability to
potentially overcome some limitations of the currently available guided bronchoscopy
systems, and increase the diagnostic yield for PPLs—especially for eccentric RP-EBUS
views [87,91,92]. These new RAB platforms with sheaths and scopes with fiber-optic shape
sensing can reach further areas up to the ninth generation of airways—compared to con-
ventional bronchoscopy, which can only reach the sixth generation of airways—and have
entire real-time visualization and mapping for tissue sampling and marking lesions for
diagnosis and surgery [81]. The small outer diameter of the bronchoscope also helps the
scope to be wedged and locked in the target segment, which can allow for tamponade
and containment of the bleeding. Because of their precision in locating PPLs, the RAB
platforms may guide bronchoscopic ablative therapies for treating oligometastatic lesions
or inoperable peripheral lung tumors [90,96].

However, the most important limitations to overcome are the lung movement dur-
ing the procedure and the CT-to-body divergence [97]. The navigational bronchoscopic
techniques utilize pre-procedure planned CT imaging for navigational mapping, and can-
not reflect the real state of the lung in real time during the procedure—especially while
sampling tissue. The combination of the real-time imaging modality including cone-beam
CT (CBCT) and augmented fluoroscopy (AF) can obtain real-time 3D imaging during the
procedure to identify the lesion, scope, and instrument location. Furthermore, the weakness
of this technique includes higher cost, more complex configuration in the procedure room,
longer procedure time, and the need for a learning curve. We still need further research
in order to evaluate the efficacy of robotic-assisted bronchoscopy. With more persistence,
practice, and patience, robotic-assisted bronchoscopy may become the next stepping stone
for the diagnosis and treatment of PPL.

A variety of bronchoscopic technologies for the diagnosis of PPLs have been devel-
oped in the past two decades. The diagnostic yield seems to have plateaued around
70%, and is often lower [27,34,39,84,91,98–101]. These modalities have failed to reach a
consistently high diagnostic yield. Various factors affect them, including inaccurate real-
time visualization and confirmatory technique, CT-to-body divergence, and poor-quality
sampling. RP-EBUS is commonly used to confirm the lesion location, and can also be
misled by atelectasis or hemorrhage [41]. CBCT can provide high-resolution, real-time,
intraprocedural 3D imaging, and support the navigation, confirmation, and tissue sampling
phases to correct for CT-to-body divergence, representing a feasible way to overcome those
limitations mentioned above [16,41,102–106].

12. Cone-Beam Computed Tomography (CBCT)

CBCT uses intraprocedural 3D imaging using a C-arm, and was introduced in the early
2000s; its use was quickly and widely adopted for various clinical applications, including
pulmonary bronchoscopic intervention [107–110]. CBCT uses a compact CT system with
a moving C-arm requiring volumetric data during the procedure to provide real-time
information about the instrument and target lesion location (Figure S5).

CBCT is performed after anesthesia, and typically before the bronchoscope is inserted.
The imaging reconstructed by projection imaging can be reformatted into coronal, sagittal,
and axial views. Next, the target PPLs are located and outlined on those images by using
dedicated softwar. [102,103,106,111]. Then, the lesion can be overlaid on live fluoroscopic
imaging to provide a target for navigation and sampling.

The common trade names for CBCT include DynaCT (Siemens Healthineers, Ger-
many), Innova CT (GE Healthcare, Waukesha, WI, USA), and XperCT (Philips Healthcare,
The Netherlands). Fixed CBCT systems have types including floor, biplane, ceiling, and
robotic; all of these can be used during bronchoscopy. The floor and biplane systems are
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less convenient because the base is fixed to the floor at the head end of the patient table,
where the pulmonologist stands. Moreover, the system’s reach to the base of the lungs—
especially in taller patients—could be limited depending on the C-arm depth, because the
rotation point of the propeller is above the patient’s head. On the other hand, ceiling and
robotic systems have friendlier configuration, better patient access, and less equipment
re-arrangement during the switch between fluoroscopy and CBCT. Some mobile C-arm
systems—including Cios Spin (Siemens Healthineers) and Vision RFD 3D (Ziehm Imaging,
Florida, USA)—are also able to perform CBCT. Although mobile C-arms have a smaller
field of view and a longer image acquisition time of ~30–60 s, they can move easily, and
have a smaller footprint and more acceptable price [112].

Many studies have reported using CBCT to visualize PPLs during bronchoscopic
procedures, including diagnosis, dye marking, and ablation [41,102–106,111,113]. Dur-
ing navigation bronchoscopy, CBCT can assist in navigation guidance and tool-in-lesion
confirmation prior to sampling or ablation [41,102–106,111,113]. Furthermore, CBCT can
detect atelectasis during procedures that may interfere with navigation, obscure the target
location, and mislead the physician. In addition to a high positive end expiratory pressure,
the use of CBCT can correct CT–body divergence caused by atelectasis. CBCT also can de-
crease CT–body divergence caused by respiratory movement or other factors by providing
real-time navigational information.

CBCT also can be combined with other bronchoscopic techniques, such as ultrathin
scopes, RP-EBUS, transbronchial instruments, and EMN [41,102–106,111,113]. The utility of
CBCT is not to replace other navigation bronchoscopic techniques, but to provide additional
confirmation and accurate real-time navigation, especially in the biopsy phase. Moreover,
bronchoscopic ablation requires more precise locations of the instrument, the target, and
vital structures, in which CBCT can play an important role [114].

Several studies have demonstrated that CBCT can be used to confirm the relative dis-
tance between the instrument and the target prior to biopsy, and has the potential to improve
diagnostic yield with fewer needle repositions and reduced complications [41,103–105,115]. A
prospective study by Hohenforst-Schmidt el al. showed that traditional bronchoscopy com-
bined with CBCT has a navigational yield of 91% and a diagnostic yield of 70%. Moreover,
CBCT-guided transbronchial biopsies (TBBs) for incidental solitary pulmonary nodules
≤ 2 cm found a sensitivity to malignancy of 82%, which is much better than fluoroscopy-
guided conventional TBBs, with a mean value of 50% [102,116]. A small prospective pilot
study of 20 patients demonstrated that CBCT-guided bronchoscopy resulted in 20% and
25% increases in the navigational and diagnostic yield, respectively, of thin/ultrathin
bronchoscopy for PPLs, with an acceptable radiation dose ranging between 8.6 and
23 mSv [41]. A prospective single-center study of 87 patients with 107 lesions also reported
that the addition of CBCT imaging to the electromagnetic navigation system increased
navigation success from 52.2% to 87.5%, and diagnostic accuracy from 50% to 75% [117]. A
multivariate analysis by Park et al. reported that tool-in-lesion confirmation by CBCT prior
to biopsy was the only factor related to higher diagnostic yield [105].

In summary, CBCT plays an important role during bronchoscopic procedures by
localization of the instrument and the target lesion, tissue sampling under real-time guid-
ance, and decreasing CT-to-body divergence, including atelectasis caused by false positive
RP-EBUS images. Several studies are ongoing to explore whether this technique can im-
prove outcomes of bronchoscopy for PPLs. There are some limitations and drawbacks of
using CBCT as an adjuvant modality in bronchoscopic procedures, including the radiation
exposure, the complex workflow in most procedure rooms, and the longer procedure time
due to the number of scans and preparation.

Precise localization and sampling are especially important for bronchoscopy. Previous
traditional modalities including virtual navigation bronchoscopy, ENB, and robotic-assisted
systems with shape-sensing can be combined with CBCT to acquire 3D images and localize
targets, probes, and instruments, demonstrating a 91% localization rate but a 70% diagnostic
yield [102]. This diagnostic yield has not increased in parallel with localization success.
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These approaches all use a virtual navigational pathway guided by preoperative
reconstructed CT images to guide the physician to the target. However, the navigation does
not reflect the actual target location. A study revealed an average displacement distance of
13–22 mm compared to the expected location on the planning CT imaging. The distance
can be larger than this, especially when evaluating lesions less than 20 mm in size. This
can lead to missampling and lower diagnostic yield [118].

All of these bronchoscopic approaches are based on CT images in the planning
phase, provide only a static overlay, and do not factor in CT-to-body divergence or
respiratory movement.

Atelectasis also affects the visualization of the target. Pritchett et al. reported that
atelectasis was identified to varying degrees in approximately 50% of their procedures [119].
Casal et al. [41] reported that the target lesion was totally obscured by atelectasis in 20% of
their subjects. Atelectasis can be caused by various factors, including anesthesia, mucus
plugs, chest muscle weakness, and hyperoxia [120], and can cause significant displacement
of the target. The use of general anesthesia with a tidal volume of 8–10 mL/kg of ideal body
weight and a positive pressure ventilation of at least 10 cm H2O can minimize atelectasis
and reduce CT-to-body divergence [121].

Respiratory movement makes lung volume, airway orientation, and instruments’
location within the lungs change constantly. The overlay of the true lesion location and the
target on the navigation guide only occurs at a single point in the respiratory cycle. This
mismatch distance between full inspiration and end exhalation on pre-procedure chest CT
scans has been reported to average 17.6 mm over the whole lung, and the average of the
range near the base of the lung can reach up to 25.3 mm. This mismatch can significantly
affect the diagnostic yield of ENB [42], which produces a high localization rate, but without
consistent diagnostic yield [39,79,97,122,123]. The critical step of diagnostic bronchoscopy
for PPLs is to localize the tip of the instrument within or at the border of the target; if we
cannot overcome CT-to-body divergence and breathing motion, this can lead missampling
of non-lesion sites.

At present, we need to aim to correct CT-to-body divergence using actual real-time
visualization of the target, and improve the means of tracking lung motion during the
bronchoscopic procedure for peripheral pulmonary lesions.

13. Augmented Fluoroscopy (AF)

Fluoroscopic navigation is an adjuvant technique for the navigational bronchoscopy
system. This modality utilizes tomosynthesis with continuous imaging to obtain mul-
tiple projections using a C-arm fluoroscopy machine in order to locate the target lesion
(Figure S6). This makes real-time localization of the navigation probe more precise, and
decreases the effect of CT-to-body divergence.

A prospective study by Hohenforst-Schmidt at al. first reported the use of airway
structures overlaid on live fluoroscopy imaging during CBCT-guided bronchoscopy [124].
This technique—also termed “augmented fluoroscopy” (AF)—accurately provides real-
time 3D imaging for every movement using the C-arm during the procedure. However,
the overlaid images on the live fluoroscopy screen are static, and the true target location on
the augmented fluoroscopic view can be obtained accurately only during breath holding.

By contrast, augmented fluoroscopy using the LungVision system can provide precise
real-time target location during navigation and tissue sampling, with persistent dynamic
tracing to the target.

14. LungVisonTM System

The LungVision™ system (Body Vision Medical Ltd., Ramat Ha Sharon, Israel, FDA
approved in May 2017) is an image navigation system that integrates multimodal images
and modalities of three-dimensional reconstructive maps generated from preoperative
CT images, bronchoscopy, RP-EBUS, biopsy instruments, and intraprocedural real-time
fluoroscopic visualization of airways to enable real-time augmented endobronchial fluoro-
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scopic navigation, localization, and tissue sampling of PPLs. Guided pathways to the lesion
are projected on the fluoroscopic screen in real time, directing the bronchoscopist to the
highlighted target. Furthermore, the system has probe tracking along with fusional images,
without the need for electromagnetic sensors. The software can adjust for motion during
breathing and CT-to-body divergence via artificial intelligence [125]. Respiratory motion
compensation enables the use of moderate sedation, with no need for general anesthesia
or paralytic agents. The LungVision™ 2.0 system (FDA approved in May 2019) uses an
image registration technique through powerful artificial intelligence algorithms, real-time
tool-in-lesion confirmation through C-Arm-based tomography (CABT) technology—which
is an alternative to CBCT—and navigation tool integration (RP-EBUS, EMN, etc.). Addi-
tional advantages are reduced cost and decreased radiation exposure, where the average
radiation dose is 2.76 mSv, similar to low-dose CT. Previous reports have shown experience
with this system [126–128].

A prospective analysis by Pritchett et al. reported that the average distance between
lesion location measured by LungVision augmented fluoroscopy and actual location mea-
sured by CBCT was 5.9 mm. Lesion localization success rate and diagnostic yield were
96.1% and 78.4%, respectively. Diagnostic accuracy at 12 months follow-up was 88.2%.
Diagnostic yield for lesions ≤ 2 cm in diameter was 70.6% [119]. Another prospective
single-center study showed that the overall diagnostic yield, and that for lesions smaller
than 20 mm, were 81.8% and 72.2%, respectively, with the LungVision system [129]. The
diagnostic yield was better than those of the VBN and ENB navigation systems [18,27,80].
A multicenter study revealed 93% nodule localization success rate and 75.4% overall
diagnostic yield by adding rapid on-site evaluation [130].

Augmented endobronchial fluoroscopic navigation with the LungVision system pro-
vides safe, feasible, and real-time lesion localization accuracy. Intraprocedural augmented
fluoroscopy with real-time 3D CABT is an effective tool to assist in lung nodule biopsies.
LungVision enables real-time nodule and pathway overlay on native fluoroscopy and,
furthermore, allows real-time 3D CABT, similar to CBCT imaging, but requiring only a
standard fluoroscopy C-arm.

15. Combination Study

Various technologies have been developed in the past two decades, each with its own
advantages. The combination of multiple approaches can make the most of their respective
advantages and achieve a higher diagnostic yield.

15.1. EBUS+VNB

A study revealed that the diagnosis yield of VBN in conjunction with EBUS was
significantly higher than that of EBUS alone for lesions less than 2.0 cm in diameter.
The ultrasound probe of EBUS could further confirm the target location in the VBN and
EBUS group, and increased diagnostic yield to 70% [49]. Another study revealed that the
combination of EBUS-GS and VNB systems (LungPoint) was useful for diagnosing small
PPLs [48].

15.2. EBUS+ENB

A prospective randomized controlled trial reported that the combined use of RP-
EBUS along with ENB has better diagnostic yield of 88% compared to either technology
alone [131]. A single-center retrospective study also demonstrated that ENB combined
with RP-EBUS biopsy for the diagnosis of PPLs was safe and effective [132].

15.3. EBUS+Robotic+Fluoro

A small, retrospective, single-center study of 10 patients reported 90% diagnostic yield
using RP-EBUS, robotic-assisted navigation with the Ion platform, and multiplanar 3D
fluoroscopy with a Cios-Spin mobile 3D C-arm. Navigation to the target was successful in
all cases [133].
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15.4. ENB+CBCT+AF

A single-center retrospective study including the combination of ENB, CBCT, and
AF in 75 patients achieved a high diagnostic yield of 83.7%, even for very small lesions
(median diameter 16.0 mm), with a diagnostic accuracy of 93.5% and low complication
rates, with an acceptable amount of radiation dose [106].

15.5. ULTRATHIN+EMN+RP-EBUS+CBCT+AF

Various studies have demonstrated that the combination of multiple modalities
—including CT and fluoroscopic capabilities [105], ultrathin bronchoscopy and RP-EBUS [41],
EMN [106,134], and transthoracic needle aspiration [102]—can increase the diagnostic yield
from 70% to 84% [41,102,105,106,134].

15.6. EMN+RP-EBUS+CBCT+AF

A prospective single-center study revealed that the use of CBCT and AF imaging
in addition to the original configuration of EMN and RP-EBUS can significantly increase
navigation success, and almost 90% of small lesions could be reached. However, the overall
diagnostic accuracy of 72.4% did not increase with the consistently higher navigation suc-
cess. A more effective tissue acquisition methodology may improve the overall diagnostic
yield [117].

16. Conclusions

Prior studies have demonstrated that when technologies are used in combination, the
diagnostic yield of PPLs incrementally increases. That is to say, such technologies are not
replacements but, rather, complementary to one another in combination. This improved
diagnostic value and precise localization are vital for the development of bronchoscopic
therapeutic techniques for PPLs, including local ablation in the future.

Numerous studies have used the superDimension™ platform. However, emerging
evidence has demonstrated better results with the use of the SPiN Thoracic Navigation
System™ and SPiN Perc™, Monarch™, and the Intuitive Ion™. Robotic-assisted systems
can maintain stability during instrument exchange and tissue sampling. In Table 1, we
briefly review the diagnostic yields and complication rates of studies using these systems
(Table 1).
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Table 1. Clinical trial data.

First Author [Ref.] Year N Study Design Diagnostic Yield % Complication Rate% Additional
Technique(s)

Ultrathin

Oki et al. [58] 2015 310 Randomized trial 74% 3% EBUS, Fluoroscopy,
VBN

Sumi et al. [59] 2020 168 Retrospective study 74.5% 3.9% EBUS

VBN

Giri et al. [60] 2021 1626 Systematic review
and meta-analysis 74.17% - EBUS-TBLB

TAMIYA et al. [48] 2013 68 Retrospective study

Thin bronchoscopy with
EBUS-GS under

LungPoint guidance for
small (≤30 mm) PPLs

was 77.9%

-
LungPoint system +

EBUS-GS
Fluoroscopy

Xu et al. [49] 2020 105
(50 VBN + 55 EBUS) RCT 76.0% VBN+EBUS

65.5% EBUS
8.0% (4/50) VBN+EBUS

21.8% (12/55) EBUS EBUS

Liu et al. [61] 2020 202 Retrospective study 84.2% - EBUS-GS

Kitamura et al. [62] 2021 131 Retrospective study 76.8% No serious complications EBUS-GS

ENB

Yang et al. [76] 2021

47
(35 percutaneous

injection
12 ENB)

Prospective study
Location success rate

94.3% (33/35) vs. 100%
(12/12)

Percutaneous marking
group;

14% (5/35)
pneumothorax

Fluoroscopy
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Table 1. Cont.

First Author [Ref.] Year N Study Design Diagnostic Yield % Complication Rate% Additional
Technique(s)

SuperDimension™

Tian et al. [135] 2020

157
(105 CT-guided hook

wire
52 ENB)

Retrospective study
Location success rate

94.3% (99/105) vs. 100%
(52/52)

CT-guided localization
group;

7.6% (8/105)
aymptomatic

hemopneumothorax,
3.8% (4/105)

symptomactic
hemopneumothorax,

0.9% (1/105) hemotysis,
0.9% (1/105) decoupling

Schwarz et al. [63] 2006 13
Prospective,

controlled clinical
study

69.2% No device-related
adverse events

Folch et al. [34] 2019 1215
Prospective

multicenter cohort
study

73% 4.3% pneumothorax,
2.5% hemorrhage

91% Fluoroscopy
57% EBUS

Patrucco et al. [77] 2018 113 Retrospective
observational study 69% No procedural

complications
Fluoroscopy-guided,

ROSE

Sun et al. [78] 2017 40 Prospective study 82.5% No complications EBUS and
Fluoroscopy

Gex et al. [79] 2014 1033 Systematic review
and meta-analysis

55.7–87.5%
Pooled 64.9%

3.1% pneumothorax,
1.6% tube thoracostomy

EBUS, Fluoroscopy,
ROSE

Zhang et al. [80] 2015 1106 Meta-analysis 60.0–94.0% No procedural
complications

EBUS, Fluoroscopy,
ROSE
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Table 1. Cont.

First Author [Ref.] Year N Study Design Diagnostic Yield % Complication Rate% Additional
Technique(s)

Folch et al. [81] 2020 3342 Systematic review
and meta-analysis Overall sensitivity 78% 2.0% pneumothorax

95% superDimension
EBUS, Fluoroscopy,

ROSE

Ost et al. [39] 2016 581
15 centers Registry

EMN 38.5%
EBUS 57.0%

No EMN and no EBUS
63.7%

EMN+REBUS 47.1%

1.7% pneumothorax,
0.2% bleeding,

0.2% refractory hypoxemia,
0.2% respiratory failure

80.8% (252/312)
superDimension

Becker et al. [82] 2005 29 Prospectively 69%
3.4% pneumothorax,

10.3% minor, self-limiting
bleeding

EBUS

Lamprecht et al. [29] 2012 112
Single-center,
prospective,

observational study

Overall 83.9%;
The first 30 procedures

80%;
The last 30 procedures

87.5%;
Lesions ≤ 20 mm 75.6%
Lesions > 20 mm 89.6%

1.8% pneumothorax PET/CT and ROSE

Mohanasundaram
et al. [83] 2013 47 Retrospective

analysis 89.4% 13% (6/47) pneumothorax ROSE

Khandhar et al. [84] 2017 1129 Prospective,
multicenter study

Navigation success 91.8%
(1036/1129)

3.2% (32/1000) CTCAE
Grade ≥ 2 pneumothorax,
4.9% (49/1000) any-grade

pneumothorax,
1.0% (10/1000) CTCAE

grade ≥ 2, and 2.3% (23/
1000) overall

bronchopulmonary
hemorrhage,

0.6% (6/ 1000) CTCAE
Grade ≥ 4 respiratory failure

54.3% (543/1000)
EBUS

90.1% (1017/1129)
fluoroscopy

ROSE
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Table 1. Cont.

First Author [Ref.] Year N Study Design Diagnostic Yield % Complication Rate% Additional
Technique(s)

Cherian et al. [30] 2021 76 Retrospective chart
review 80.2% 1.3% (1/76) pneumothorax

requiring tube thoracostomy Fluoroscopy

Bhatt et al. [136] 2018 285
(150 ENB, 150 TTB)

Retrospective cohort
study

ENB 66.0%
TTB 86.0%

Pneumothorax (tube)
ENB 4.0% (2.7%, 4/150
requiring chest tube),

TTB 28.7% (1.3%, 2/150
requiring chest tube),

bleeding (symptomatic),
ENB 3.3% (2%, 3/150,

symptomatic),
TTB 16.7% (1.3%, 2/150

symptomatic)

ROSE

Eberhardt et al. [131] 2007

118
(39 EBUS only,
39 ENB only,
40 combined)

Prospective
randomized

controlled trial

69% EBUS only,
59% ENB only,

88% a combined

6% overall pneumothorax,
5% 2/39EBUS only,
5% 2/39ENB only,

8% 3/40 a combined

EBUS

Wang et al. [132] 2021

37
(23 in the solid

nodule group and
14 in the subsolid

pulmonary nodule
group)

91.8% (34 /37) diagnostic
accuracy,

91.3% (21/23) solid,
92.8% (13/14) subsolid,
75% (27/36) diagnostic

yield,
90.9% (20/22) solid,
50% (7/14) subsolid

2.7% (1/36) complications EBUS

SPiN Thoracic

Navigation System™ Oh et al. [31] 2021 100 Single-center
retrospective study

53%
upward trend after 60

cases, from 45–65%

16% (16/100) complications,
3% (3/100) pneumothorax,

4% (4/100) moderate
bleeding

No use of additional
equipment
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Table 1. Cont.

First Author [Ref.] Year N Study Design Diagnostic Yield % Complication Rate% Additional
Technique(s)

Belanger et al. [137] 2019

102
(56 ENB biopsy+FM

placement,
37 biopsy,

9 FM placement)

Retrospective review 78%

2.9% (3/102) pneumothorax,
0.98% (1/102) hemorrhage,
no complications occurred
with FM placement using

the EMN platform.

93 p’t under ENB
+/− EMTTNA

65 p’t FM
EBUS-TBNA

ROSE

SPiN Perc™ MALLOW et al. [69] 2019 129 Retrospective,
multicenter study 73.7% 17.8%

Yarmus et al. [70] 2016 24 Prospective single
arm pilot study

The diagnostic yield for
ETTNA alone was 83%,

and increased to 87%
(p = 0.0016) when

ETTNA was combined
with ENB. When ETTNA
and NB were used with

EBUS for complete
staging, the diagnostic

yield further increased to
92%

No bleeding events occurred.
There were five

pneumothorax (21%), of
which only two (8%) subjects

required drainage.

EBUS + ENB +
ETTNA

Robotic

Monarch™ Chaddha et al. [91] 2019 167 Retrospective
multicenter study

69.1–77%
navigation successful

88.6%

3.6% (6/167) pneumothorax,
2.4% (4/167) requiring chest

tube,
2.4% (4/167) bleeding

EMN
EBUS

Chen et al. [92] 2021 54
Prospective

multicenter pilot and
feasibility study

74.1%
localization success rate

96.2%

3.7% (2/54) pneumothorax,
1.9% (1/54) requiring chest

tube

EBUS
ROSE

Intuitive Ion™ Fielding et al. [87] 2019 29 Single-center
79.3%

localization success rate
96.6%

No device-related adverse
events EBUS
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Table 1. Cont.

First Author [Ref.] Year N Study Design Diagnostic Yield % Complication Rate% Additional
Technique(s)

AF

LungVision™ Pritchett et al. [119] 2021 54
Prospective,
single-center,
single-arm

78.4%
localization success rate

96.1%

No pneumothorax,
respiratory failure, or

bleeding events

ROSE
Confirmed by CBCT

Pertzov et al. [129] 2021 63 Prospective
single-center 81.8% 1.6% (1/63) pneumothorax,

requiring chest tube

50 p’t Cryobiopsy
EBUS
ROSE

Cicenia et al. [130] 2021 57 Prospective
multicenter study

75.4%
localization success rate

93%

EBUS
ROSE
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RP-EBUS-GS can further confirm the relative position (within, adjacent, or outside)
of the target lesion and instrument when the navigation shows that the target has been
reached, and exchange instruments along the GS to maintain the right pathway.

CBCT plays an important role in bronchoscopic procedures by identifying the relative
locations of the instrument and the target lesion during sampling under real-time guidance,
and decreasing CT-to-body divergence.

Augmented fluoroscopy using the LungVision system can localize target lesions and
sample tissue more accurately under persistent real-time navigation and dynamic tracing
to the target.

Sampling tools are selected according to the characteristics and location of the PPL.
The sampling needs to obtain enough specimens for genetic analysis. The 1.5 mm forceps
are relatively small and are widely used. Standard biopsy forceps or ultrathin cryoprobes
are recommended for ground–glass opacity lesions due to the need for larger volume
specimens. The puncture needle is recommended while the instrument is not within or
adjacent to the PPL.

The ROSE can increase the sensitivity, improve the diagnostic yield, and shorten
the operation time for RP-EBUS in the diagnosis of PPLs, and provides feedback on the
specimens obtained during the procedure [138,139].

Cost, lesion accessibility, and pulmonologist experience should be considered when
selecting these modalities for identifying the least invasive approach.

Moreover, bronchoscopic ablation should be performed only if we can accurately and
reproducibly localize the target, obtain enough specimen for diagnosis, and stay at the
center of the lesion for long enough to complete the ablation therapy. This necessitates a
complete change in the way we use this technique or those of other fields, and will require
further innovation and collaboration.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11111984/s1, Figure S1. The equipment and image of Endobronchial ultrasound,
Figure S2. Flexible bronchoscopes, Figure S3. Virtual navigation images on LungPoint system,
Figure S4. The Electromagnetic navigation image of superDimensionTM System, Figure S5. The
Cone-beam computed tomography, Figure S6. The image of augmented fluoroscopy.
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