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The gut microbiota is considered an important factor in the progression of Alzheimer’s disease (AD). Active research on the
association between the metabolome and the gut microbiome is ongoing and can provide a large amount of beneficial information
about the interactions between the microbiome and the metabolome. Previous studies have shown that the oligosaccharides from
Morinda officinalis (OMO) can delay the progress of AD in model animals by regulating the diversity of the gut microbiome and
metabolic components, and the correlation between the gut microbiome and metabolic components still needs to be further
verified. This study applied a new two-level strategy to investigate and ensure the accuracy and consistency of the results. This
strategy can be used to determine the association between the gut microbiome and serum metabolome in APP/PS1 transgenic
mice and C57BL/6J male mice. The “4C0d-2 spp.-Cholesterol,” “CW040 spp.-L-valine,” “CW040 spp.-L-acetylcarnitine,” “RF39
spp.-L-valine,” “TM7-3 spp.-L-valine,” and “TM7-3 spp.-L-acetylcarnitine” associations among specific “microbiota-metabolite”
pairs were further identified based on univariate and multivariate correlation analyses and functional analyses. The key relevant
pairs were verified by an independent oligosaccharide intervention study, and the gut microbiome and serum metabolome of the
OMO intervention group were similar to those of the normal group. The results indicate that OMO can significantly suppress
Alzheimer’s disease by regulating the key microbiota-metabolite pairs. Therefore, this two-level strategy is effective in identifying
the principal correlations in large datasets obtained from combinations of multiomic studies and further enhancing our un-
derstanding of the correlation between the brain and gut in patients with AD.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that
will affect nearly 82 million people by 2030 and 152 million
people by 2050 [1], according to the 2018 World AD
Congress Report. China has become the country with the
largest number of AD patients in the world. At present, the

incidence of AD has reached more than 8 million [2], and
the incidence of AD in elderly individuals over 65 years old is
4%∼6% [3], which is increasing. The cost of AD treatment
would be a very large financial burden, and the public’s
awareness of AD is severely inadequate [4]. The majority of
patients with AD are not effectively diagnosed or treated.
Therefore, the identification of markers and signaling
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pathways leading to AD is essential for understanding the
pathogenesis of this disease and its effective treatment.

According to recent research, multiple pathological
characteristics of AD are related to gut microbial infections
[5–7]. The microbiome-gut-brain axis connects nerve,
hormone, and immune signals between the gut and the
brain, which has profound effects on the growth and health
of mammals [8]. The gut microbiota is considered an im-
portant factor for determining the progression of AD [9–11].
However, the mechanism of this relationship remains un-
clear. Thus, in-depth studies are required to verify the
existing routes of bidirectional communication [12] to
elucidate the relevant molecular mechanisms.

In the early stage, we proposed a new treatment strategy
to reverse the microbiological maladjustment related to the
pathological state by improving the gut microbiome of
animals with AD [13]. Oligosaccharides isolated from
Morinda officinalis (OMO) could improve the memory
ability of rats with beta-amyloid-induced dementia in the
water maze test [14, 15]. The SOD, CAT, and GSH-Px ac-
tivities were high, and the MDA content was lowered in the
brain tissue of rats with dementia, as determined by kit-
based detection. In addition, the acetylcholinesterase levels
decreased, the acetylcholine levels and brain energy meta-
bolism levels increased, and Na+/K+-ATPase activity in-
creased, indicating that OMO can significantly improve
dementia symptoms in animal models of AD [16, 17].
Bajijiasu, one of the main components of OMO, is a neu-
roprotective agent that plays a neurotoxic protective role in
Aβ25-35-induced PC12 cells and the APP/PS1 mouse model
[17–19]. This OMO component may act through antioxi-
dant, anti-inflammatory, and neurotransmitter mechanisms
to improve AD symptoms.

Furthermore, OMO can improve the function of the gut
microbiota to inhibit the progression of AD [13, 20, 21]. We
studied the changes in the gut microbiome and serum
metabolite levels in animal models of AD [13]. Based on
previous studies, it was found through bioinformatics-based
mining that OMO can delay the progress of AD by regu-
lating the key “microbiome-metabolite” pair, and pre-
liminary data on microbiome-metabolite interactions were
established. This study expands our understanding of the
microbiome-gut-brain axis, as the metabolome and par-
ticularly some of the newly discovered serum metabolites
may serve as the endpoints of new pathways connecting the
gut to the brain.

In this study, the APPswe/PS1dE9 (APP/PS1) transgenic
mouse model [22] was used to detect changes in the gut
microbiota-metabolite interactions in AD, laying a foun-
dation for the early prevention and treatment of AD.The 16S
rRNA gene in each sample from each microorganism was
enriched through reversible solid-phase implantation,
quantified by electrophoresis using an Agilent 2100 Bio-
analyzer (Agilent, USA), and sequenced with an Illumina
MiSeq sequencing system [23]. Meanwhile, we used LC-MS/
MS to quantify the metabolites across groups and performed
a targeted in-depth comparison of the blood metabolites
from the APP/PS1 mice and C57 mice at 2 months of age.
Considering the size of the dataset, the hierarchical structure

of the metabolome, and the complex taxonomy of the
microbiome, the metabolites and bacteria differed greatly at
different levels. Thus, the use of multilevel strategies and
multiple methods will simplify the complex data and ensure
the accuracy and consistency of the results.

The purpose of this study is to establish a research
strategy for determining the association between the
microbiome and metabolome and to provide additional
information on gut and brain interactions through tech-
niques designed to analyze and mine data to identify po-
tential therapeutic markers and to solve the complex
problems associated with the pathological and pharmaco-
logical studies of AD. At the same time, this study provides
new insights into the pathogenesis of AD from the per-
spective of microbe-metabolite correlations and may find
that supplemental dietary metabolites delay AD or alleviate
the pain caused by some diseases.

Thus, two levels of strategies, including microbial di-
versity analyses and metabolomics, were used to determine
the underlying targets and mechanisms. In addition, the
findings may lay the groundwork for the development of
OMO as anti-AD drugs and health foods.

2. Materials and Methods

2.1. Preparation of the Animal Model. Thirty male APP/PS1
transgenic mice (2 months old) and 10 C57BL/6J male mice
(2 months old) of the same age and genetic background were
purchased from Beijing HFK Bioscience Co., Ltd. (certificate
no. SCXK (Jing) 2014–0004); the mice had a mean body
weight of 20± 5 g. The mice were housed in plastic cages in a
temperature-controlled (25°C) colony room on a 12/12 h
light/dark cycle. All animal experiments began at least 4
weeks after the animals arrived. The experimental mice were
divided into three groups: the model group (APP/PS1
transgenic mice orally administered distilled water, n� 10),
the normal group (C57BL/6J mice orally administered
distilled water, n� 10), and the OMO administration group
(APP/PS1 transgenic orally administered 100mg/(kg·d)
OMO, n� 10). Food and water were provided ad libitum. All
experimental procedures were approved by the Center of
Laboratory Animals of the Guangdong Institute of
Microbiology.

2.2. Measurement of AD Parameters. The appearance and
behavior of the animals were observed and recorded daily.
The animal weights were measured every three days during
the study. Following OMO treatment for 6 months, all
animals were sacrificed; their eyeballs were removed, and
their blood and brain tissue were collected. Routine serum
parameters and cytokine levels [24] were measured, and the
brains of the mice were dissected. Five brains from each
group were fixed with a 4% paraformaldehyde solution,
embedded in paraffin, and sectioned. Sections were stained
with hematoxylin-eosin (H&E) or subjected to immuno-
histochemical staining and observed under a light micro-
scope [17, 25]. All animal handling procedures and
experiments were performed strictly in accordance with the
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recommendations of the Guide for the Care and Use of
Laboratory Animals from the National Institutes of Health.
The experimental protocol was approved by the Laboratory
Animal Center and the Ethical Committee of the Guang-
dong Institute of Microbiology, Guangzhou, China. Each
procedure described in our study was approved by the
Laboratory Animal Center of the Guangdong Institute of
Microbiology. This study utilized as few mice as possible.

2.3.16S rRNAAnalysis. Fecal specimens were acquired from
the home cages of the mice and stored at − 80°C until the 16S
rRNA analysis. The QIAamp DNA Stool Mini Kit was used
for extraction, and the extracted DNA was detected. The
quality of the extracted DNA was determined by 0.8%
agarose gel electrophoresis, and the DNAwas quantified by a
UV spectrophotometer. The 16S rRNA genes of the mi-
crobes were amplified with the following primers: forward
5′-ACTCCTACGGGAGGCAGCA-3′ and reverse 5-
GGACTACHVGGGTWTCTAAT-3. Every amplified
product was concentrated by SPRI, and an Agilent 2100
Bioanalyzer was used to quantify the samples subjected to
electrophoresis. Every specimen was diluted to 1× 109
molecules/μL in TE buffer and pooled into groups prior to
the determination of DNA concentrations using a Nano-
Drop spectrophotometer. An Illumina MiSeq sequencing
system was utilized to sequence 20 μL of the pooled ad-
mixture, and the subsequent reads were analyzed.

2.4. Metabolomics Analysis. Serum samples were treated as
described in a previous study [13]. The processed samples
were loaded into a tube lining a sample vial and analyzed
using LC-MS (Thermo Fisher Scientific, USA). The chro-
matographic column was an Acquity BEH C18 column
(100mm× 2.1mm internal diameter, 1.7 μm; Waters, Mil-
ford, USA). Mobile phase A was water (0.1% (v/v) formic
acid), mobile phase B was acetonitrile (0.1% (v/v) formic
acid), the flow rate was 0.40mL/min, the injection volume
was 3 μL, and the column temperature was 45.0°C. Mass
spectrometry data were acquired from 50 to 1,000m/zwith a
resolution of 30,000. Metabolites were measured by a UPLC/
LTQ Orbitrap mass spectrometer equipped with an elec-
trospray interface (Thermo Fisher Scientific, USA).

2.5. Association Analysis. Alterations in the gut microbiome
and serum metabolome of the normal and model groups
were evaluated. The proportions of different metabolites
were calculated by summing the levels of all metabolites
(normalized by row, within each variable) of the corre-
sponding types. The phyla were determined by summing all
OTUs of the corresponding phyla. Then, a two-level strategy
was adopted to determine the key association pairs. For the
high-level association analysis, considering the size and
complexity of the omics data, correlations between me-
tabolite types and bacterial phyla were examined. The key
“bacterial phylum-metabolite type” pairs were selected based
on the results of (1) the regularized canonical correlation
analysis (rCCA) [26] and Spearman correlation analysis on

the abundance datasets [27], (2) relative abundance analysis
of the phyla derived from the bacterial data, and (3) the
Spearman correlation coefficient for each metabolite type
and each bacterial phylum. Correlation networks were
constructed based on the results from the correlation ana-
lyses, and all specific “bacterium-metabolite” association
pairs were listed. Significant key pairs were selected for
further analyses. Finally, the key pairs were validated in an
OMO intervention study.

2.6. Statistical Analysis. All data presented in the figures are
reported as the means± standard deviations of at least three
independent experiments. Significant differences between
treatments were analyzed by the Kruskal–Wallis test/one-
way analysis of variance (ANOVA) and set to p< 0.05 using
the statistical packages in MATLAB (R2014a, MathWorks,
USA), R (3.5.1), GraphPad Prism 7 (USA), and Cytoscape
(3.6.1).

3. Results

3.1. Pathological Changes in the Normal and Model Groups.
Nissl staining revealed more neurons (blue points) in the
normal group than in the model group (Figure 1(a)). More
hippocampal neurons were observed in the normal group
than in the model group. H&E staining did not reveal ob-
vious neuronal abnormalities in the hippocampus of the
normal group (Figure 1(b)). The pyramidal cells in the CA1
region were arranged neatly and tightly, and no cells were
lost. However, obvious histopathological damage to the
hippocampus was observed in the model group. The layered
pyramidal neuron structure was disintegrated, and neurons
were lost in the CA1 region. Neurons with pyknotic nuclei
and with shrunken or irregular shapes were also observed.
Immunofluorescence staining showed an intense red color
(p-tau and Aβ1-42) throughout the hippocampal region of
the APP/PS1 double transgenic mice, while in the normal
group, the RLU was obviously reduced. In CA1, the ex-
pression of p-tau and Aβ1-42 (red fluorescence) was barely
detectable (Figures 1(c) and 1(d)).

3.2. Alterations in the Gut Microbiome and Metabolome.
In this study, 11 bacterial phyla, 20 bacterial orders, 20
bacterial genera, 20 bacterial families, 20 bacterial classes
(Figures 1(e) and 1(i)), and 102 different metabolites (11
metabolite types) were analyzed (Figures 2(a) and 2(b)).
Firmicutes and Bacteroidetes were the predominant bac-
terial phyla found in the gut, while fatty acids and phos-
phatidylcholine (PC) were the predominant types of
metabolites detected and accounted for 48.04% of all me-
tabolites. The Shannon indexes (Figure 2(c)) revealed a
higher gut microbiome diversity in the APP/PS1 transgenic
mice than in the C57 mice. Alterations in the gut micro-
biome and metabolome were further evaluated by de-
termining the relative abundances of bacterial phyla and
metabolite types in the normal and model groups. As ex-
pected, both high and low abundance variables changed
substantially. The Kruskal–Wallis test/one-way ANOVA
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Figure 1: Continued.
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revealed significant changes in eight metabolites
(Figures 2(a) and 2(b)), namely, fatty acids, cholic acid,
phosphatidylinositol (PI), phosphatidylglycerol (PG),
phosphatidylethanolamine (PE), PC, amino acids, and
lysophosphatidylcholine (LPC), and five bacterial phyla
(Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,
and Cyanobacteria) (Figure 1(e)) between the two groups.

3.3. Correlation Analysis of the “Microbiota Phylum-Metab-
olite Type” Pairs. The loading value (descending order) of
each bacterial gate and metabolite type was calculated by
rCCA, as shown in Figures 3(a) and 3(b). The loading values
of eight bacterial phyla (Cyanobacteria, Proteobacteria,
Firmicutes, Tenericutes, Bacteroidetes, Deferribacteres,
Verrucomicrobia, and TM7) and ten metabolite types (PE,
cholic acid, lysophosphatidylethanolamine, lipids, PC,
amino acids, phosphatidylglycerol, monoacylglycerol, fatty

acids, and LPC) were higher than the other parameters,
indicating their greater contributions to the overall corre-
lation between healthy and AD model mice.

Phylogenetic Investigation of Communities by Re-
construction of Unobserved States (PICRUSt) was used to
predict the Kyoto Encyclopedia of Genes and Genomes
(KEGG) functions based on the predicted abundance dis-
tribution of each functional group, and the findings are
shown in a violin plot. The 12 significantly differential
metabolic functions that were identified are shown in
Figure 3(c).The abscissa is the second functional group from
KEGG, and the ordinate is the relative abundance of each
functional group in each sample. Metabolic functions related
to lipids, cofactors and vitamins, energy, amino acids,
carbohydrates, and nucleotides were significantly altered
between groups. The predicted metabolic functions are of
great significance for the study of AD. As shown in
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Figure 1: The gut microbiome composition and alterations across the AD study. (a)–(d) Histopathological changes in brain tissues. (e)–(i)
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Figure 3: Continued.
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Figures 4(a) and 4(b), the differentiation of the predicted
metabolic functions (Figure 4(a)) and metabolite types
(Figure 4(b)) varied between the two groups.The correlation
coefficient for amino acid metabolic function and amino
acid was − 0.58 (p< 0.05, Figure 4), and these parameters
were negatively correlated. This suggests that the amino
acids in serum may be related to the metabolism and
consumption of amino acids in other tissues. Compared
with the control group, the amino acid, PE, LPE, and PC
metabolites were significantly different in the model group
(p< 0.05, Figure 4(b)).

The classic Spearman correlation analysis was performed
on abundance datasets to estimate the correlations between
each bacterial phylum and every metabolite type (Figure 5).
The top three metabolite types that correlated with the
greatest number of bacterial phyla were amino acids,
lysophosphatidylethanolamine, and PC, and the top three
phyla that correlated with the greatest number of metabolite
types were TM7, Tenericutes, and Cyanobacteria.

Based on these results, the variable abundance and bi-
ological significance, “lipids-TM7,” “amino acids-Tener-
icutes,” “lysophosphatidylethanolamine-Cyanobacteria,”

and “PC-Cyanobacteria” were selected as key correlated
pairs (Figure 5(i)). Figures 5(a)–5(h) show scatter plots of
these pairs, and their correlation coefficients were 0.53, 0.58,
0.64, 0.59, 0.54, 0.52, 0.54, and − 0.51 (p< 0.05).

3.4.CorrelationAnalysis of the “Microbiota-Metabolite”Pairs.
In the normal group, 70 species and 267 genera were an-
notated in 4421 OTUs, and in the model group, 52 species
and 289 genera were annotated in 4472 OTUs. A pairwise
Spearman correlation analysis was conducted on the 111
bacteria (11 phyla, 20 orders, 20 genera, 20 families, 20
classes, and 20 species) and 102 metabolites. The results for
336 of the over 3300 pairs (9.82%) were significant after the
FDR correction. Among these pairs, 187 (55.7%) were
positively correlated, and 149 (44.3%) were negatively
correlated. Figure 6 shows the two correlation networks of
bacterial genera/species (dot) and metabolites (triangle)
with positive contributions (consistent correlation di-
rections) to the five high-level key pairs. Four PCs, 6 PEs, 1
lipid, 4 fatty acids, 1 diacylglycerol (DG), 1 amino acid, 2
genera/species in TM7, 4 genera/species in Cyanobacteria,
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Figure 3: Results of the correlation analysis of the “microbial phylum-metabolite type” pairs in the APP/PS1 transgenic mice. (a) Loading
values for every microbial phylum derived from the rCCA. (b) Loading values for every metabolite type derived from the rCCA.
(c) Significant differences in metabolic functions were identified in the KEGG database. Normal represents the C57 group, and model
denotes the APP/PS1 transgenic group.
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Figure 4: Continued.
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2 genera/species in Tenericutes, and 1 genus in Deferri-
bacteres were involved. The red and blue lines indicate
positive and negative correlations, respectively. The size of
each node is proportional to the number of lines connected
to it, and the node shape indicates different bacterial classes
and metabolite subtypes. Green represents bacteria, and
red represents metabolites. The most extensively connected

nodes are the key bacteria or metabolites. Four groups of
correlation pairs were prominent, including (1) 4C0d-2
spp. in the phylum Cyanobacteria with 4 PEs, 4 PCs, and 1
lipid; (2) CW040 spp. in the phylum TM7 with 1 citric acid,
2 amino acids, 1 DG, and 1 PE and TM7-3 spp. in the
phylum TM7 with 1 DG and 1 amino acid; (3) Deferri-
bacterales spp. in the phylum Deferribacteres with 4 fatty
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Figure 4: Differences in the predicted metabolic functions and levels of various metabolites in the two groups. Values are presented as the
means ± SDs from six independent experiments. ∗p< 0.05 compared with the normal group; ∗∗p< 0.01 compared with the model group.
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Figure 5: Results of the correlation analysis of the “microbial phylum-metabolite type” pairs in the AD study. (a− h) Scatter plots of the eight
key high-level pairs. (i) Spearman correlation heatmap for each microbial phylum and each metabolite type (+p< 0.05, ++p< 0.01,
+++p< 0.001).
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Figure 6: Continued.
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acids and 1 amino acid and the phylum Deferribacteres
with 5 fatty acids and 1 amino acid; and (4) RF39 spp. in the
phylum Tenericutes with 1 amino acid and 1 citric acid. In
Figure 6, two hub nodes (L-valine and L-acetylcarnitine)
are highlighted, as they are all correlated with 6 bacteria,
with comparable strengths.

First, both Cyanobacteria (4C0d-2 spp.) and lipids are
associated with brain development and disease. Cyano-
bacteria produce different complex lipid secondary me-
tabolites [28] and possess strong biological properties and
application value, such as antibacterial, antifungal, anti-
cancer, antituberculosis, immunosuppressive, and anti-
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Figure 6: Significant pairs of correlated metabolites and genera/species in the TM7 and Deferribacteres phyla and the Cyanobacteria
phylum.The red and blue lines indicate positive and negative correlations, respectively. Hub nodes with the greatest number of connections
are highlighted. The green square represents the microbiome, and the purple triangle represents the metabolites.
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Figure 7: Spearman correlation coefficients and scatter plots of key correlation pairs in the normal group and the OMO intervention studies.
(a)–(l) Scatter plots and correlation coefficients of the six representative pairs in the two studies. (a) and (e) 4C0d-2 spp.-cholesterol, (b) and
(h) CW040 spp.-L-acetylcarnitine, (c) and (i) CW040 spp.-L-valine, (d) and (j) RF39 spp.-L-valine, (e) and (k) TM7-3 spp.-L-ace-
tylcarnitine, and (f) and (l) TM7-3 spp-L-valine.
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inflammatory properties. Over the past decade, AD has been
shown to be closely related to changes in lipid levels or lipid
metabolism. Thus, Cyanobacteria metabolize lipid products
that may be associated with the progression of AD [29].

Second, in this report, TM7 was negatively correlated
with lipids, and Cyanobacteria (4C0d-2 spp.) was negatively
correlated with PC. Among these metabolites, cholesterol
[30], PC (22 : 6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/18 :1(9Z)), PC
(20 : 2(11Z, 14Z)/20 : 3(5Z, 8Z, 11Z)), PC (18 : 2(9Z, 12Z)/22 :
6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)), and PC (18 : 2(9Z, 12Z)/P-
16 : 0) are well-known dietary nutrients required for brain
function [31] and have been linked to the morbidity and
progression of AD. Mollicutes spp. may be associated with
AD, although their pathogenic potential remains unclear
[32]. Third, the close correlations between TM7-3 spp. and
L-valine, L-acetylcarnitine, PE (20 : 4(8Z, 11Z, 14Z, 17Z)/24 :
1(15Z)), and DG (20 : 2(11Z, 14Z)/22 : 6 (4Z, 7Z, 10Z, 13Z,
16Z, 19Z)/0 : 0) indicate the connection between the brain
and gut, and the modulation of the activity of TM7-3 spp.
may be beneficial to human health [33–35].

Additionally, the links between pentadecanoic acid [36],
L-malic acid [37], erucic acid, 4, 8, 12, 15, 19-docosa-
pentaenoic acid, and Deferribacteres (Deferribacterales spp.)
have been reported to affect the brain and influence neu-
ropathy, thus providing circumstantial evidence of these
association pairs in those reports.

Fourth, citric acid [38], pentadecanoic acid, erucic acid
[39], and L-valine (the hub node with the most links in
Figure 6) [40] were proposed as new therapeutic agents to
regulate both neurobehaviors and the health of the gas-
trointestinal tract, although further studies are needed to
define their possible roles in the gut-brain axis [41].

3.5. Validation of Correlated Pairs Using the OMO In-
tervention Study. Oligosaccharides are important factors
related to the regulation of gut microbial composition and
metabolite levels. An independent oligosaccharide in-
tervention was conducted, and OMO served as the in-
tervention for the model group. OMO originates from M.
officinalis, which is one of the four great southern medicinal
plants used as both a medicine and food, and it is processed
by extraction and separation [21]. We conducted a valida-
tion study in the normal and model intervention groups and
selected the same bacteria and metabolites for analysis with
the same method to verify whether the key pairs identified in
the two experiments were consistent. Spearman correlation
analyses were performed for all the key pairs.

As shown in Figure 7, the correlation directions of the
specific “microbiota-metabolite” pairs were largely consis-
tent as well, although some of the bacteria shown in Figure 7
were not observed in the OMO intervention study.
Figures 7(a)–7(l) display the detailed relationships of six
representative “microbiota-metabolite” pairs in the two
studies. These pairs are “4C0d-2 spp.-cholesterol,” “CW040
spp.-L-valine,” “CW040 spp.-L-acetylcarnitine,” “RF39 spp.-
L-valine,” “TM7-3 spp.-L-valine,” and “TM7-3 spp.-L-ace-
tylcarnitine.” The correlation directions of “4C0d-2 spp.-
cholesterol” (r� − 0.75 and − 0.92 in the normal and OMO

intervention groups, respectively), “CW040 spp.-L-ace-
tylcarnitine” (r� 0.91 and 0.72), “CW040 spp.-L-valine”
(r� 0.85 and 0.74), “RF39 spp.-L-valine” (r� 0.84 and 0.79),
“TM7 spp.-L-acetylcarnitine” (r� 0.87 and 0.81), and “TM7
spp.-L-valine” (r� 0.79 and 0.83) were all consistent between
the 2 studies.

The relative abundance of CW040 [42] and TM7-3
(TM7) was increased in the model group, and the abundance
of Deferribacterales (Deferribacteres) was decreased
(Figures 1(e), 1(f), and 1(i)). The level of the metabolite
L-acetylcarnitine [43] was increased in the OMO group, and
the levels of cholesterol [44] and L-valine were decreased
(Figure 2(a) and Figures 7(a)–7(l)).The pathological changes
observed were alleviated in the OMO intervention experi-
ment [13].

Collectively, the association directions of the key cor-
relation pairs were largely consistent in the two studies.
These microorganisms and metabolites may be potential
targets for the treatment of AD. However, the intestinal
microorganisms and metabolites in animal and human
samples also differ, and these “microbiome-metabolite”
pairs are key to specific change rules that need to be further
studied. Thus, we should exercise caution when applying the
findings from animal experiments to humans.

3.6. Possible Routes Connecting the Gut and Metabolites.
We used both microbial and metabolomic analytical strat-
egies, and “Tenericutes-amino acid,” “Tenericutes-PC,”
“Cyanobacteria-LPE,” “Cyanobacteria-PC,” and “TM7-
cholic acid” were identified as probable key endpoints in the
pathway that connects the brain to the gut.

The two-level analysis of microorganisms and metabo-
lites was an effective method to simplify complex data and
effectively identify the correlations. However, this strategy
may ignore less statistically significant but more biologically
relevant factors, such as the types of microphytes and me-
tabolites that are not selected as key pairs but play an im-
portant role in the gut-brain interaction.

As shown in Figure 5(i), LPE was strongly and positively
correlated with not only Tenericutes but also Cyanobacteria
and Firmicutes. In addition to its correlation with LPE,
Tenericutes was also closely correlated with amino acids,
LPC, and PC, which are important for synaptic activity and
protein synthesis. Another example of a combination with
low statistical significance but high biological significance
was the “microbiota-metabolite” pairs; the metabolites were
not correlated with five key high-level microbial phyla but
may also improve our understanding of the microbial-gut-
brain axis. These pairs included species in the orders
Clostridiales/Lactobacillales/Erysipelotrichales/Bacillales/
Turicibacterales and lipids; species in the orders Bacter-
oidales/Flavobacteriales and PC; species in the orders
Enterobacteriales/Desulfovibrionales/Campylobacterales/
Burkholderiales/Pseudomonadales/Hydrogenophilales/
Chromatiales/HOC36/Desulfarculales and fatty acids; Ver-
rucomicrobiales and decanoic acid; and species in the orders
Coriobacteriales/Bifidobacteriales/Actinomycetales and
decanoic acid. Although these microbes and metabolites
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exert important effects on brain and intestinal health
[12, 45], the overall performance of each metabolite type or
phylum was not statistically significant. Therefore, the bi-
ological significance of a low-level correlation without a
hierarchical relationship between the low-level correlation
and high-level key correlation should be carefully evaluated
when applying the two-level strategy to analyze the
microbiota and metabolites.

4. Discussion and Conclusion

As China becomes an aging society, the increasing incidence
of AD will be a heavy burden for society and for medical
care, so new treatments and potential drugs are urgently
needed. The evidence shows that the pathological features of
AD are related to microbial infection, so the gut microbiota
is considered an important factor determining the progress
of AD. Previous studies have shown that OMO can improve
the symptoms of animal models of AD, which is related to
regulation of the diversity of the gut microbiota and met-
abolic components. The two-level strategy confirmed the
relevance between AD disease and key microbiota-metab-
olite pairs, and the OMO intervention studies further val-
idated their relationship.

Lipids are a group of metabolites withmultiple biological
functions that are closely related to various metabolites [46].
Based on accumulating evidence, the gut microbiota, as an
environmental factor, modulates the processing, absorption,
metabolism, storage, clearance, and other systemic functions
of host lipids in the elderly [47–49]. Fatty acids are a group of
carboxylic acids with different numbers of aliphatic chains
that are either saturated or unsaturated. A large number of
studies have revealed the remarkable effects of free fatty acid
metabolism on brain circulation, structure, and function at
different ages [50]. According to some studies [51, 52], old
mice display significantly increased levels of both amino
acids and fatty acids, which are closely associated with AD
biomarkers, compared to young mice. In the intestinal
microbiome analyses, the Firmicutes/Bacteroidetes ratio and
alpha diversity were increased in older mice.

The gut microbiota synthesizes a variety of nutrients and
essential amino acids, representing a potential mechanism
for regulation of amino acid homeostasis [53]. In recent
years, close relations between the human gut microbiome,
the physiological aspects of its metabolites and hosts, and the
important pathological and physiological dimensions of
diseases have been identified [53]. Amino acids are involved
in many cellular metabolic and signaling pathways, and the
effects of changes in amino acid metabolism are far-reaching
in patients with AD [54].

PC and PE are the most abundant phospholipids in
mammalian cell membranes [55]. Decreased levels of PC,
which lead to decreased numbers of synapses in the brain,
are a characteristic of memory disorders in patients with
early AD [31]. PE [56] has a variety of cellular functions,
including serving as a precursor of PC and as an important
posttranslational substrate, affecting membrane topologies
and facilitating cell and organelle membrane fusion, oxi-
dative phosphorylation, mitochondrial biogenesis, and

autophagy. The importance of PE metabolism in mamma-
lian health has recently been revealed based on its associ-
ations with AD, Parkinson’s disease (PD), nonalcoholic liver
disease, and some pathogenic microorganisms [57]. Dietary
nutrients containing PC and PE may be involved in the
development of AD. The nutrients, the gut microbiota, and
host participation in these metabolic pathways may be new
targets for the prevention and treatment of AD.

Firmicutes and Bacteroidetes are known to be the
dominant phyla in the gut and are involved in many brain
functions [58]. They are also reported to be the phyla that
display the greatest variation across their life cycles, in-
dependent of gender, age, and nationality [59]. However,
clear relationships between these bacteria and the pro-
gression of AD have not been determined. Tenericutes [60]
are unique and rare bacteria with no cell walls, and they
survive as typical parasites or eukaryotic host symbionts.
Environmental 16S rDNA investigations have identified
several branches of Tenericutes in different environments,
suggesting that these Tenericutes may represent free-living
microorganisms that are independent of the host. The di-
versity of the fecal microflora in patients with polycystic
ovary syndrome was low, and their phylogenetic compo-
nents were altered. When rare taxa were observed, the
relative abundance of the bacteria from the phylum Ten-
ericutes was significantly reduced [61] and was correlated
with reproductive parameters.

Cyanobacteria are microorganisms found in marine,
freshwater, and terrestrial environments worldwide. Under
favorable conditions, they form a large number of pop-
ulations that harm human and animal health [58]. Toxins
produced by Cyanobacteria may cause some form of nerve
damage, and many of their effects are consistent with
neurodegeneration [62]. Recently, a neurotoxin produced by
Cyanobacteria that can cause neurodegenerative disease in
humans was detected in the brain and cerebrospinal fluid of
a patient with AD [63].

The key roles of the microbiome-gut-brain axis in the
human lifespan [64, 65] and the patterns of characteristic
changes in the gut microbiota [66–69] are actively being
studied; furthermore, the metabolome has been extensively
studied separately in the context of AD [70–73]. The main
contribution of this report is that it is a groundbreaking joint
study that uses two histological platforms to study the gut
microbiome and brainmetabolome of ADmodels. However,
the intestinal microorganisms andmetabolites of animal and
human samples also differ. The associations identified in
transgenic animals must be carefully verified in humans and
further evaluated under different pathological conditions.
The subsequent key pairs should be validated by further
sequencing. More information can be obtained from the
blood and fecal metabolome and microbiome, further
confirming the connection between the blood metabolome
and the intestinal microbiome and thus further establishing
a systematic and integral network connecting the brain and
gut.

The second contribution of this report is the design of
key and relevant screening strategies. Considering the size of
the dataset, the complex taxonomy of the microbiome, the
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hierarchical structure of the metabolome, and the diverse
performance of metabolites and bacteria at different levels,
as well as the unpredictable cross-correlations within the
metabolome and microbiome, we conducted a two-level
correlation analysis using data from the normal and AD
model groups. In the first level, the univariate and multi-
variate correlation analyses and functional analysis were
combined to select the key pairs. In the second level, we
focused on pairing with a positive contribution to high-level
pairing. The multilevel strategy and multiple methods
simplified the complex data and ensured the accuracy and
consistency of the results.

In addition to the emphasis on the correlated bacterial-
metabolic pairs, other allelopathic correlations are worthy of
further study. However, due to the limited size of our sample
and the limitations of the APP transgenic mouse model, we
may have missed some relationships observed in different
types of AD.

We report a two-level association strategy for the
analysis of the gut microbiome and metabolome in samples
from the two groups. The high-level “bacterial phylum-
metabolite type” and the lower-level “microbe-metabolite”
correlation pairs were identified by an rCCA and Spearman
correlation analysis. Correlation networks were constructed
based on the results from the correlation analyses, and all the
specific “microbiota-metabolite” association pairs were lis-
ted. Six associations of specific “microbiota-metabolite”
pairs were further identified. The key relevant pairs were
verified by an independent oligosaccharide intervention
study, and the gut microbiome and serum metabolome of
the OMO intervention group were similar to those of the
normal group in the overall adjusted models.

However, current studies have shown that intestinal
microorganisms and metabolites differ in both animal and
human samples of AD at different stages, and it is not clear
whether the key “microbe-metabolite” pairs have biological
effects at other stages. We selected only one point in the
present study, but the regular changes in “microbiome-
metabolite” pairs at each stage will be further studied in the
future.

Therefore, this study is a good start, and our findings
offer new and early insights into the interactions between the
blood metabolome and gut microbiome, indicating new
potential pathways that connect the gut and brain and
improving our understanding of the microbial-gut-brain
axis. In future studies, we must further harness meta-
genomics to identify 1-2 bacterial strain andmetabolite pairs
that will be verified in animal experiments.
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Recamales, “Metabolomics in Alzheimer’s disease: the need of
complementary analytical platforms for the identification of
biomarkers to unravel the underlying pathology,” Journal of
Chromatography B, vol. 1071, pp. 75–92, 2017.

[73] X. Pan, M. B. Nasaruddin, C. T. Elliott et al., “Alzheimer’s
disease-like pathology has transient effects on the brain and
blood metabolome,” Neurobiology of Aging, vol. 38, pp. 151–
163, 2016.

18 Evidence-Based Complementary and Alternative Medicine


