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To fully unravel the ixodid ticks’ role as vectors of viral pathogens, their susceptibility to
new control measures, and their ability to develop acaricide resistance, acclimatization
of ticks under laboratory conditions is greatly needed. However, the unique and
complicated feeding behavior of these ticks compared to that of other hematophagous
arthropods requires efficient and effective techniques to infect them with tick-borne
viruses (TBVs). In addition, relatively expensive maintenance of animals for blood feeding
and associated concerns about animal welfare critically limit our understanding of
TBVs. This mini review aims to summarize the current knowledge about the artificial
infection of hard ticks with viral pathogens, which is currently used to elucidate virus
transmission and vector competence and to discover immune modulators related to
tick–virus interactions. This review will also present the advantages and limitations of the
current techniques for tick infection. Fortunately, new artificial techniques arise, and the
limitations of current protocols are greatly reduced as researchers continuously improve,
streamline, and standardize the laboratory procedures to lower cost and produce better
adoptability. In summary, convenient and low-cost techniques to study the interactions
between ticks and TBVs provide a great opportunity to identify new targets for the future
control of TBVs.
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INTRODUCTION

Ticks are the most economically important vectors of livestock diseases (Arthur, 1962) and
are considered second to mosquitoes in transmitting human diseases (de la Fuente et al.,
2008; Socolovschi et al., 2009). Among the pathogens transmitted by these bloodsucking
ectoparasites, tick-borne viruses (TBVs) present a severe health risk to both humans and
domestic animals (Hoogstraal, 1973). TBVs comprise a wide range of viruses classified into
eight virus families: Asfarviridae, Nairoviridae, Peribunyaviridae, Phenuiviridae, Flaviviridae,
Orthomyxoviridae, Rhabdoviridae, and Reoviridae (Brackney and Armstrong, 2016; Kazimírová
et al., 2017). Among these viral families, Nairoviridae and Flaviviridae are considered to have the
TBVs of most importance to public health, including the tick-borne encephalitis virus (TBEV) and
the Crimean–Congo hemorrhagic fever virus (CCHFV), which are known to cause severe clinical
symptoms in humans (Nuttall et al., 1994; Labuda and Nuttall, 2004; Brackney and Armstrong,
2016; Kazimírová et al., 2017).
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Of the 900 currently known tick species, less than 10% are
implicated as virus vectors, and these include the Ornithodoros
and Argas genera for the argasid ticks and Ixodes, Haemaphysalis,
Hyalomma, Amblyomma, Dermacentor, and Rhipicephalus
genera in ixodid ticks (Labuda and Nuttall, 2004; de la Fuente
et al., 2017).

Although the role of ticks in the transmission of viruses
has been known for over a century (Mansfield et al., 2017),
the understanding of tick–virus interactions important for tick
antiviral immunity, pathogen replication, and transmission of
the virus to an animal host remains limited and at an early
stage (Mitzel et al., 2007; Kopacek et al., 2010; Liu et al.,
2012). Moreover, the diversity of tick-borne viruses has been less
thoroughly studied than that of mosquito-borne viruses (Yoshii
et al., 2015).

In addition, ixodid ticks differ essentially from other blood-
feeding insects in terms of their digestive physiology, feeding
behavior (Obenchain and Galun, 1982), and the long duration of
the blood meal, which can take up to several weeks (Waladde and
Rice, 1982). Moreover, tick attachment at feeding sites on the host
requires correct physical and chemical stimuli for a successful
engorgement (Guerin et al., 2000).

Since it is estimated that TBVs spend more than 95% of their
life cycle within the tick vector (de la Fuente et al., 2017), a
very intimate and highly specific association between tick vector
species and the transmitted TBVs is normally maintained (Brites-
Neto et al., 2015). With this in mind, artificial viral infection
of ticks using experimental laboratory techniques can greatly
improve our understanding of tick–virus interaction, particularly
transmission pathways and vector competence. A comprehensive
review of artificial tick infections using pathogens other than
TBVs and the ixodid (hard) tick life cycle has already been
made by Bonnet and Liu (2012). In this mini review, different
techniques for the viral infection of hard ticks were presented,
indicating their advantages and limitations with respect to their
application to viral transmission and vector competency studies
(summarized in Table 1).

METHODS FOR INFECTING TICKS

Direct Feeding on Infected Host
Infesting ticks on infected natural hosts remains the method
most closely resembling the normal acquisition of a virus in the
wild. Direct feeding on infected host can be facilitated by using
feeding bags (Figures 1a,b) or feeding chambers (Figures 1c,d).
However, the maintenance and handling of animal hosts can be
expensive and difficult, particularly for wild animals (Bonnet and
Liu, 2012). The direct feeding technique also lacks the capacity
to quantify the pathogen dose acquired by the tick during or
post feeding. The technique may also not be appropriate for virus
strains not suited for replication in the vertebrate hosts (Mitzel
et al., 2007). In addition, it remains a challenge to synchronize
viremia with tick feeding, and for ethical reasons, the use of
alternative artificial methods in infecting ticks without the use of
laboratory animals is still preferred (Bonnet and Liu, 2012).

Various hosts, mostly small laboratory animals, have already
been infected for direct tick acquisition of the virus. Dermacentor
andersoni ticks were previously infected by infesting rabbits
injected intravenously with large doses of the Powassan virus
(Chernesky, 1969). Laboratory mice were also previously used
to study severe fever with thrombocytopenia syndrome virus
(SFTSV) transmission by Haemaphysalis longicornis (Luo et al.,
2015), while Rhipicephalus appendiculatus specimens were
infected with the Thogoto virus (THOV) by allowing them
to feed on THOV-infected Syrian hamsters (Booth et al.,
1989). Transmission of West Nile virus from infected mice to
naïve I. ricinus nymphs through direct blood feeding was also
previously observed (Lawrie et al., 2004).

Co-feeding Infection
Non-viremic transmission, or co-feeding transmission
(Figure 2c), is an important transmission mechanism for
TBVs established by Jones et al. (1987). It occurs between
infected and uninfected ticks when they co-feed in close
proximity on susceptible hosts, even when these hosts do
not develop viremia (Alekseev and Chunikhin, 1990; Labuda
et al., 1993; Jones et al., 1997; Labuda et al., 1997a,b). Though
co-feeding is an established natural tick infection method, it
requires an animal host for feeding and may not produce high
infection rates, as transmission of the virus from infected and
uninfected ticks greatly depends on the proximity or distance
among feeding ticks.

Co-feeding experiments were mostly conducted in small
laboratory or wild animals. Virus transmission experiments
using yellow-necked mice (Apodemus flavicollis) and bank
voles (Clethrionomys glareolus) (Labuda et al., 1996, 1997b),
BALB/c mice (Khasnatinov et al., 2009; Slovák et al., 2014),
European hedgehog (Erinaceus europaeus), striped field mouse
(A. agrarius) European pine vole (Pitymys subterraneus), and
common pheasant (Phaseanus colchicus) (Labuda et al., 1993)
were used to study TBEV transmission by I. ricinus.

Co-feeding transmission of the Louping ill virus on I. ricinus
was also evaluated in mountain hares (Lepus timidus),
New Zealand white rabbits (Oryctolagus cuniculus) and
red deer (Cervus elaphus) (Jones et al., 1997). Non-viremic
transmission was also established for Thogoto virus (THOV)
on R. appendiculatus (Jones et al., 1987, 1997) and CCHFV on
Hyalomma truncatum, H. impeltatum (Gordon et al., 1993) and
Amblyomma variegatum (Gonzalez et al., 1991) using guinea pigs
(Cavia porcellus). Co-feeding transmission was also observed for
Bhanja virus and Palma virus in D. marginatus, D. reticulatus,
and I. ricinus ticks infested on mice (Labuda et al., 1997a) and
Heartland virus in Amblyomma americanum infested on rabbits
(Godsey et al., 2016). Lastly, co-feeding transmission of THOV
was recently demonstrated in H. longicornis ticks infested on
BALB/c mice (Talactac et al., 2018).

Membrane-Feeding Methods
Another alternative to tick infestation is through membrane
feeding. Membranes from animal and non-animal origin (e.g.,
silicone membranes) are usually utilized, with variable success,
to feed ticks. This method could also be used for studies on
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TABLE 1 | Summary of the techniques used to artificially infect ticks with representative ticks and viruses, their major advantages/disadvantages and associated
references.

Tick-infection
methods

Tick species Virus studied Main advantages Main disadvantages

Direct feeding on
infected host

D. andersoni
H. longicornis
R. appendiculatus

Powassan virus1

SFTS virus2

Thogoto virus3

Can infect a greater number of
ticks; resembles the normal
acquisition

Requires animal host; lacks
quantification of acquired viral load

Co-feeding infection I. ricinus

D. marginatus
R. appendiculatus
H. truncatum
A. americanum
H. longicornis

TBEV4−8

Louping ill virus9

Bhanja virus5

Palma virus5

Thogoto virus9,10

CCHFV11

Heartland virus12

Thogoto virus13

An established natural viral infection
of ticks

Requires animal host; greatly depends
on the distance among feeding ticks

Membrane-feeding
method

I. ricinus
I. ricinus
D. reticulatus

Bluetongue virus14

African swine
fever virus15

Reduces variation within a given
treatment group

Requires chemical and physical stimuli
to enhance tick attachment; depends
on the length of the hypostome; long
attachment time

Capillary feeding A. variegatum
R. appendiculatus
I. ricinus
D. reticulatus

Dugbe virus16

Bluetongue virus14

Mimics the natural route of
infection; can estimate the amount
of introduced pathogen

Complicated maintenance of the
integrity of the mouthparts of the ticks
after removal

Percoxal injection H. longicornis
A. variegatum

Langat virus17,18

Thogoto virus19
Can estimate the amount of
pathogen to be introduced

Requires a microinjector; may produce
higher tick mortality due to injury

I. ricinus TBEV4−6,8,20

Louping ill virus9

Anal pore injection H. truncatum
I. ricinus

CCHFV21

TBEV19

H. longicornis Langat virus17

Infection by immersion I. scapularis
A. americanum

LGTV22,23

Heartland virus12
Low cost; relatively simple artificial
method; can synchronously infect
ticks with a defined virus stock

May not generate cohorts of infected
ticks with equal pathogen burden

1Chernesky (1969), 2Luo et al. (2015), 3Booth et al. (1989), 4Labuda et al. (1996), 5Labuda et al. (1997a), 6Khasnatinov et al. (2009), 7Slovák et al. (2014), 8Labuda et al.
(1993), 9Jones et al. (1997), 10Jones et al. (1987), 11Gordon et al. (1993), 12Godsey et al. (2016), 13Talactac et al. (2018), 14Bouwknegt et al. (2010), 15 De carvalho
Ferreira et al. (2014), 16Steele and Nuttall (1989), 17Talactac et al. (2016), 18Talactac et al. (2017b), 19Kaufman and Nuttall (1996), 20Belova et al. (2012), 21Gonzalez et al.
(1989), 22McNally et al. (2012), and 23Tumban et al. (2011).

the dynamics of pathogen transmission, since it can reduce the
variation within a given treatment group because the blood
meal from the same donor reduces the variation that may arise
from individual tick–host relationships (Krober and Guerin,
2007).

However, this method requires chemical and physical stimuli
to enhance attachment by hard ticks to membranes (Kuhnert,
1996). Its use may also depend on the length of the hypostome
in all life stages of the hard ticks to be studied (Krober and
Guerin, 2007). In addition, this type of artificial feeding is more
challenging for ixodid ticks, since they require longer time for
attachment (de Moura et al., 1997. This method was previously
used in infecting I. ricinus, I. hexagonus, D. reticulatus, and
R. bursa with the Bluetongue virus (Bouwknegt et al., 2010).
The unlikely involvement of I. ricinus and D. reticulatus as
biological vectors of African swine fever virus was also shown
using membrane feeding (De carvalho Ferreira et al., 2014).

Infection Through Capillary Feeding
The introduction of pathogens to ixodid ticks via capillary
feeding was first attempted by Chabaud (1950). In this technique,

the ticks are normally pre-fed on animals, followed by a
careful mechanical removal of ticks from the host. Eventually,
a capillary tube containing the pathogen is placed over the
tick’s mouthparts, and the tick is immobilized on a slide
(Burgdorfer, 1957; Bouwknegt et al., 2010). Capillary feeding
provides a number of advantages, especially that it mimics the
natural route of infection of ticks, and it can estimate the
amount of pathogen to be introduced. However, maintaining
the integrity of the mouthparts of the ticks after removal
is crucial for a successful capillary feeding (Bonnet and
Liu, 2012). This technique was previously used in infecting
A. variegatum and R. appendiculatus with the Dugbe virus (Steele
and Nuttall, 1989) and I. ricinus, I. hexagonus, D. reticulatus,
and R. bursa with the Bluetongue virus (Bouwknegt et al.,
2010).

Infection Through Injection
Direct injection of the virus inoculum through the cuticle
(between the coxa and trochanter) has the advantage of
estimating the viral dose received by the ticks (Figure 2a).
However, this method bypasses the midgut barrier of ticks
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FIGURE 1 | Feedings bags are glued or taped to clean-shaven ears of
long-eared rabbit to allow tick engorgement (a). Haemaphysalis longicornis
nymphs infested on a rabbit’s ear (b). A mouse with a feeding chamber
attached on its back (c). Ixodes persulcatus adult ticks infested on a mouse
via chamber feeding (d). Tick infestation using feeding bags or chamber
feeders can be readily utilized to infect ticks with viruses via direct feeding on
infected hosts.

during feeding, making it unrepresentative of the natural route
of infection for ticks (Mitzel et al., 2007). This technique also
requires a microinjector to efficiently introduce the inoculum
into the tick and may produce higher tick mortality due to
injection injury (Rechav et al., 1999). Previous studies using
this technique include the infection of H. longicornis with the
Langat virus (Talactac et al., 2016, 2017a), A. variegatum with
the Thogoto virus (Kaufman and Nuttall, 1996), I. ricinus with
TBEV (Labuda et al., 1993, 1996, 1997b; Khasnatinov et al.,
2009; Belova et al., 2012), and the Louping ill virus (Jones
et al., 1997). D. marginatus, D. reticulatus, and I. ricinus ticks
also previously received percoxal injections with the Bhanja and
Palma viruses (Labuda et al., 1997a). Alternatively, anal pore
or rectal injection of the virus directly into the gut of the tick
can be used (Figure 2b), though it also requires skill to avoid
puncturing the gut upon injection. This method has been used
to infect H. truncatum with CCHFV (Gonzalez et al., 1989),
I. ricinus with TBEV (Belova et al., 2012), and H. longicornis with
Langat virus (Talactac et al., 2017b) and THOV (Talactac et al.,
2018).

Infection Through Immersion
Infection of ticks through immersion provides a low cost and
relatively simple artificial method, since it can synchronously
infect a large number of ticks with a defined virus stock. The ticks

FIGURE 2 | Percoxal (a) and anal pore/rectal (b) injections to H. longicornis
adult ticks. Infection is accomplished by injecting the virus inoculum
containing an estimated virus titer using glass microneedles (black
arrowheads) at the joint of the tick coxa and trochanter of the 4th pair of legs
(white arrow) or into the tick’s anal aperture (black arrow). After injection, ticks
will be kept for 24 h in a 25◦C incubator to observe for any mortality arising
from possible injury due to the injection. Co-feeding (c) between a
THOV-infected H. longicornis adult (A) and smaller uninfected/naïve nymphs
(n). The ticks were infested on mice using feeding chamber/capsule method.
All engorged nymphs post infestation will be collected and allowed to molt.
Twenty-one days after molting, newly emerged adult ticks will be examined for
either the presence of infectious virions or viral RNA using a focus formation
assay or real-time PCR, respectively.

are believed to be infected when they successfully swallowed the
immersion medium containing the virus; with the ingested virus
ultimately reaching the midgut (Mitzel et al., 2007). The virus
can also possibly penetrate the tick’s exoskeletons, especially the
immature ones. Larvae and nymphs have less sturdy exoskeleton,
since arthropods must be able to hydrolyze the chitin for cuticle
degradation and development during the immature stages (You
et al., 2003). However, its major limitation is the generation
of cohorts of infected ticks with an equal pathogen burden
(Kariu et al., 2011). Infection of ticks using this method was
previously reported for I. scapularis infected with Langat virus
(Tumban et al., 2011; McNally et al., 2012), the dengue virus
(Tumban et al., 2011), and TBEV (Mitzel et al., 2007) and for
A. americanum infected with the Heartland virus (Godsey et al.,
2016).

CONCLUSION

To fully understand the interaction of ticks with TBVs, efficient
techniques for the artificial infection and maintenance of tick
colonies under laboratory conditions are crucial. As emphasized
in this mini review, it is the unique but complicated feeding
behavior of ixodid ticks that makes studies related to virus
transmission, vector competence, and other aspects of tick–virus
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interaction a challenging endeavor. However, with the availability
of these alternative feeding methods and techniques to infect
ticks with different viruses of public health importance, the
potential for studies on TBVs to catch up with the advances in
mosquito-borne viral disease research is no longer a far-fetched
scenario. In addition, the limitations of current techniques do
not outweigh importance of studying TBVs. Understanding the
interactions between ticks and the TBVs they transmit offers a
great opportunity to identify new targets for the future control of
TBVs.
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