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A B S T R A C T

Objective: Hemorrhagic fever with renal syndrome (HFRS) continues to pose a significant threat to global health.
This study aimed to investigate both the long- and short-term asymmetric impacts of variations in meteorological
variables on HFRS.
Methods: The reported monthly HFRS incidence data from Shaanxi between 2004 and 2019, along with corre-
sponding meteorological data, were collected to conduct an ecological trend analysis. Subsequently, the autor-
egressive distributed lag (ARDL) and nonlinear ARDL (NARDL) models were used to examine the long- and short-
term asymmetric effects of climate variables on HFRS incidence.
Results: Overall, a reduction in HFRS incidence was observed in Shaanxi from 2004 to 2019, with an average
annual percentage change of − 0.498 % (95 %CI -13.247 % to 12.602 %). HFRS incidence peaked in December
and reached its lowest point in March each year. A 1 mm increase in aggregate precipitation (AP) was associated
with a 4.3 % rise in HFRS incidence, while a 1 mm decrease contributed to a 3.7 % increase, indicating a long-
term asymmetric impact (Wald long-term asymmetry test [WLT] = 9.072, P = 0.003). In the short term, a 1 %
decrease in mean relative humidity (MRH) led to a 5.7 % decline in HFRS incidence (Wald short-term asymmetry
test [WSR] = 5.978, P = 0.015). Additionally, changes in meteorological variables showed varied effects: ΔMWV
(+) at a 1-month lag had a significant positive short-term effect on HFRS; ΔMRH(+) at a 3-month lag, ΔAP(+) at
a 2-month lag, ΔAP(− ) at a 1-month lag, ΔASH(+) at a 1-month lag, and ΔASH(− ) at a 3-month lag all exhibited
strong negative short-term impacts on HFRS incidence.
Conclusions:Weather variability plays a significant role in influencing HFRS incidence, with both long- and short-
term asymmetric and/or symmetric effects. Utilizing the NARDL model through a One Health lens offers
promising opportunities for enhancing HFRS control measures.

1. Introduction

Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne
disease caused by hantaviruses. Human infection typically occurs
through contact with contaminated droplets, inhalation of particulates,

or direct contact with infected rodents and their excreta [1]. Once the
virus enters the human bloodstream, it typically results in two distinct
clinical presentations: Hantavirus Pulmonary Syndrome (HPS) and
HFRS, which are determined by the specific hantavirus strain involved.
HPS, primarily associated with Sin Nombre virus (SNV) in North
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America, manifests with symptoms such as fever, myalgia, and respi-
ratory distress, often progressing rapidly and resulting in severe out-
comes without timely medical intervention [1]. Conversely, HFRS, more
common in Europe and Asia, is characterized by fever, hemorrhagic
symptoms, and acute renal failure, primarily linked to the Hantaan virus
(HTNV) [1,2]. In China, HTNV and Seoul virus (SEOV) are identified as
the major causative agents of HFRS, with their primary natural reser-
voirs being Apodemus agrarius and Rattus norvegicus, respectively [3,4].
Globally, approximately 100,000 cases are reported annually, with over
90 % occurring in China, Korea, and Russia [5]. In China, HFRS is
classified as a class B notifiable disease and poses a significant public
health challenge [1]. From 1950 to 2014, there were 1,625,002 reported
cases and 46,968 deaths in China, resulting in a death rate of 2.89 % [5].
Although the incidence of HFRS has fluctuated over recent decades, it
remains one of the top nine communicable diseases in China [3]. The
epidemiology of hantaviruses is largely influenced by the distribution of
their reservoir hosts; however, these viruses are not uniformly present in
all geographical areas inhabited by their hosts [6]. Recent studies
indicate that the dual seasonal pattern of HFRS is linked to dominant
hantavirus genotypes, with climate effects being more pronounced in
HTNV-endemic regions compared to those dominated by SEOV [7]. This
suggests that environmental factors and other potential influences
should also be considered when studying the epidemiology of HFRS [6].

Research has shown that climate change can impact the epidemi-
ology of hantavirus infections [1,6,8,9]; however, findings have been
inconsistent. Most studies have employed linear models and failed to
explore the long- and short-term asymmetric dynamic effects of mete-
orological variables on HFRS—meaning that an increase or decrease in
meteorological variables may yield different effects—which is crucial
for effective prevention strategies. Additionally, prior studies often
overlooked the strong autocorrelations present in time series data,
leading to potential overestimation. Recent research has demonstrated
that the nonlinear autoregressive distributed lag (NARDL) model can
address these gaps due to its several advantages [9–12]: (1) It de-
composes the effect of regressors into short- and long-term components,
allowing for asymmetries in various combinations of short- and long-
term dynamics; (2) it accommodates time series with different orders
of integration; (3) it addresses endogenous relationships between vari-
ables; and (4) it automatically considers autocorrelations in time series
analysis.

Shaanxi province in central China is located between longitudes
105◦29′-111◦15′E and latitudes 31◦42′-39◦35′N and experiences a con-
tinental monsoon climate. As of 2023, its population was approximately
39.56 million. In 2005, Shaanxi had the second highest incidence rates
of HFRS after Heilongjiang [3]. From 2010 to 2012, it surpassed Hei-
longjiang to record the highest incidence rates of HFRS [3]. However,
few studies have concentrated on the influence of meteorological factors
on the long- and short-term transmission dynamics of HFRS in this re-
gion. Therefore, this study aimed to conduct a 16-year ecological trend
analysis to investigate the long- and short-term asymmetric dynamic
associations between meteorological factors and HFRS in Shaanxi using
the NARDL model.

2. Material and methods

2.1. HFRS data

The monthly HFRS incidents in Shaanxi from 2004 to 2019 were
collected from the Data-center of China Public Health Science (DCPHS).
Population data was sourced from the Shaanxi Statistical Yearbook. All
HFRS incidents were confirmed by authorized institutions and pro-
fessionals following the diagnostic criteria for HFRS (http://www.nhc.
gov.cn/wjw/s9491/wsbz.shtml).

2.2. Meteorological data

Daily meteorological variables, including mean relative humidity
(MRH), aggregate precipitation (AP), mean temperature (MT), mean
wind velocity (MWV), and aggregate sunshine hours (ASH) were pro-
vided by the National Meteorological Science Data Center (http://data.
cma.cn/), and then these variables were collated as the monthly time
series format.

2.3. Statistical analysis

During the statistical description, study variables were represented
as mean ± standard deviation (x± s). The average annual percentage
change (AAPC) with a 95 % confidence interval (CI) was computed to
describe the epidemiological trend of HFRS [13]. Spearman's correlation
was applied to test the correlation between meteorological factors and
HFRS, with a correlation greater than 0.9 or a variance inflation factor
(VIF) greater than 10 was indicating strong collinearity [14,15]. In cases
of multicollinearity among variables, these variables were entered into
different NARDL models alongside other meteorological drivers to
investigate their effects on HFRS.

Autoregressive distributed lag (ARDL) model has been used to
address issues related to autocorrelations and non-stationarity of key
variables; details of this model have been provided in a prior study [16].
However, the ARDL model may yield biased results due to nonlinear
and/or asymmetric impacts of meteorological factors on diseases [17].
The NARDL model was thus introduced to overcome the weakness. This
approach allows for the investigation of both long- and short-term
asymmetric dynamic effects [10,18]. In the presence of asymmetric
impacts, the NARDL model can quantify the responses of HFRS to pos-
itive and negative changes in each of the meteorological factors by
integrating the positive and negative partial sums of increments and
decrements in these variables [10,18]. The NARDL analysis involves
three steps [10,18,19]: First, investigation of the order of integration.
The order of integration is not allowed to exceed one, although the
NARDL model has relaxed this integration requirement. Besides, a
pseudo regression may be generated by the non-stationary regressors.
Thus, the augmented Dickey–Fuller (ADF) statistic was chosen to test the
order of integration and stationarity in both independent and dependent
variables [20]. Second, investigation of the long-term asymmetric
cointegration. To determine whether a long-term asymmetric cointe-
gration exists between regressors and dependent variables, the bounds

Table 1
Summary for monthly HFRS cases and weather factors in Shanxi, 2004–2019.

Variable Mean S.D. Min P25 P50 P75 Max VIF

HFRS cases 137.90 177.91 9.00 43.75 74.00 145.50 1209.00 –
MRH 64.74 9.93 42.24 58.14 63.89 72.00 84.76 5.97
AP 54.10 50.47 0.07 11.87 40.76 83.78 251.57 4.13
MT 12.23 9.08 − 5.42 4.00 13.41 20.60 26.40 7.99
MWV 1.97 0.22 1.50 1.81 1.95 2.13 2.58 2.52
ASH 172.23 42.30 58.64 142.74 171.92 200.65 264.20 4.61
HFRS cases, 1-month lag – – – – – – – 1.58

HFRS, hemorrhagic fever with renal syndrome; MRH, mean relative humidity; AP, aggregate precipitation; MT, mean temperature; MWV, mean wind velocity; ASH,
aggregate sunshine hours, S.D., standard deviation; VIF, variance inflation factor.
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test (F statistic) was applied [21]. If evidence suggests such a relation-
ship is present, a Wald test is conducted to investigate short- and long-
term asymmetries. Third, effect estimation. The positive and negative
dynamic multiplier effects of regressors on the dependent variable are
estimated accordingly.

Logarithmic transformation helps reduce the variation of dependent
variables and better interpret the results, and thus the log(HFRS) was
used in this study. The NARDL notation was below,

where, Yt represents the HFRS cases, x signifies the meteorological
factors such as MRH, AP, MT, MWV, and ASH, x+ and x− are the positive
and negative partial sums of increases and decreases in each meteoro-
logical factor, respectively, p and q denote the optimal lag orders of the
HFRS cases and meteorological variables, respectively, δ+1i and δ−1i signify
the long-term equilibrium parameters for the dependent variable, τ+3i
and τ−3i refer to the short-term parameters for the dependent variable,
month represents the seasonal variables, Δ refers to the first-order dif-
ference.

In this study, the maximum lag orders were set at four months,
reflecting an approximate 16-week incubation period from HFRS
infection to the onset of symptoms [22]. The optimal lag orders were
then determined using various criteria, including the Akaike Informa-
tion Criterion (AIC), Bayesian Information Criterion (BIC), Hannan-
Quinn (HQ) criterion, log-likelihood, and adjusted R2. To assess auto-
correlation in the dependent variable, the partial autocorrelation func-
tion (PACF) was employed, which measures the correlation between
current observations and past observations while controlling for other
variables [23]. To account for seasonal effects, 11 monthly dummy
variables were incorporated into the model. Furthermore, the stability of
the NARDL model was evaluated using cumulative sum (CUSUM) and
CUSUM of squares statistics [21]. All statistical analyses were conducted
using EViews 10 (IHS, Inc. USA) and R 4.2.0 (R Development 164 Core
Team, Vienna, Austria), with statistical significance defined as a two-
sided P ≤ 0.05.

3. Results

3.1. Statistical description

During 2004–2019, a total of 26,431 cases of HFRS were reported in
Shaanxi, averaging 138 cases per month and approximately 1652 cases
annually. Overall, the incidence of HFRS demonstrated a declining trend
over this period (AAPC = -0.498 %, 95 %CI -13.247 % to 12.602 %),
with the highest peak occurring in 2012, when 3591 cases were reported
(9.482 cases per 100,000 people). Following this peak, the incidence
steadily decreased until 2016, when only 933 cases were recorded
(2.408 cases per 100,000 people). The incidence of HFRS exhibited clear
seasonal and periodic patterns, with peaks typically observed in
December and troughs in March each year.

A summary of monthly HFRS cases alongside relevant meteorolog-
ical factors is provided in Table 1. The mean values of MRH, AP, MT,
MWV, and ASH were 64.74 ± 9.93 %, 54.10 ± 50.47 mm, 12.23 ±

9.08 ◦C, 1.97 ± 0.22 m/s, and 172.23 ± 42.30 h, respectively. As
illustrated in Fig. 1, there appears to be a similar trend between HFRS
and MT, MWV, and ASH. In contrast, HFRS incidence showed an inverse

relationship with MRH and AP. Importantly, no correlations exceeded
0.9, nor did any VIF values surpass 10 among the variables, indicating a
lack of strong collinearity (Table 1 and Fig. 2).

3.2. Development of the NARDL and ADRL models

The ADF test indicated that both the dependent and independent
variables were non-stationary, as evidenced by the following P-values:

log(HFRS) (P = 0.272), MT (P = 0.885), ASH (P = 0.387), MWV (P =

0.584), AP (P = 0.706), and MRH (P = 0.718). However, after differ-
encing the data once, all variables became stationary (P < 0.001). The
PACF revealed significant autocorrelation at delays of one and two
months (Fig. S1). Furthermore, the bounds test yielded an F of 6.735
(which far exceeded the critical values [I0 = 1.82, I1 = 2.99]), con-
firming the presence of a long-term asymmetric cointegration relation-
ship among the variables. Lastly, a wide range of NARDL models were
developed (Table S1 and Fig. S2). Of the various candidates, we chose
the NARDL(1, 4, 0, 4, 4, 0, 0, 2, 0, 4, 4) specification (in which the lag of
log(HFRS) was one, lags of MRH(+) and MRH(− ) were four and zero,
respectively, lags of AP(+) and AP(− ) were four, lags of MT(+) and MT
(− ) were zero, lags of MWV(+) and MWV(− ) were two and zero,
respectively) as the optimal model due to its lower AIC (0.372), BIC
(1.132), and HQ (0.68), in conjunction with a higher adjusted R2 value
of 0.927 and a log-likelihood of 9.211. As shown in Fig. 3, the resulting
residuals from the CUSUM and CUSUM of squares tests remained within
the 95 % CI, substantiating the stability of the NARDL model. Likewise,
the ARDL(1, 4, 3, 4, 2, 4) model was identified as the best specification
among the possible ARDL candidates (Table S2 and Fig. S3). Notably,
the error metrics for NARDL—mean absolute error (MAE = 23.607) and
root mean squared error (RMSE = 26.306)—were lower than those for
ARDL (MAE = 24.986 and RMSE = 48.182). This suggests that the
NARDL model provides a more accurate representation of the epidemic
dynamics of HFRS by accounting for both long- and short-term asym-
metries compared to the ARDL model (Fig. 4).

3.3. The asymmetric and symmetric effects of meteorological factors on
HFRS

Based on the findings presented in Table 2, there was a statistically
significant positive long-term relationship between AP and HFRS. Spe-
cifically, a 1 mm increase in AP was associated with an approximate 4.3
% rise in HFRS, while a 1 mm decrease in AP resulted in an approxi-
mately 3.7 % increase in HFRS, indicating a cumulative effect on HFRS
incidence. Conversely, the long-term coefficients for MRH(− ) were
statistically significant but negatively correlated with HFRS; a 1 %
decrease in MRH corresponded to an approximate 5.7 % reduction in
HFRS. Meanwhile, MT, MWV, and ASH did not show significant long-
term coefficient. In terms of short-term dynamics, ΔMWV(+) at a 1-
month lag exhibited a substantial positive effect on HFRS, with an in-
crease of 1 m/s in MWV leading to an approximate 83.4 % rise in HFRS.
On the other hand, ΔMRH(+) at a 3-month lag, ΔAP(+) and ΔAP(− ) at a
1-month lag, along with ΔASH(+) at a 1-month lag and ΔASH(− ) at a 3-
month lag, demonstrated a more pronounced negative short-term effect
on HFRS. Specifically, when MRH, AP, and ASH increased by 1 %, 1 mm,
and 1 h, HFRS increased approximately by 2.1 %, 1.0 %, and 0.5 %,
respectively. Conversely, decreases in AP and ASH by 1 mm and 1 h

Δlog(Yt) = a0 +
∑pi

i=1
φilog

(
Yt− pi

)
+

∑q1

i=0
δ+1ix

+
t− q1 i

+
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i=0
δ−1ix

−
t− q2i

+
∑p2

i=1
p2iΔlog

(
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∑q4

i=0
τ−4iΔx−t− q4i

+ a1month+ ϵt

C. Xue et al. One Health 19 (2024) 100895 

3 



resulted in increases in HFRS of about 1.0 % and 0.6 %, respectively. The
Wald test results listed in Table 3 indicated potential long-term asym-
metric impacts of AP and MWV on HFRS, a finding further supported by
the dynamic multiplier plots shown in Figs. 5a-5f, despite the long-term
coefficient for MWV being non-significant. No long-term asymmetric
relationships were observed for MRH, MT, and ASH. However, both
MWV and MRH may exert short-term asymmetric effects on HFRS. For
instance, as illustrated in Fig. 5d, HFRS incidence rises gradually with
increases in AP(+). In the short term, AP(− ) initially elevates the inci-
dence of HFRS before subsequently decreasing it; yet over the long term,
the relationship between AP(− ) and HFRS turns negative. Ultimately,
considering the combined effects of fluctuations in AP(+) and AP(− ),
the overall impact leads to an increase in HFRS incidence.

4. Discussion

The relationship between human health, animal health, and the
environment has never been more crucial than in the contemporary
context of global health challenges. The One Health approach, an inte-
grative framework that promotes a collaborative effort across various
sectors, is essential for addressing health issues that transcend human,
animal, and environmental domains [24]. By understanding the
ecological dynamics that contribute to the transmission of HFRS,
stakeholders can implement comprehensive strategies to prevent out-
breaks, educate communities, and enhance disease management

protocols. This study found that, from a long-term perspective, AP had a
significant positive nonlinear association with HFRS. In the short term,
ΔMWV(+) at a 1-month lag was positively associated with HFRS, while
ΔMRH(+) at a 3-month lag, ΔAP(+) and ΔAP(− ) at a 1-month lag, and
ΔASH(+) at a 1-month lag and ΔASH(− ) at a 3-month lag exhibit a
reverse association with HFRS. This is the only study to investigate both
long- and short-term asymmetric impacts of meteorological factors on
HFRS using the NARDL model in Shaanxi. The ARDL model is widely
used for its capacity to estimate long- and short-term relationships
among time series data while accommodating various orders of inte-
gration [16]. In the context of meteorological factors influencing HFRS,
the ARDL model can reveal fundamental associations; however, it often
operates under the assumption of linear impacts across the variables
involved. This assumption may oversimplify the actual dynamics, as
real-world relationships between meteorological variables and disease
incidence may exhibit nonlinearity and asymmetry [10]. In contrast, the
NARDL model expands upon the ARDL framework by allowing for
nonlinear interactions among variables [10]. It enables researchers to
differentiate the impact of positive and negative changes in explanatory
variables, thus offering a more nuanced view of how meteorological
factors affect the incidence of HFRS. By distinguishing between these
dimensions, the NARDL model can reveal potentially critical insights
into the underlying mechanisms driving the association between climate
variables and disease outcomes. Our results also corroborate the lead
time and both asymmetric and symmetric impacts of meteorological

Fig. 1. Time series graph suggesting the changing patterns of the weather variables and HFRS cases in Shanxi, 2004–2019 (HFRS, hemorrhagic fever with renal
syndrome; MRH, mean relative humidity; AP, aggregate precipitation; MT, mean temperature; MWV, mean wind velocity; ASH, aggregate sunshine hours).
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parameters on HFRS, highlighting the usefulness of the NARDL model in
capturing the dynamic epidemic structure of HFRS incidence. These
findings are helpful in estimating HFRS epidemics, providing sufficient
lead time to develop targeted policies and implement effective public
health interventions.

Our results revealed that overall a decreasing trend was observed in
HFRS incidence, consistent with global and national epidemic patterns
in China [3]. This decline can be attributed to a confluence of factors,
including improved public health interventions, enhanced agricultural
practices, increased public awareness, and ecological modifications
[25]. As China continues to develop and implement comprehensive
strategies for the prevention and control of HFRS, it is imperative that
these efforts remain multifaceted, integrating education, community
engagement, vaccination campaigns, and environmental management
[25]. While the current trend is encouraging, maintaining vigilance is
essential to preserve these gains and protect vulnerable populations
from potential outbreaks of HFRS, as changing ecological conditions and
patterns of human behavior could pose new challenges in the future
[25–27]. Besides, our findings revealed a distinct seasonal profile in
HFRS morbidity, with peaks in December and troughs in March, in
alignment with the seasonality across China [4]. This pronounced sea-
sonal profile may be closely linked to variations in rodent density and
rainfall, both of which exhibit seasonal fluctuations [28].

An intriguing finding is that AP was one of the most important
contributors to HFRS, exhibiting a notable positive long-term effect on
HFRS, and it seems that an increase in AP has a stronger effect than a
reduction, indicating an asymmetric relationship. Conversely, a signif-
icant negative short-term effect of AP was observed at 1-month, 2-
month, and 3-month lags. Low-lying regions and wetlands with moist
soil serve as ideal habitats, heightening the risk of HFRS transmission
[29]. Moist and semi-moist soil is essential for the growth of vegetation

and crops that either directly or indirectly provide sustenance for rodent
hosts, resulting in larger rodent populations [30,31]. The densities of
hosts, particularly hantavirus-positive hosts, were positively correlated
with the risk of HFRS transmission [32]. Additionally, the previously
mentioned significant negative short-term effect of AP at 1-month, 2-
month, and 3-month lags suggests that excessive precipitation may
disrupt the nests of host animals, thereby reducing the likelihood of
rodent-rodent contact, rodent-human interaction, and subsequent virus
transmission [12,29,33].

The second important finding is that MRH(− ) had a negative long-
term effect on HFRS, indicating an approximate 5.7 % decrease in
HFRS incidence with a 1 % reduction in MRH. This aligns well with
several studies that have reported a positive association between MRH
and HFRS [17,30,34]. Moisture not only influences the growth of food
sources that determine rodent population size, thereby affecting the
HFRS transmission, but also directly influences rodent activity and
hantavirus infectivity [35]. However, contrary to our conclusions,
several studies reported a positive relationship between MRH and HFRS
[22,36,37]. This discrepancy may be attributed, in part, to the different
models employed in data analysis, variations in geographic regions, or
the absence of autoregressive adjustments in the dependent variable.

The third important finding is that MWV had a positive short-term
asymmetric impact on HFRS, and unfortunately the long-term coeffi-
cient was non-significant. This was consistent with the previous studies
in Changchun, Shenyang, and Heilongjiang [12,38,39]. The short-term
positive impact of wind on HFRS transmission involves two main
mechanisms: increased human exposure to infectious materials and
changes in rodent behavior [27,36,40]. First, high winds can aerosolize
rodent urine and droppings, elevating the concentration of viral parti-
cles in the air and exposing humans during outdoor activities. Second,
wind prompts rodents to seek shelter, but this behavior can drive them

Fig. 2. Spearman's correlation between variables. It was observed that there was no correlation greater than 0.9 between variables, indicating an absence of strong
collinearity between variables (HFRS, hemorrhagic fever with renal syndrome; MRH, mean relative humidity; AP, aggregate precipitation; MT, mean temperature;
MWV, mean wind velocity; ASH, aggregate sunshine hours).
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into areas with more human interaction, such as residential regions or
agricultural fields. This increases the likelihood of zoonotic spillover
events. Third, wind may also worsen drought conditions, affecting food
supplies for rodents and forcing them closer to human settlements. The
resultant increase in rodent-human interactions forms a nexus where the
risks of HFRS transmission escalate. Lastly, Shaanxi is a windy province,
strong winds can disrupt rodent populations, causing temporary popu-
lation fluctuations as they disperse and settle in new areas, further

heightening the potential for human encounters.
Our study documented negative short-term associations of ASH(+)

and ASH(− ) with HFRS, with significant association coefficients
observed at delays of 1–3 months. However, the lack of evidence for
asymmetry and the extremely small coefficient values indicate a very
weak short-term relationship. Previous research has also reported
negative associations between sunshine hours and HFRS incidence
[33,39]. Sunshine hours and wind speed could influence crop yield,
rodent reproduction, and vector density, which in turn may affect the

Fig. 3. Stability test for the nonlinear autoregressive distributed lag model
(NARDL). a. Cumulative sum (CUSUM) test, b. CUSUM of squares test. The
CUSUM and CUSUM of squares were within 95 % confidence interval (CI) at
different time confirmed the validity and stability of the NARDL.

Fig. 4. Comparison of the forecasts under the nonlinear autoregressive
distributed lag (NARDL) and autoregressive distributed lag (ARDL) models with
the observed values. It seemed that the forecasts could be closer to the trend
and seasonality under the NARDL model than under the ARDL model.

Table 2
Long- and short-term effects by use of the optimal NARDL and ARDL.

NARDL ARDL

Variable Coefficient P Variable Coefficient P

Long-run effect Long-run effect
MRH(+) − 0.025 0.327 MRH 0.034 0.213
MRH(− ) − 0.057 0.040 AP 0.029 0.010
AP(+) 0.043 <0.001 MT − 0.106 0.472
AP(− ) 0.037 <0.001 MWV − 0.316 0.781
MT(+) 0.083 0.262 ASH 0.012 0.109
MT(− ) 0.069 0.365 Short-run effect
MWV(+) − 1.442 0.223 ΔMRH − 0.015 0.014

MWV(− ) 1.022 0.348
ΔMRH, 1-
month lag

− 0.017 0.029

ASH(+) 0.009 0.273 ΔMRH, 2-
month lag

− 0.016 0.036

ASH(− ) 0.013 0.119
ΔMRH, 3-
month lag − 0.016 0.007

Short-run effect ΔAP − 0.001 0.315

ΔMRH(+) − 0.016 0.074
ΔAP, 1-
month lag

− 0.005 <0.001

ΔMRH(+), 1-
month lag

− 0.004 0.636 ΔAP, 2-
month lag

− 0.003 0.004

ΔMRH(+), 2-
month lag

− 0.006 0.471 ΔMT 0.020 0.297

ΔMRH(+), 3-
month lag − 0.021 0.007

ΔMT, 1-
month lag 0.025 0.340

ΔAP(+) 0.001 0.314
ΔMT, 2-
month lag

0.027 0.241

ΔAP(+), 1-
month lag

− 0.012 <0.001 ΔMT, 3-
month lag

0.047 0.011

ΔAP(+), 2-
month lag − 0.010 <0.001 ΔMWV 0.324 0.076

ΔAP(+), 3-
month lag − 0.003 0.087

ΔMWV, 1-
month lag 0.616 0.001

ΔAP(− ) − 0.003 0.036 ΔASH − 0.003 0.017
ΔAP(− ), 1-

month lag
− 0.010 <0.001 ΔASH, 1-

month lag
− 0.004 0.020

ΔAP(− ), 2-
month lag

− 0.005 0.001 ΔASH, 2-
month lag

− 0.004 0.010

ΔAP(− ), 3-
month lag − 0.002 0.028

ΔASH, 3-
month lag − 0.004 0.003

ΔMWV(+) 0.436 0.089
ΔMWV(+), 1-

month lag
0.834 0.002

ΔASH(+) − 0.002 0.202
ΔASH(+), 1-

month lag
− 0.005 0.006

ΔASH(+), 2-
month lag − 0.004 0.005

ΔASH(+), 3-
month lag

− 0.002 0.096

ΔASH(− ) − 0.003 0.045
ΔASH(− ), 1-

month lag
− 0.004 0.097

ΔASH(− ), 2-
month lag − 0.005 0.013

ΔASH(− ), 3-
month lag − 0.006 <0.001

Note, adjustment for seasonality as dummy variable. NARDL, nonlinear autor-
egressive distributed lag; ARDL, autoregressive distributed lag; MRH, mean
relative humidity; AP, aggregate precipitation; MT, mean temperature; MWV,
mean wind velocity; ASH, aggregate sunshine hours, S.D., standard deviation;
VIF, variance inflation factor.
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likelihood of HFRS occurrence [17]. A deeper investigation into the
plausible mechanism underlying the relationship between ASH and
HFRS is warranted. In addition, researchers have identified both positive
and negative associations between AT and HFRS incidence [4,34,41],

while our study found no significant long-term or short-term relation-
ships in this regard. Our study uses the NARDL model, which provides an
insight into the link between variables by decomposing the effect of
regressors into short- and long-term components—a capability that
current models, aside from NARDL, do not provide. Consequently, we
expect further validation efforts to be conducted in other areas.

Our research specifically focused on the asymmetric and/or sym-
metric impacts of variations in meteorological factors on HFRS inci-
dence in both the long and short term. Prior study has emphasized the
significance of considering the changes in population immunity, auto-
correlations, possible lags and relationship patterns, and seasonality
when performing time series analyses [42]. Although we did account for
most of these factors, changes in population immunity could not be
addressed due to a lack of data. Therefore, we are confident that our
findings provide valid and reliable evidence that variations in meteo-
rological factors play a crucial asymmetric and/or symmetric role in
influencing HFRS incidence in both the long and short term. Nonethe-
less, our study has some limitations. First, under-reporting or under-

Table 3
Wald test results for Long- and short-term asymmetries.

Variable Long-term asymmetry Short-term asymmetry

WLT P WST P

MT 0.646 0.422 – –
AP 9.072 0.003 0.157 0.692
ASH 2.015 0.156 1.528 0.216
MWV 10.735 0.001 10.318 0.001
MRH 3.067 0.080 5.978 0.015

MRH, mean relative humidity; AP, aggregate precipitation; MT, mean temper-
ature; MWV, mean wind velocity; ASH, aggregate sunshine hours, S.D., standard
deviation; VIF, variance inflation factor; WLT, Wald long-term symmetry; WST,
Wald short-term symmetry.

Fig. 5. Dynamic multiplier asymmetric effects of weather factors on hemorrhagic fever with renal syndrome (HFRS). a. multiplier graph for aggregate sunshine hours
(ASH), b. multiplier graph for mean wind velocity (MWV), c. multiplier graph for mean temperature (MT), d. multiplier graph for aggregate precipitation (AP), e.
multiplier graph for mean relative humidity (MRH).

C. Xue et al. One Health 19 (2024) 100895 

7 



diagnosis is an unavoidable issue in a passive monitoring system. Sec-
ond, this ecological trend study does not permit an examination of
individual-based relationships or the inference of causal effects. Third,
daily or weekly data could offer deeper insights into temporal differ-
ences across years; however, their unavailability limits further investi-
gation. Finally, we did not control for the effects of the unmeasured
confounders (e.g., geographic and socioeconomic factors, population
density, and host susceptibility).

5. Conclusion

Our study elucidates the significant long- and short-term asymmetric
and symmetric contributions of AP, MWV, MRH, and ASH to the HFRS
incidence through a 16-year ecological trend study. Given the implica-
tions of global climate change, it is imperative that meteorological
variables are integrated into strategies for the control and prevention of
HFRS. By understanding the ecological dynamics that facilitate the
transmission of hantaviruses, stakeholders can implement comprehen-
sive strategies for outbreak prevention, community education, and
enhancement of disease management protocols. As an infectious disease
continues to pose significant threats to global health, the necessity for
multidisciplinary cooperation in understanding and mitigating these
risks has never been more apparent. Embracing the One Health para-
digm is not only critical for managing HFRS but is also essential for
fortifying overall public health resilience against future zoonotic threats.
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