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Abstract: Antimony (Sb) pollution in soils is an important environmental problem, and it is im-
perative to investigate the migration and transformation behavior of Sb in soils. The adsorption
behaviors and interaction mechanisms of Sb in soils were studied using integrated characterization
techniques and the batch equilibrium method. The results indicated that the adsorption kinetics and
isotherms of Sb onto soils were well fitted by the first-order kinetic, Langmuir, and Freundlich models,
respectively, while the maximum adsorbed amounts of Sb (III) in soil 1 and soil 2 were 1314.46 mg/kg
and 1359.25 mg/kg, respectively, and those of Sb (V) in soil 1 and soil 2 were 415.65 mg/kg and
535.97 mg/kg, respectively. In addition, pH ranging from 4 to 10 had little effect on the adsorption
behavior of Sb. Moreover, it was found that Sb was mainly present in the residue fractions, indicating
that Sb had high geochemical stability in soils. SEM analysis indicated that the distribution positions
of Sb were highly coincident with Ca, which was mainly due to the existence of calcium oxides,
such as calcium carbonate and calcium hydroxide, that affected Sb adsorption, and further resulted in
Sb and Ca bearing co-precipitation. XPS analysis revealed the valence state transformation of Sb (III)
and Sb (V), suggesting that Fe/Mn oxides and reactive oxygen species (ROS) served as oxidant or
reductant to promote the occurrence of the Sb redox reaction. Sb was mobile and leachable in soils
and posed a significant threat to surface soils, organisms, and groundwater. This work provides
a fundamental understanding of Sb adsorption onto soils, as well as a theoretical guide for studies
on the adsorption and migration behavior of Sb in soils.

Keywords: antimony pollution; soil; adsorption

1. Introduction

Antimony (Sb) pollution is becoming a global environmental issue because of its
significant environmental hazards to animals, plants, microorganisms, and humans [1–3].
It is shown that Sb can inhibit the growth of microorganisms and enzyme activities in soils,
while it has negative impacts on the growth and proliferation of bacteria, fungi, actino-
mycetes, and some sensitive enzymes in soils [4–6]. Sb is easily absorbed by human spleen
and blood cells before being accumulated in vascularized organs and tissues, which results
in serious health risks to humans, such as respiratory diseases, cardiovascular diseases,
and liver diseases [7,8]. As a carcinogenic element, Sb is now classified as an emerging
pollutant by the United States Environment Protection Agency (US EPA) and European
Union (EU), as a result of various anthropogenic activities, including mining, smelting, coal
combustion, and other industrial activities [9–11]. In addition, Sb pollution is of particular
environmental concern in many countries, including the USA, Australia, China, Japan,
Mexico, New Zealand, Spain, and Slovakia [12–16]. To date, China is the largest emitter and
producer of Sb globally. It is estimated that in 2010 alone, China discharged around 649 t
of Sb, subsequently contributing to more than 60% of global Sb production in 2019 [17].
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In nature, Sb concentrations in soils are generally between <1 and 4 mg/kg [18]. In some
cases, elevated Sb concentrations in soils are over 1500 mg/kg [19].

Sb is primarily presented as Sb (OH)3 and Sb (OH)6 in soils, respectively [20,21]. It is
widely reported that Sb mainly exists in two inorganic oxidation states of Sb (III) and
Sb (V) [22,23]. It is also shown that Sb (V) dominates in oxidizing conditions, mostly in the
soils with the shallow layer, whereas Sb (III) is dominant in anoxic conditions, especially in
the deeper saturated zones [23]. In soils and groundwater, Sb appears to be the predominant
form of Sb (V) [24,25]. In contrast, Sb (III) is the most toxic form, which can be quickly
and non-reversibly absorbed onto soil minerals, such as organic matter and carbonates in
alkaline soils [26,27], and it can also be oxidized to Sb (V) at more negative Eh values [28].

Furthermore, many studies have showed that the speciation, mobility and availabil-
ity of Sb in soils are strongly affected by soil physicochemical properties, such as pH,
cation-exchange capacity (CEC), soil texture, inorganic and organic ligands [29]. Among
these properties, pH can affect the chemical speciation and ionization degree of trace
metals [30,31]. In addition, the migration, transformation, and bioavailability of Sb in soils
are related to its forms, adsorption state, and soil properties [19]. Sb mainly exists in soils
in the form of low-soluble sulfides. Meanwhile, it is also easily associated with Fe and Al
oxides or organic matter in soils, which decreases its migration ability [32–34].

Most studies have focused on the adsorption of Sb on various geotechnical minerals
and adsorbents [34–36], while the migration and transformation of Sb in soil and ground-
water systems have rarely been studied. In addition, the migration and transformation
mechanisms of Sb in the soil and groundwater system remain unknown. In this study,
Sb (III) and Sb (V) solution are considered as the polluted groundwater, and soils collected
from a Shanghai aquifer are used as adsorbents. A comparison of the adsorption behaviors
of Sb (III) and Sb (V) onto soils was conducted to explore the migration and transformation
of Sb in the soil and groundwater system. This work might be helpful for providing a novel
insight into the geochemical behaviors of Sb in the system and its risk management.

2. Materials and Methods
2.1. Experimental Materials
2.1.1. Chemical Reagents

Potassium pyroantimonate (K2H2Sb2O7), potassium antimony tartrate (K(SbO)
C4H4O6·1/2H2O), sodium hydroxide (NaOH), hydrochloric acid (HCl), and potassium
chloride (KCl) were provided by Sinopharm Chemical Reagent Company (Shanghai, China).
All solutions were prepared with ultrapure water (Shanghai, China).

2.1.2. Soil Samples

Two shallow soil samples were collected from one site in Shanghai, China (31◦10′46′′ N,
121◦26′26.01′′ E). In the soil layer structures of the site, two soil samples were adjacent
to each other, i.e., soil 1 was located on soil 2. Studies on the adsorption of two soils can
help to clarify the migration of Sb between different soil textures. The soil samples were
naturally dried at room temperature, homogenized, ground manually, and passed through
a 0.2-mm mesh sieve. The physical and chemical properties of soils are shown in Table 1.

2.2. Adsorption Experiments
2.2.1. Kinetic Experiment

Briefly, 200 mg/L Sb (III) and Sb (V) solutions were prepared at room temperature
(25 ◦C). The ionic strength was adjusted to 0.01 mol/L with KCl solution, because KCl
did not react with Sb solutions and existed in the natural groundwater. Then, the pH of
the solution was adjusted to 4 with NaOH and HCl to simulate groundwater conditions
at contaminated sites. Hence, 2.0000 g of soils were added to a 50 mL plastic centrifuge
tube. To control soil/water ratio at 1:10, 20 mL of the solution was added to the centrifuge
tube, and the samples were shaken at a constant temperature, respectively. After 0.17, 0.33,
0.5, 1, 3, 5, 8, 24, 36, 48, 72, and 120 h shaking, the centrifuge tubes were taken out and
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centrifuged at 4000 r/min for 20 min. After filtration, Sb concentrations in the filtrations
were determined using ICP-OES (Agilent, Palo Alto, CA, USA).

Table 1. Physical and chemical properties of the studied soil samples.

Soil Categories Soil 1 Soil 2

pH 8.19 8.61
CEC (cmol/kg) 47.35 14.45

SOM (g/kg) 24.96 4.53
BET surface area (m2/g) 14.07 6.52

Pore volume (cm3/g) 0.0199 0.0117
Pore size (nm) 5.646 7.172

Particle sizes
<0.002 mm 45.3%

0.002–0.02 mm 50.1%
>0.02 mm 4.6%

<0.002 mm 1%
0.002–0.02 mm 13.3%

>0.02 mm 85.7%

The experimental results were fitted using the first-order kinetic model and the second-
order kinetic model to study the adsorption mechanism of Sb (III) and Sb (V) on soils in
Equations (1) and (2), which are given below [37,38]:

Qt = Qe

(
1− e−k1x

)
(1)

Qt =
Qe

2k2x
1 + Qek2x

(2)

where Qt (mg/kg) and Qe (mg/kg) are the adsorption capacity at time t and equilibrium,
respectively; k1 (h−1), k2 (kg/(mg·h)) are the rates of the first-order kinetics and the second-
order kinetics, respectively; t (h) is the adsorption time.

2.2.2. Isothermal Experiment

Briefly, 1, 5, 10, 30, 50, and 100 mg/L Sb (III) and Sb (V) solutions were prepared at
room temperature (25 ◦C). Then, 2.0000 g of soils were added to a 50 mL plastic centrifuge
tube. The pH adjustment, KCl concentration, soil/water ratio, and shaking time were the
same as in Section 2.2.1.

Langmuir and Freundlich models were used to fit the isotherm adsorption experimen-
tal results.

The Langmuir isotherm adsorption model is:

Qe =
QmKLCe

1 + KLCe
(3)

where Qm (mg/kg) is the maximum adsorption capacity; KL (L/kg) is the adsorption
equilibrium constant; Qe (mg/kg) and Ce (mg/L) are the adsorption capacity on the solid
phase and the equilibrium concentration in the suspension.

The Freundlich isotherm adsorption model is:

Qe = KFC1/nF
e (4)

where KF ((mg/kg)/(mg/L)1/nF) is the Freundlich affinity coefficient, which is related to
the adsorption capacity; nF is a constant, 1/nF is considered as an indicator of the strength
of the adsorption group; Qe (mg/kg) and Ce (mg/L) are the adsorption capacity on the
solid phase and the equilibrium concentration in the suspension.

2.2.3. Error Functions

The residual root mean square error (RMSE) and the average relative error (ARE) were
employed in the error functions:



Int. J. Environ. Res. Public Health 2022, 19, 4254 4 of 15

The RMSE is: √√√√ 1
n− 2

n

∑
i=1

(Qe,exp −Qe,cal)
2 (5)

The ARE is:
n

∑
i=1
|
Qe,exp −Qe,calc

Qe,exp
| (6)

where Qe,exp is the observed adsorption capacity; Qe,cal is the calculated values of different
models; n is the number of observations in the experimental data.

The smaller the RMSE value and ARE value, the better the curve fitting [39].

2.2.4. The Effects of pH on Sb Adsorption

Briefly, 200 mg/L Sb (III) and Sb (V) solutions were prepared at room temperature
(25 ◦C). The pH of the solution was adjusted to 4, 7, and 10 with NaOH and HCl. Hence,
2.0000 g of soils were added to a 50 mL plastic centrifuge tube. The KCl concentration,
soil/water ratio, and shaking time were the same as in Section 2.2.1.

2.3. Soil Analysis and Characterization

Soil pH was measured according to the standard method (NY-T 1377-2007, China)
using a pH meter (S210-S, Mettler Toledo, Greifensee, Switzerland). Cation exchange
capacity (CEC) was determined according to the standard method (NY-T 295-1995, China)
using an atomic absorption spectrophotometer (PinAAcle 900 Z) to measure the absorbance
of Ca and Mg, with the wavelength 422.7 nm 285.2 nm, respectively. Organic matter (OM)
was measured according to the standard method (NY-T 1121.6-2006, China). The pore size,
pore volume, and specific surface area of soil particles were measured using automatic
specific surface and porosity analyzer BET (ASAP2460, Micromeritics Instrument Corp.,
Atlanta, GA, USA), respectively. Sb speciation was analyzed using Tessier sequential
extraction. The particle sizes were measured using sieves and hydrometers (NY/T 1121.3-
2006).

The samples were sprayed with gold and scanned by the electron microscope (ZEISS
Gemini 300, Zeiss, Germany) with X-ray spectrometer (Oxford Xplore, Abingdon, UK).
The pictures were used to observe the comparison of the surface morphology the Sb dis-
tribution of soil particles before and after adsorption. X-ray photoelectron spectroscopy
(XPS) was used to detect the changes in surface Sb valence of soil particles before and after
the absorption.

3. Results and Discussion
3.1. The Adsorption Behaviors of Sb onto Soils
3.1.1. The Effects of Contact Times on Adsorption Behaviors of Sb

As shown in Figure 1, the adsorption capacity of Sb onto two soils increased rapidly
with time within 8 h, which was in the fast adsorption stage. Then, the adsorption capacity
of Sb increased slowly after 8 h. After 24 h, the adsorption of Sb (III) gradually reached
equilibrium. After 72 h, the adsorption of Sb (V) gradually reached equilibrium. In addition,
the adsorption rate of Sb onto soil 1 was greater than that of soil 2, but the adsorption
capacity of Sb onto soil 1 was smaller than that of soil 2. The clay colloid percentage of
soil 1 was higher, which means soil 1 had more specific surface area and adsorption sites,
which led to a higher adsorption rate than soil 2 in the rapid adsorption stage [31,35].
The equilibrium adsorption capacity might be related to the presence of calcium oxide,
aluminum oxide, iron oxide, and manganese oxide [34,40–44].
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3.1.2. The Effects of Initial Concentration on Adsorption Behaviors of Sb

As shown in Figure 2, with the increase of the initial concentration, more ions appeared
in the solution for the exchange reaction, which increased the adsorption capacity of the
soils at equilibrium. The adsorption capacity of Sb (III) in soils was higher than that of
Sb (V) at equilibrium. In addition, the difference between the equilibrium adsorption
capacity of Sb (III) and Sb (V) gradually increased.
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3.1.3. The Effects of pH on Adsorption Behaviors of Sb on Soils

As shown in Figure 3, Sb (III) existed as neutral molecules such as Sb (OH)3, H3SbO3,
or HSbO2 in the pH range of 2–10.7 and existed as SbO+ or Sb (OH)2

+ under strong acid
conditions [45]. In a strong alkaline environment, it existed as SbO2

− or Sb (OH)4
−, and

only as Sb3+ under extremely acidic conditions. Sb (V) existed as Sb (OH)6
−, H2SbO4

−, or
SbO3

− under weak acid, neutral, and alkaline, and it would exist in the form of SbO2
−

under strong acid conditions.
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The pH of groundwater is between mildly acidic to neutral. The adsorption capacities
of Sb (III) and Sb (V) under pH = 4, 7, and 10 are shown in Figure 4. Under pH = 7,
The adsorption capacities of Sb onto soils were lowest. When pH ranged between 4 and
10 in the solution, Sb (III) usually existed as neutral molecules, and the following reaction
equilibrium existed in the solution [46]:

Sb(OH)3(aq) + H2O(l) ↔ Sb(OH)−4(aq) + H+
(aq) (7)
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The experimental results of Sb (III) were better fitted using Langmuir and Freundlich
isotherm adsorption models and pseudo first order kinetic model (Section 3.2), indicating
that the adsorption processes were chemical adsorption. It has been shown that Sb (III)
is strongly adsorbed on goethite over a pH range of 3–12 [36]. When pH increased from
4 to 10, the equilibrium adsorption capacity of Sb (III) did not change significantly, while it
was relatively small in neutral solution, due to the low background ionic strength in the
solution, while H+ and OH− concentrations were low. Although Sb (III) existed in the form
of stable neutral molecules, various factors, including colloidal particles, amorphous iron
oxides, calcium oxides, and organic matter, were affected by pH value, which inhibited the
adsorption reaction. In general, pH changes had little effect on Sb adsorption, which was
related to the existence of Sb in the form of neutral molecules in the pH range of 2–10.7 [46].

Sb (V) existed in the anion forms of Sb (OH)6
−, H2SbO4

−, or SbO3
− at pH = 4, 7,

and 10 [46]. The adsorption was usually due to diffusive limitations at the soil interface
due to electrostatic repulsion, slow solid state diffusion of the initially metal adsorbed
surface, slow surface precipitation and adsorption kinetic barriers, or a combination of the
above [47]. As pH increased, the ion concentrations increased. In addition, the adsorption
of Sb onto soil particles was more competitive with ions. On the other hand, the surface
potential of soil particles decreased and the electrostatic repulsion increased with the
decreasing of the electrostatic attraction of anions [48]. Therefore, when pH gradually
increased, the equilibrium adsorption capacity of Sb (V) gradually decreased.

3.2. The Adsorption Mechanism of Sb onto Soils
3.2.1. Adsorption Kinetic Experiments

The results are shown in Table 2 and Figure 5. Through the error analysis, the ARE
and RMSE values of the first order kinetic model were lower than those of the second order
kinetic model. In the fitting first order kinetic model, R2 for Sb (III) was above 0.90, and
R2 for Sb (V) was above 0.82. These results indicated that the first order kinetic model
could better describe the adsorption of Sb onto soils. Previous studies showed that the
adsorption of Sb onto kaolinite was consistent with the first order kinetic model and the
second-order kinetic model [49]. In Figure 5, the adsorption of Sb is mainly divided into
a fast and slow adsorption stage, respectively. The adsorption of Sb (III) and Sb (V) onto
the surface of soil mineral colloids was related to the surface hydroxyl groups, which
combined with oxygen to form internal spherical complexes [40,50,51]. At the beginning of
the adsorption, the initial concentration of Sb was high, and the soils had more adsorption
sites, which led to the high adsorption rate. As the reaction progressed, the adsorption sites
in soils decreased, the adsorption process gradually became a diffusion process, and thus
the adsorption rate decreased [52]. Within 8 h of the adsorption, the adsorption rates of
Sb (III) and Sb (V) by soil 1 were higher than that of soil 2. The differences might be related
to soil texture. Soil 1 had smaller particles, larger specific surface areas, more adsorption
sites, and high organic matter contents, leading to a faster adsorption. The adsorption
reaction of Sb (III) and Sb (V) reached equilibrium within 48 h, but the time for Sb (III) to
reach equilibrium was shorter. The equilibrium adsorption capacities of Sb (III) in soil 1
and soil 2 were 1314.46 mg/kg and 1359.25 mg/kg, respectively, while the equilibrium
adsorption capacities of Sb (V) were 415.65 mg/kg and 553.97 mg/kg, respectively. Besides
that, the limiting factor of the Sb adsorption rate was related to the diffusion of adsorbate
molecules on the interface. The electrostatic attraction and repulsion on the surface of the
adsorbent were related to the potential binding capacity of the adsorbent surface and the
surface chemical reaction.
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Table 2. Sb (III) and Sb (V) adsorption kinetic model parameters.

Soil Sample Valence State
First Order Kinetic Model Second Kinetic Model

Qe k1 R2 ARE RMSE Qe k2 R2 ARE RMSE

soil 1
Sb (III) 1314.46 8.72 0.934 0.782 95.95 1354.07 0.013 0.969 0.927 118.66
Sb (V) 415.65 0.17 0.828 3.875 61.15 445.69 5.76 × 10−4 0.887 6.955 129.77

soil 2
Sb (III) 1359.25 2.88 0.872 1.370 150.69 1416.86 0.003 0.943 2.364 257.30
Sb (V) 533.97 0.09 0.870 4.380 69.80 606.06 1.78 × 10−4 0.916 9.733 177.77
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3.2.2. Adsorption Isotherm Experiments

The results are shown in Table 3 and Figure 6. In general, the adsorption isotherm
describes how adsorbates interact with adsorbents. The isotherm described by the Lang-
muir model was a progressive line that gradually tended to be gentle with the increase of
concentration. The adsorption surface was assumed to be the ideal smooth surface, and
only single layer adsorption occurred. This model could describe chemical adsorption
well [53]. Different from the Langmuir model, the isotherm described by the Freundlich
model showed an infinitely rising trend, and it was assumed that the adsorbent surface
was heterogeneous and the active adsorption sites were unevenly distributed [53]. Figure 6
shows the Langmuir and Freundlich adsorption isotherms of Sb (III) and Sb (V). Table 1
shows the fitting parameters of Sb (III) and Sb (V) adsorption isotherms. Both models
had good fitting results on Sb (III) and Sb (V), and R2 was above 0.97. Through the error
analysis, the ARE and RMSE values of the Langmuir model were similar to the Freundlich
model. The KL value of soil 1 was greater than that of soil 2, and the KL value of Sb (III)
was greater than that of Sb (V). The results indicated that two soil samples have good
affinity for Sb (III). The KF value in the Freundlich model was related to the adsorption
affinity, which indicated that the larger the KF value, the better the adsorption effect [54].
The KF value of soil 1 was greater than that of soil 2, and the KF value of Sb (III) was
greater than that of Sb (V). In addition, 1/nF was slightly less than 1, which belonged to
the “L-shaped” adsorption isotherm, which implied that the adsorption capacity increased
with the equilibrium concentration and finally tended to equilibrium [55]. For Sb, it was
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a multilayer adsorption on heterogeneous surfaces with different affinities on the soils.
Anastasia reported similar results in that the adsorption data of Sb (III) and Sb (V) onto
hydrous Al Oxide and clay minerals including kaolinite could be well fitted with either
Freundlich or Langmuir isotherms [40].

Table 3. Sb (III) and Sb (V) isothermal adsorption fitting parameters.

Soil Categories Valence State
Langmuir Model Freundlich Model

Qm KL R2 ARE RMSE KF nF R2 ARE RMSE

soil 1
Sb (III) 6949.72 0.009 0.975 7.192 40.52 61.55 1.019 0.974 6.522 42.23
Sb (V) 2285.78 0.019 0.984 3.991 18.76 43.26 1.090 0.981 4.292 21.50

soil 2
Sb (III) 12981.87 0.005 0.979 7.529 36.13 55.21 0.989 0.979 6.483 36.58
Sb (V) 3564.77 0.010 0.980 4.396 19.41 38.88 1.082 0.999 5.476 21.05
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3.3. The Transformation of Chemical Species of Sb in Soils

The Tessier sequential extraction results are shown in Figure 7. Previous studies
showed that the water soluble, carbonate-bound, and exchangeable fractions of heavy
metals can be directly absorbed and utilized by plants [56]. The organic -bound fractions
cannot be easily used and the residual fractions were almost unusable by organisms. After
being absorbed for 120 h in soil 2, Sb (III) and Sb (V) mainly existed in the residual fractions,
followed by carbonate-bound and water-soluble fractions. Organic matter contents in soil 2
were less than 0.5%, while in soil 1 they were about 2.5%. The proportion of carbonate-
bound and water-soluble fractions of Sb in soil 1 was similar to soil 2, but its percentages of
organic-bound and Fe/Mn-bound fractions in soil 1 were higher than in soil 2. Moreover,
SEM/EDS results indicated that iron and manganese were not detected in soil 2 but could
be determined in soil 1. The following reactions might occur [46]:

2Fe(OH)3(s) + Sb(OH)3(aq) → 2Fe(OH)2(s) + H3SbO4(aq) + H2O(l) (8)
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3.4. Insight into the Adsorption Behaviors of Sb on Soils

Under a soil/water ratio of 1:10 and the initial Sb concentration of 2000 mg/L, the
element distribution on soil surfaces scanned by SEM mapping are shown in Figure 8.

It can be seen that the particles of soil 1 in the original soil were significantly smaller
than those of soil 2. In addition, the contents of Al and Si in soils were relatively high with
a lower content of Ca, Mg, Fe, and Sb. The distribution position of Sb in the original soil
coincided with Ca. In addition, those particles might be made up of calcium antimonite
minerals, such as Ca [Sb (OH)6]2 and Ca2Sb2O7.

After the adsorption of Sb (III) and Sb (V), it could be clearly seen that the Sb was
more sporadically distributed and its distribution areas increased, indicating that Sb was
adsorbed onto the soils. Similar to the original soil, the distribution areas of Sb in the
Sb adsorbed soils still highly overlapped with the distribution of Ca and had no obvious
association with the distribution of Fe, Al, and Mg. The results can be explained by the
following chemical adsorption reaction [57,58]:

Sb(OH)3 + 3H2O = 2e− + 3H+ + Sb(OH)−6 (9)

Ca2+ + Sb(OH)−6 = CaSb(OH)+6 (10)

To better understand the adsorption behavior of Sb, its surface chemical binding
states in soils were analyzed through XPS results. It was clearly seen from Figure 9 that
before Sb (III) and Sb (V) adsorption, XPS spectrums of soil 1 and soil 2 could be divided
into Sb3d5 at the peak of 530.7 ev. After the adsorption, the XPS spectrum of the soils
could be deconvoluted into Sb3d3 and Sb3d5, representing Sb (III) and Sb (V) at the peaks
of 530.7 ev and 540.1 ev. The results implied that the redox reactions might accompany
the changes in Sb valences during the adsorption. The reduction of Sb (V) to Sb (III) in
soils has been shown to occur with the ferrous iron [59], while the oxidation is enhanced
by Fe/Mn oxyhydroxides present in natural soils [46] and the reactive oxygen species
(ROS), including hydroxyl (·OH), peroxyl radicals (·ROO), hydrogen peroxide (H2O2), and
superoxide radical anion (·O2

−) in groundwater [60]. Besides, pH had an effect on the
redox rate of Sb [31,35,36].
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3.5. How to Understand the Migration and Transformation of Sb between Soil and Groundwater

Naturally occurring geochemical processes in mineral phases associated with rock,
soils, and sediments of unsaturated zones and aquifers are directly linked with contamina-
tion levels and the migration of Sb in the soil and groundwater system [46]. Sb is usually
adsorbed and desorbed in soil and groundwater and achieves valence transition through
redox on the surface of soil particles [61]. The transformation of mobile forms of Sb is
predominantly controlled by naturally occurring adsorption and precipitation processes.
Organic matter, soil colloid, as well as iron, aluminum, and manganese oxyhydroxides
have been recognized as naturally occurring Sb sequestrating agents in the environment.
Sb mobility is also affected by its co-precipitation with alkali metals, which results in the
formation of stable mineral phases, such as calcium antimonates and tripuhyite [34,40–44].
In Ca rich environmental mediums, such as calcareous soils and alkaline waste materials,
calcium antimonates (Ca1+xSb2O6OH2–2x and Ca[Sb(OH)6]2) as the main chemical com-
position of roméite minerals are suggested as an important sink for Sb [62]. Moreover, in
some industrial waste systems, the solubility product of a hydrated calcium antimonate
indicated the formation of Sb bearing precipitates [63]. These mineral phases can further
prevent Sb migrating from shallower to deeper strata. Thus, it was difficult for Sb to
follow groundwater to migrate over long distances. From the previous studies above, Sb
sequestered in a solid might form on calcite surfaces through the precipitation process in
two soils, which contributes to the majority of the whole Sb sequestration. The interface
reactions can be schematically represented as follows [42]:

CaCO3 + H+ → Ca2+ + HCO−3 (11)

Ca2+ + Sb(v) → Ca− Sb(v) (12)

4. Conclusions

Sb pollution in soils and groundwater pose a threat to human health. Thus, a better
understanding of the mobility, fate, and transportation of Sb in soils and groundwater
is crucial to establishing a sustainable Sb mitigation on a regional scale. In this study,
the adsorption characteristics of Sb in two soils were fitted using two adsorption kinetic
models and two isotherm adsorption models. Among these, the first order kinetic model
fitted the better kinetic results with the analysis of R2 and error functions. In addition,
the maximum adsorbed amount of Sb was found to be close to the actual values. The ad-
sorption isotherm could be better described by Langmuir and Freundlich models, revealing
that the reaction process was a chemisorption. Besides, pH has little effect on Sb adsorption.
Combined with SEM and XPS analysis, the result showed that the adsorption behavior of
Sb onto soils was mainly related to Ca bearing minerals, which resulted in the formation of
calcium antimonates. This work may provide new insight into Sb adsorption onto soils,
as well as a theoretical guide for studies on the adsorption and migration behavior of Sb in
the soil and groundwater system.
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