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Zanthoxylum bungeanum pericarp is a commonly used herbal medicine in China with effects of anti-inflammatory and analgesic,
improving learning and memory ability, while hydroxy-α-sanshool (HAS) is the most important active ingredient of Z. bungeanum
pericarps. The purpose of this study was to investigate the neuroprotective effect of HAS and its related possible mechanisms using
a H2O2-stimulated PC12 cell model. CCK-8 assay results showed that HAS had a significant protective effect on H2O2-stimulated
PC12 cells without obvious cytotoxicity on normal PC12 cells. Flow cytometry and fluorescence microscope (DAPI staining and
DCFH-DA staining) indicated that HAS could reduce the H2O2-induced apoptosis in PC12 cells via reduction of intracellular
ROS and increase of mitochondrial membrane potential (MMP). Subsequently, results of malondialdehyde (MDA), superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) determination suggested that HAS could increase the
enzyme activities of SOD, CAT, and GSH-Px whereas it could decrease the MDA contents in H2O2-stimulated PC12 cells.
Furthermore, the western blotting assays showed that HAS could upregulate the expressions of p-PI3k, Akt, p-Akt, and Bcl-2,
while it could downregulate the expressions of cleaved caspase-3 and Bax in H2O2-stimulated PC12 cells. Collectively, it could
be concluded according to our results that HAS possesses protective potentials on H2O2-stimulated PC12 cells through
suppression of oxidative stress-induced apoptosis via regulation of PI3K/Akt signal pathway.

1. Introduction

Increasing evidences have revealed that oxidative stress is
closely related to neurodegenerative diseases, such as Parkin-
son’s disease and Alzheimer’s disease. In the body, excessive
reactive oxygen species (ROS) is commonly considered the
main cause corresponding to oxidative stress [1–3]. ROS,
such as hydrogen peroxide (H2O2), superoxide anions, and
hydroxyl radicals, can stimulate cells which cause structural
damage including lipid peroxidation and DNA and protein
oxidation, promote oxidative stress, and disrupt the redox
balance of the body, as well as change the normal function
and morphology of cells [4]. There are a variety of antioxidant
systems in cells, while the synergistic antioxidant effect is
mainly achieved by eliminating intracellular ROS to prevent
oxidative damage to the body [5]. In fact, oxidant/antioxidant

levels are critical for neurodegeneration or neuroprotection, in
which enzymes such as superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GSH-Px) constitute the
key antioxidant defenses [6]. Excessive ROS not only is closely
related to mitochondrial dysfunction but also can increase
intracellular Ca2+ concentration and activate some intracellu-
lar apoptotic pathways. Among them, the PI3K/Akt signaling
pathway is closely correlated to it, which is also involved in the
changes of Bcl-2 family proteins and the activation of caspase
family proteins [7].

It is no doubt that herbal medicines are beneficial for
treating various diseases with low toxic and side effects.
Zanthoxylum bungeanum, belonging to the Rutaceae family,
is a known medicinal plant widely distributed in China. Z.
bungeanum pericarp is a known spice in China and widely
used in cooking because of its unique fragrance and taste
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[8, 9]. According to the Compendium of Materia Medica, it
can be used to treat various diseases such as vomiting, path-
ogenic wind, and toothache [10, 11]. In addition, modern
pharmacological and phytochemical evidences have found
that essential oil in Z. bungeanum pericarps has a variety
of pharmacological effects, including antitumor effects,
anti-inflammatory effects, and antibacterial and insecticidal
activities [12–16]. In addition, the unsaturated fatty acid
amides in Z. bungeanum pericarps, such as hydroxy-α-san-
shool (HAS), hydroxy-β-sanshool, and hydroxy-γ-sanshool,
also have wide-spectrum pharmacological activities, includ-
ing hypolipidemic and hypoglycemic effects and anti-
inflammatory and neurotrophic effects [17, 18]. Further
studies have also shown that HAS has an antioxidant effect
and can improve scopolamine-induced learning and mem-
ory impairments in rats [19, 20]. Consequently, we specu-
lated that HAS may have neuroprotective potentials, and
the present study was aimed at investigating the protective
effect of HAS and its related possible mechanisms using a
H2O2-stimulated PC12 cell model.

2. Materials and Methods

2.1. Materials and Chemicals. Hydroxy-α-sanshool (HAS)
(purity was higher than 98%) used in the present study was
isolated from the Z. bungeanum pericarps and supplied by
the PUSH Bio-Technology (Chengdu, China). Fetal bovine
serum (FBS) and horse serum (HS) were purchased from the
Hyclone Co. (Logan, UT, USA). H2O2 was purchased from
Chengdu Chron Chemicals Co. Ltd. (Chengdu, China).
RPMI-1640 culture medium, phosphate-buffered saline
(PBS), and 0.25% trypsin-EDTA (1x) were purchased from
Gibco Co. (Grand Island, NY, USA). Dimethyl sulfoxide
(DMSO), cell counting kit-8 (CCK-8), BCA protein assay
reagents, and primary antibodies for Bcl-2, Bax, and cleaved
(C) caspase-3 were purchased from Boster Biol. Tech.
(Wuhan, China). Primary antibodies for PI3K, phosphoryla-
tion- (p-) PI3K, AKT, and p-AKT were obtained from the
ImmunoWay Biotechnology Co. (Suzhou, China). The assay
kits for DCFH-DA, MDA, and SOD and horseradish peroxi-
dase- (HPR-) conjugated secondary antibody were purchased
from the Beyotime Institute of Biotechnology (Haimen,
China). The assay kits for LDH, CAT, and GSH-PX were pur-
chased from the Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). The 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetra-
ethyl-imidacarbocyanine iodide (JC-1) was obtained from
the Jiangsu KeyGen Biotech. (Nanjing, China). All other
reagents used in the experiments were of analytical grade.

2.2. Cell Culture and Treatment. The PC12 cells were pur-
chased from Wuhan Pu-nuo-sai Life Technology Co. Ltd.
(Wuhan, China) and used throughout the study. PC12 cells
were cultured in RPMI-1640 medium containing 5% FBS
(v/v), 5% horse serum, penicillin (100 units/mL), and strepto-
mycin (100μg/mL) at 37°C in a humidified atmosphere of
5% CO2. Cells were subcultured twice a week, and only those
in the exponential growth phase were used in experiments.

PC12 cells were pretreated with different concentrations
of HAS (15, 30, and 60μM) for 2 hours and then incubated

with 90μM H2O2 for another 4 hours. The control group
was administered with the same amount of 1640 medium
and then stimulated with H2O2. HAS was solubilized with
DMSO and subsequently diluted in culture medium with
the final concentration of DMSO less than 0.1% (v/v).

2.3. Determination of Cell Viability. Cell counting kit-8 was
used to test cell activity. Before the formal experiment, the
cytotoxicity of HAS on PC12 cells was first investigated.
Briefly, PC12 cells were cultured in 96-well plates with 1 ×
104 cells per well and incubated with PC12 cells with 6.5-
120μM of HAS for 24 hours. Subsequently, CCK-8 solution
was added to each well and cells were kept in a humidified
atmosphere of 5% CO2 at 37

°C for 1 hour. Finally, the optical
density (OD) values at 450mm were measured by a micro-
plate reader (Bio-Rad, Hercules, CA, USA). After that,
PC12 cells were pretreated with different concentrations of
HAS (7.5-120μM) for 1-4 hours and then incubated with
90μM H2O2 for another 4 hours to select the optimal work-
ing concentration of HAS for the further experiments.

After selecting the optimal time and concentration of
HAS, the cells were incubated at 37°C for 24 hours, pretreated
with HAS (final concentrations in the well were 15, 30, and
60μM) for 2 hours, and then stimulated with H2O2 (final con-
centration was 90μM) for 4 hours. The control group was
administered with the same amount of 1640 medium, while
the positive group was incubated with 100μM vitamin C
and then stimulated with H2O2.

2.4. Nuclear Staining with DAPI. PC12 cells were seeded in 6-
well plates with a density of 1 × 105 per well. The cells were
incubated at 37°C for 24 hours and pretreated with HAS
(final concentrations in the well were 15, 30, and 60μM) or
100μM vitamin C for 2 hours and then stimulated with
H2O2 (final concentration was 90μM) for 4 hours. Subse-
quently, the cells were washed twice with PBS and then fixed
with 10% paraformaldehyde in each well. After fixation, the
cells were stained with DAPI solution, incubated at room
temperature for 5min, and then washed three times with
PBS. Finally, the staining of the cells was observed under a
fluorescence microscope (Olympus, IX-83, Tokyo, Japan).

2.5. Apoptosis Assay by Flow Cytometer. For the apoptosis of
PC12 cells, the Annexin V/FITC kit was used. The cells were
incubated in 6-well plates with a density of 1 × 105 per well
and given different concentrations of HAS (final concentra-
tions in well were 15, 30, and 60μM) or 100μM vitamin C
and H2O2 as described above. Subsequently, cells were col-
lected and washed twice with PBS at 4°C, while the supernatant
was removed by centrifugation. At the final concentration,
the cells were suspended with 500μL binding buffer and
incubated with 5μL Annexin V-FITC and 5μL PI for 15
minutes at room temperature; then a FACSCanto II Flow
cytometer (BD Company, New York, NY, USA) was used
to detect cell apoptosis.

2.6. Assessment of Mitochondrial Membrane Potential. The
decrease of intracellular mitochondrial membrane potential
(MMP, ΔΨm) can be used as an important indicator of mito-
chondrial dysfunction, JC-1 is commonly considered as an
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ideal probe to evaluate ΔΨm. At a hyperpolarized membrane
potential, JC-1 aggregates in the mitochondrial matrix to
form polymers that emit red fluorescence; while when it is
at the depolarized membrane potential, JC-1 only emits
green fluorescence as a monomer. Therefore, the fluores-
cence transformation will directly reflect the ΔΨm changes.
Consequently, in our present study, PC12 cells were seeded
in 6-well plates and treated as described in the individual
experiment, then incubated with JC-1 at 37°C in the dark
for 15min. After washing the cells twice with PBS, the cells’
fluorescence was measured by a using a laser confocal
microscopy (Leica, SP8 SR, Wetzlar, Germany).

2.7. Detection of Intracellular ROS Accumulation in PC12
Cells. In an oxidized environment, DCFH-DA can be trans-
formed into green fluorescent DCFH in the cell and the intra-
cellular ROS could be monitored by fluorescent probe
DCFH-DA. Briefly, cells were incubated in 6-well plates with
different pretreatment or stimulation. Subsequently, the
supernatant was removed and cells were incubated with
DCFH-DA (10μM) for 20min at 37°C in a dark environ-
ment and followed by washing for three times with PBS.
Intracellular ROS was analyzed by measuring the fluores-
cence intensity of DCF with a FACSCanto II Flow cytometer
(BD Company, New York, NY, USA).

2.8. Determination of MDA, SOD, GSH-Px, and CAT in
H2O2-Induced PC12 Cells. The cells were incubated in 6-
well plates and given different concentrations of HAS and
H2O2 as described above. The supernatants were removed;
then cells were washed with PBS for three times. Subse-
quently, the cells were lysed by lysis buffer, which was col-
lected and centrifuged to obtain the total cell protein.
Protein concentrations, MDA level, and activities of SOD,
GSH-Px, and CAT were determined using commercial assay
kits according to the manufacturer’s instructions.

2.9. Western Blotting Assay. After treating as described in the
individual experiment, cells were harvested and total proteins
were extracted using RIPA lysis buffer. The protein concentra-
tions were determined using BCA protein assay reagents; sub-
sequently, the total protein (30μg) was separated by 12% SDS-
PAGE, then transferred to the PVDF membrane. After block-
ing by sealing fluid (5% skimmed milk), the PVDFmembrane
was incubated overnight with diluted primary antibodies of C-
caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt (dilution
1 : 1000), respectively, at 4°C. Subsequently, the PVDF mem-
brane was incubated with HPR-conjugated secondary anti-
body (1 : 5000) at room temperature for 1 hour. Finally, the
protein bands were stained with ECL detection kits, and β-
actin was used as the internal reference. Image analysis soft-
ware ImageJ (version 1.51, National Institutes of Health,
MD, USA) was used for gray analysis.

2.10. Determination of Cell Viability after the Inhibition of
Signaling Pathway. To further examine the role of the
PI3K/Akt signaling pathway in HAS protecting PC12 cells
from H2O2 stimulation, we used a chemical inhibitor
LY294002 to inhibit the expression of the PI3K/Akt signaling
pathway by CCK-8. In this part, the HAS group was incu-

bated with 60μM HAS and 90μM H2O2, and the HAS
+LY294002 group was pretreated with 20μM LY294002 for
1 hour and then incubated 60μM HAS and 90μM H2O2,
while the LY294002 group was only treated with LY294002
and H2O2.

2.11. Statistical Analysis. Data are presented as the mean ±
standard deviations (SD). Statistical comparisons except the
seizure rate were made by Student’s t-test or one-way analy-
sis of variance (ANOVA) using GraphPad Prism 5 software
(GraphPad Software Inc., La Jolla, CA). P < 0:05 was consid-
ered the significant level.

3. Results

3.1. HAS Protects the Cell Viability of H2O2-Stimulated PC12
Cells. As can be seen from the Figure 1(b), HAS at the con-
centration ranging from 7.5 to 120μMhad no obvious effects
on the viability of PC12 cells and the viability of all groups
was approximate. In addition, CCK-8 assay results showed
that 90μM H2O2 treatment could significantly decrease the
viability of PC12 cells, making them 40% lower than the nor-
mal group (P < 0:01) (Figures 1(a) and 1(d)). What is more, it
can be seen from Figure 1(c) that the optimal working time
for HAS was 2 hours. Importantly and interestingly, pretreat-
ment with HAS (15, 30, 60, and 120μM) for 2 hours could
significantly concentration-dependently increase the cell via-
bility of H2O2-stimulated PC12 cells, compared to the con-
trol PC12 cells (P < 0:01) (Figures 1(a) and 1(d)).

3.2. HAS Suppresses Apoptosis in H2O2-Stimulated PC12
Cells. To evaluate the apoptosis of PC12 cells, DAPI staining
and flow cytometric assay with Annexin V-FITC/PI staining
were utilized. As shown in Figure 2(a), nuclear morphologi-
cal changes of the H2O2-stimulated PC12 cells were exam-
ined by staining with cell permeable DNA dye DAPI. For
normal PC12 cells, PC12 cells were alive and the cell nucleus
was round and intact with faint DAPI staining. However,
after stimulation with 90μMH2O2 for 2 h, nuclear shrinkage
or condensation and improved brightness could be obviously
observed in the cell nucleus, indicating characteristic apopto-
tic features appeared. Interestingly, pretreatment with
100μM vitamin C or HAS (15, 30, and 60μM) significantly
attenuated the apoptosis induced by H2O2 in PC12 cells,
compared to the control PC12 cells. Besides that, we also
found the protective effect of 60μM HAS was approximated
to 100μM vitamin C.

Moreover, the further results of flow cytometric assay also
confirmed the DAPI staining experiment. After induction with
90μMH2O2, the apoptosis rate of PC12 cells sharply increased
to 48.74% compared with the normal group 2.21% (P < 0:01).
However, pretreatment with 100μM vitamin C or different
concentrations of HAS (15, 30, and 60μM) for 2 hours signif-
icantly improved the apoptosis induced by H2O2 stimulation
(P < 0:01) with an obvious concentration-dependent manner,
compared to the control PC12 cells (Figure 2(b)).

Besides, we also used JC-1 probe to detect the loss of ΔΨm
in PC12 cells exposed to H2O2. ΔΨm was determined accord-
ing to the green/red fluorescence ratio in PC12 cells. As shown
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in Figure 3, after incubation with 90μMH2O2 for 2h, the green
fluorescence of the PC12 cells increased sharply, and the ratio
of green/red fluorescence became more than 80%. All of these
indicated an obvious decline of ΔΨm. However, pretreatment
with 100μM vitamin C or HAS (15, 30, and 60μM) reversed
the green/red ratio significantly, while 60μM HAS could
exploit the advantages to the full (Figure 3). All the above
results suggested that HAS could significantly suppress H2O2-
stimulated apoptosis in PC12 cells.

3.3. HAS Decreases the H2O2-Stimulated ROS Generation in
PC12 Cells. Results of the above studies revealed that HAS
could suppress H2O2 stimulation-induced apoptosis in
PC12 cells. Importantly, cells stimulated by H2O2 will pro-
duce excessive ROS, which is also an important cause of cell
apoptosis [5, 21]. To investigate the possible mechanisms for
the antiapoptotic effects of HAS on H2O2-induced PC12
cells, we determined the ROS generation in PC12 cells. We
used the fluorescence probe DCFH-DA to further explore
whether HAS could prevent H2O2-stimulated ROS genera-
tion and resulting oxidative stress. As can be seen from the
Figure 4, it was found that when the cells were exposed to
90μM H2O2, the ROS produced in the cells increased

sharply, compared to the normal cells (P < 0:01). However,
pretreatment with 100μM vitamin C or HAS (15, 30, and
60μM) significantly reduced the intracellular ROS accumu-
lation in H2O2-induced PC12 cells, compared to the control
cells (P < 0:01).

3.4. HAS Enhances the Activities of ROS Scavenging Enzymes
in H2O2-Stimulated PC12 Cells. Intracellular MDA, SOD,
GSH-Px, and CAT are commonly used biomarkers for the
evaluation of the oxidative stress level of cells or tissues
[21–23]. Thus, to clarify whether HAS protects PC12 cells
from H2O2 induced damage through antioxidant action or
not, we studied the effect of HAS on MDA production and
activities of ROS scavenging enzymes (SOD, GSH-Px, and
CAT) in H2O2-stimulated PC12 cells. As shown in
Figure 5, an extremely significant increase in MDA was
observed in PC12 cells exposed to 90μM H2O2 for 2 hours
(P < 0:01), compared to the normal cells. However, this
growth trend was greatly alleviated by pretreatment with
100μM vitamin C or HAS (15, 30, and 60μM) for 2 hours
(P < 0:01), compared to the control cells. On the other hand,
the amount of antioxidant enzymes including SOD, GSH-Px,
and CAT is reduced sharply in H2O2-stimulated PC12 cells
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Figure 1: Protective effects of HAS on the cell viability of H2O2-stimulated PC12 cells. (a) The represented cell morphology of PC12 cells with
different treatment (×100). (b) Effects of HAS on cell viability of normal PC12 cell. (c) Effects of HAS on cell viability of H2O2-induced PC12
cells under different concentration and time. (d) Effects of HAS pretreatment for 2 hours on cell viability of H2O2-induced PC12 cells. HAS:
hydroxy-α-sanshool; Norm.: normal. The values were represented as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group.
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(P < 0:01), compared with the normal cells. At the same time,
the content of the three enzymes can be increased to different
degrees by incubating the cells with HAS for 2 hours
(P < 0:01). All the above results indicate that HAS treatment
might be beneficial for protecting PC12 cells from the H2O2-
caused damage through enhancement of activities of ROS
scavenging enzymes.

3.5. HAS Regulates the Expressions of Caspase-3, Bax, and
Bcl-2 in H2O2-Stimulated PC12 Cells. In order to explore
the molecular mechanism for antiapoptotic effects of HAS
on H2O2-stimulated PC12 cells, western blotting assays were
carried out to detect the expressions of caspase-3, Bax, and
Bcl-2 in cells. The Bcl-2 family proteins are key regulatory
factors in mitochondrial-mediated apoptosis, which are
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Figure 2: Effects of HAS on apoptosis in H2O2-stimulated PC12 cells. (a) Apoptotic assay by DAPI staining and observed under a 100x
microscope. (b) Apoptotic assay by flow cytometry. Vitamin C (100 μM) was used as the positive control. The values were represented as
the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group.
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divided into two categories: proapoptotic proteins (Bax, Bim,
Bak, etc.) and antiapoptotic proteins (Bcl-2, Bcl-xl, Mcl-1,
etc.) [24]. As shown in Figure 6(a), compared to the normal
cells, 90μM H2O2 stimulation significantly downregulated
the antiapoptotic protein of Bcl-2 in PC12 cells (P < 0:01),
while upregulating the proapoptotic proteins of Bax and
cleaved casepase-3 (P < 0:01). However, the present results
also showed that HAS (15, 30, and 60μM) and 100μM vita-
min C could reverse abovementioned changes and upregu-
lated Bcl-2 (P < 0:01) whereas they could downregulate
caspase-3 in H2O2-stimulated PC12 cells (P < 0:01), com-
pared to the control cells. Besides these, Bax could be down-
regulated by treatment with 100μM vitamin C or HAS at
the concentrations of 30 and 60μM in H2O2-stimulated
PC12 cells (P < 0:01), compared to the control cells.

3.6. HAS Regulates the Expressions of PI3K, p-PI3K, Akt, and
p-Akt in H2O2-Stimulated PC12 Cells. The PI3K/Akt signal
pathway is essential for the survival of neurons related to sup-
pression of apoptosis [25]. In our present results as shown in
Figure 6(b), it was found that expressions of Akt, p-Akt, and
p-PI3K in PC12 cells were significantly decreased after stim-

ulation with H2O2 for 2 hours (P < 0:01), compared to the
normal cells. However, pretreatment with HAS (15, 30, and
60μM) and 100μM vitamin C significantly upregulated the
p-Akt and p-PI3K in PC12 cells (P < 0:01), compared to
the control cells. Besides, pretreatment with HAS (30 and
60μM) could also significantly upregulate Akt in H2O2-stim-
ulated PC12 cells (P < 0:01), compared to the control PC 12
cells, while PI3K expression difference was not statistically
significant. These results suggested that HAS may possess
protective potentials on H2O2-stimulated PC12 cells via the
PI3K/Akt pathway.

To further explore whether the PI3K/Akt pathway is the
key in the protective effect of HAS, we used a chemical inhib-
itor LY294002 to inhibit the expression of the PI3K/Akt sig-
naling pathway. As shown in Figure 7, after incubation with
90μM H2O2, the viability of PC12 cells dropped to nearly
40%; the LY294002 group was approximated to it. Besides
that, the HAS group could increase the viability of PC12
cells to 60%, while the HAS/LY294002 group just
increased a little. All of these data showed that HAS pos-
sessed protective potentials on H2O2-stimulated PC12 cells
via the PI3K/Akt pathway.
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Figure 5: Effects of HAS on SOD, GSH-Px, MDA, and CAT in H2O2-stimulated PC12 cells. The levels of MDA and activities of SOD, CAT,
and GSH-Px were determined by commercial assay kits. PC12 cells were treated with vitamin C (100 μM) or HAS (15, 30, and 60 μM) for 2 h,
subsequently subjected to H2O2 (90 μM) for 4 h. The values were represented as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group.
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4. Discussion

Hydroxy-α-sanshool (HAS) is a promising natural monomer
of unsaturated fatty acid amide isolated from the Z. bungea-
num pericarps with lots of bioactivities, such as hypolipidemic

and hypoglycemic effects, improving learning and memory
effects. As part of our continuing research on this compound,
to the best of our knowledge, the present study provides the
first evidence that HAS can protect PC12 cells from H2O2-
induced damage through the suppression of apoptosis.
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Figure 6: Effects of HAS on protein expressions of caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt in H2O2-stimulated PC12 cells. PC12
cells were treated with HAS (15, 30, and 60μM) or 100 μM vitamin C for 2 h, subsequently subjected to H2O2 (90 μM) for 4 h. Protein
expressions of caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt were determined by western blotting, and β-actin was used as the
internal reference. The values were represented as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group.
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Previous researches revealed that PC12 cell, a rat photo-
chromogenic cell line, has some neuronal characteristics and
similar physiology and pathology of the nerve cells, and in addi-
tion, H2O2 possesses high cell membrane transmittance; conse-
quently, H2O2-stimulated PC12 cells commonly considered an
ideal cell model for studying pathology and screening candidate
drugs of neurodegenerative diseases, such as Alzheimer’s dis-
ease (AD) and epilepsy [26–28]. Thus, the PC12 cell line was
selected as the experimental cell model in our present study.
According to relevant research, many free radicals are generated
during the development of neurodegenerative diseases, and
some of the reactive oxygen species (ROS) can cause oxidative
damage to nerve tissues and eventually lead to apoptosis or even
necrosis of neurons [29, 30]. Therefore, ROS play an important
role in the apoptosis caused by oxidative stress. As an important
member of the ROS family, H2O2 can easily cross cell mem-
branes to generate hydroxyl radicals, which are highly toxic
and can cause serious damage to cells and attack biomolecules,
ultimately leading to apoptosis or necrosis [31–33]. Therefore,
in this study, H2O2 was used to stimulate PC12 cells to simulate
the occurrence and development of neurodegenerative diseases
caused by oxidative stress. According to CCK-8 assay, after
stimulation with H2O2, cell viability of the PC12 cells decreased
by 60%; however, pretreatment with HAS reversed the decrease
of cell viability induced by H2O2.

For the neurodegenerative diseases, the excessive ROS
can lead to direct oxidative damage of molecules, followed
by cell dysfunction and apoptosis [5, 34]. Our present inves-
tigation found that H2O2 stimulation resulted in excessive
ROS accumulation in PC12 cells, and interestingly, HAS pre-
treatment could decrease the excessive ROS in PC12 cells
caused by H2O2. Malondialdehyde (MDA), a product of lipid
peroxidation, would be significantly increased when exposed
to oxidative stimulation, which is also considered a bio-
marker of oxidative stress and also causes damage to the cell

membrane [22, 23]. In addition, there are various ROS scav-
enging enzymes in living organisms, among which the most
important are the superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GSH-Px). Under physi-
ological conditions, they jointly maintain the redox balance
in the body [35]. In vivo, SOD can catalyze the conversion
of superoxide anions into H2O2, GSH-Px can reduce toxic
peroxides to nontoxic hydroxyl compounds, and CAT can
promote the further conversion of H2O2 into oxygen and
water [36, 37]. According to our results, H2O2-stimulated
PC12 cells produced excessive MDA, accompanied by signif-
icantly decreased activity of SOD, GSH-Px, and CAT. Inter-
estingly, pretreatment with HAS can decrease the MAD
level whereas it can increase the activities of SOD, GSH-Px,
and CAT in stimulated PC12 cells. In previous reports, exces-
sive intracellular ROS produced by mitochondria could also
lead to mitochondrial dysfunction through oxidative stress-
induced apoptosis, and MMP is a sensitive indicator of mito-
chondrial function [38, 39]. In our results, after H2O2 stimu-
lation, significant apoptosis and reduced cell survival as well
as declined ΔΨm can be found in PC12 cells. In addition,
intracellular ROS accumulation increased after H2O2 stimu-
lation, which further promoted the loss of ΔΨm. Besides, as
expected, H2O2-induced cell apoptosis events in PC12 cells
can be blocked by pretreatment with HAS. All these results
suggested that HAS might be beneficial for protecting
H2O2-stimulated PC12 cells from ROS-induced apoptosis.

Currently, increasing evidences have suggested that the
PI3K/AKT signal pathway plays a crucial role in cell survival
and development as well as ROS-induced cell apoptosis [40,
41]. In addition, the PI3K/AKT pathway shows significant
antioxidant activity in central and peripheral neurons and
can be considered a potential therapeutic target for neurode-
generative diseases, participating in the cellular protective
mechanism of ROS-induced cell damage [39]. AKT is a
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serine/threonine kinase activated by recruitment to the
plasma membrane and is a key mediator of PI3K-mediated
signal transduction [42, 43]. As is shown in Figure 8, the
direct results of PI3K phosphorylation is the phosphorylation
of AKT, which further affects the expression of Bcl-2 and Bax
proteins. Bcl-2 and Bax are a group of proteins closely related
to mitochondrial mediated apoptosis, among which the anti-
apoptotic protein Bcl-2 is a channel protein located on the
mitochondrial membrane, which can inhibit the proapopto-
tic effect of Bax [44]. Activated p-AKT increased the expres-
sion of Bcl-2 and decreased the expression of Bax. In normal
PC12 cells, these entire proteins in this signal pathway would
be in a dynamic balance [45]. Our results showed that HAS
pretreatment could upregulate the proteins of PI3K/Akt sig-
naling (p-PI3K, Akt, and p-Akt) and antiapoptotic proteins
of Bcl-2, whereas it could downregulate the apoptotic pro-
teins (caspase-3 and Bax), compared to the PC12 without
HAS treatment.

5. Conclusion

In summary, our study suggested that the hydroxy-α-san-
shool (HAS) possesses protective potentials on H2O2-stimu-
lated PC12 cells by suppression of oxidative stress-induced
apoptosis through the regulation of the PI3K/Akt signal
pathway. Our results provide scientific evidences that HAS
might be considered in the development of a new drug for
treating neurodegenerative diseases related to excessive apo-
ptosis induced by oxidative stress.
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