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Abstract

Background: Sanitary quality of recreational waters worldwide is assessed using fecal indicator bacteria (FIB), such
as Escherichia coli and enterococci. However, fate and transport characteristics of FIB in aquatic habitats can differ
from those of viral pathogens which have been identified as main etiologic agents of recreational waterborne
illness. Coliphages (bacteriophages infecting E. coli) are an attractive alternative to FIB because of their many
morphological and structural similarities to viral pathogens.

Methods: In this in situ field study, we used a submersible aquatic mesocosm to compare decay characteristics of
somatic and F+ coliphages to those of infectious human adenovirus 2 in a freshwater lake. In addition, we also
evaluated the effect of ambient sunlight (and associated UV irradiation) and indigenous protozoan communities on
decay of somatic and F+ coliphage, as well as infectious adenovirus.

Results: Our results show that decay of coliphages and adenovirus was similar (p = 0.0794), indicating that both of
these bacteriophage groups are adequate surrogates for decay of human adenoviruses. Overall, after 8 days the
greatest log;o reductions were observed when viruses were exposed to a combination of biotic and abiotic factors
(292 +0.39, 448 +0.38, 3.40 + 0.19 for somatic coliphages, F+ coliphages and adenovirus, respectively). Both,
indigenous protozoa and ambient sunlight, were important contributors to decay of all three viruses, although the
magnitude of that effect differed over time and across viral targets.

Conclusions: While all viruses studied decayed significantly faster (p < 0.0001) when exposed to ambient sunlight,
somatic coliphages were particularly susceptible to sunlight irradiation suggesting a potentially different mechanism
of UV damage compared to F+ coliphages and adenoviruses. Presence of indigenous protozoan communities was
also a significant contributor (p value range: 0.0016 to < 0.0001) to decay of coliphages and adenovirus suggesting
that this rarely studied biotic factor is an important driver of viral reductions in freshwater aquatic habitats.
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Introduction

Bacteriophages have a long history of use as model or-
ganisms in the realm of molecular biology such as the
investigation of the transfer of genes, mechanisms of
gene repression and activation, and various gene therapy
applications [1]. While bacteriophages have been the
subject of research efforts for many years [2, 3], there
has been a renewed interest in recent years for practical
applications in both public and environmental health
arenas. In addition to a growing interest in using bacte-
riophages as tools to combat antibiotic resistant bacteria
[4-7], there has been a recent effort to develop recre-
ational water quality criteria for Escherichia coli infecting
bacteriophages (i.e. somatic and F+ coliphages) [8].

Coliphages have been used routinely in many monitor-
ing programs (e.g. ground water, aquaculture practices,
water reuse, biosolids) [9—11] and rationale for their in-
clusion in recreational water quality assessment [8, 12] is
that their persistence in aquatic habitats can more
closely resemble that of viral pathogens because of many
morphological and structural similarities [13]. While
sanitary quality of recreational waters is routinely
assessed through enumeration of fecal indicator bacteria
(FIB, such as E. coli and enterococci), recent reports
identifying viral pathogens as leading causes of recre-
ational waterborne diseases outbreaks [14—17] combined
with known differences in fate and transport between
FIB and viruses [18-23] highlights the need to evaluate
suitability of viral indicators to predict pathogen decay
in environmental waters.

Although removal of FIB and viruses through primary
and secondary wastewater treatment processes is similar
[24-27], viruses are reported to display a greater resili-
ence to wastewater disinfection practices compared to
FIB [28-31], allowing them to enter recreational waters
through treated wastewater discharge. In contrast, others
have shown that reduction of coliphages and viral patho-
gens through wastewater treatment processes is compar-
able [18, 32] suggesting that they are similarly affected
by exposure to different physical and chemical stressors
(e.g. chlorination, UV, peracetic acid, etc). While fre-
quent co-occurrence of coliphages and viral pathogens
in environmental waters [33—39], often in the absence of
FIB, implies a similar response to various biotic and
abiotic environmental stressors, field studies examining
this are rare.

Some studies investigating drivers of decay for both
coliphage and viral pathogens have suggested that their
response to certain environmental stressors is similar.
For example, both groups tend to persist longer at lower
temperatures [40—43] and in freshwater as compared to
marine waters [44—46]. On the other hand, while decay
of infectious coliphages is accelerated when exposed to
ambient and simulated sunlight [44, 47-51], the
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response of pathogenic viruses is more ambiguous
[50-52] and possibly influenced by laboratory meas-
urement strategies (infectious viruses enumerated on
mammalian cell cultures versus molecular approaches
such as qPCR enumerating viral nucleic acids) [52, 53].
Even less is known about the potential effect of biotic
stressors, such as protozoan predation, on decay of both
coliphages and viral pathogens. Greater decay in the pres-
ence of indigenous microbiota has been demonstrated for
FIB and some bacterial pathogens [54—57], but analogous
information is needed for viruses.

Factors impacting viral persistence in natural systems
are difficult to simulate, necessitating an experimental
design that closely mimics natural conditions. To ad-
dress these research gaps, we employed a submersible
aquatic mesocosm (SAM) to study decay of coliphages
(somatic and F+) and infectious adenoviruses in a fresh-
water lake under in situ conditions. We also investigated
the effect of indigenous protozoan communities and am-
bient sunlight to better understand the biotic and abiotic
factors impacting the decay of viruses in natural aquatic
environment.

Materials and methods

Experimental design

Ambient water (~15L) was collected from William H.
Harsha Lake (Batavia, OH: 39.0252°N, - 84.1303° W).
Immediately after collection, 50% of the sample was
passed through a 0.80 pm filter to remove indigenous
protozoa. Filtration of water to remove protozoa is a
common method and more effective than other tech-
niques such as chemical treatments [58-62]. To
minimize any changes in microbial populations, filtered
and unfiltered water was stored in dark at 4 °C until the
beginning of the experiment (<48 h). In order to closely
mimic ambient conditions by in situ incubation (at Wil-
liam H. Harsha Lake), a SAM was used to conduct the
study. The SAM was constructed as previously described
[54, 63—66] and samples were contained using regener-
ated cellulose dialysis bags (75 mm flat width, 13-14 kD
pore size molecular weight cut-off, Spectrum Labs,
Rancho Dominguez, CA). The first day of the experi-
ment, both filtered and unfiltered ambient water was
spiked with somatic and F+ coliphages and adenovirus
and stirred for 15 min to ensure proper distribution of
the spikes within the sample. Measured portions of ei-
ther spiked filtered or spiked unfiltered ambient water
(200 mL) were used to fill each dialysis bag. One half of
the dialysis bags containing each water type was attached
at the top portion (approximately 2-5cm below the
water surface for the light exposure treatment), while
the other half was placed at the bottom portion (ap-
proximately 25-30 cm below the water surface under-
neath the heavy-duty black plastic tarp for shaded
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treatment). For the study, four different treatments were
as follows: A: exposure to ambient sunlight and indigen-
ous microbiota including protozoa (top level, unfiltered
water), B: exposure to indigenous microbiota including
protozoa, (bottom level, unfiltered water), C: exposure to
ambient sunlight only (top level, filtered water) and D:
exposure to neither variable (bottom level, filtered
water). During each sampling event, triplicate dialysis
bags for each treatment were processed for the enumer-
ation of somatic and F+ coliphages, as well as infectious
adenovirus (as described below). Concentrations of all
viruses were obtained immediately after the inoculum
preparation (day 0) and after one and eight days of ex-
posure. Two additional time points (days 3 and 5) were
processed for both coliphage types.

Bacteriophage enumeration

Somatic and F+ coliphage were enumerated using
double agar layer (DAL) procedure, as previously de-
scribed [67]. If necessary, decimal dilution series were
prepared using 1X phosphate buffered saline solution
(PBS: 0.0425 g/L KH,PO, and 0.4055 g/L of MgCl,; pH
7.2 Sigma Aldrich, St. Louis, MO). Briefly, 1 mL of sam-
ple was added to 5mL of “molten” top tryptic soy agar
(TSA) layer (0.7% agar) containing 0.1% of appropriate
antibiotic stock solution (100 pg/ mL nalidixic acid for
somatic and 15 pg/ mL streptomycin/ampicillin for F+
coliphage) (Fisher Scientific, Waltham, MA), followed by
addition of 200 ul of appropriate E. coli host (CN-13
ATCC#700609 [somatic] of Fu, ATCC#700891 [F+],
American Type Culture Collection, Manassas, VA) in
mid-log growth phase. The soft agar overlay mixture
was mixed and poured on bottom agar TSA plates (1.5%
agar and containing 0.1% of appropriate antibiotic stock
solution). Plates were incubated at 37°C for 16-18 h.
The following day characteristic plaque forming units
(PFU) for each coliphage type were enumerated and data
were expressed as PFU per 1 ml. Method blank (sample
substituted with 1X PBS) and media sterility negative
controls were performed on each day of the experiment.
For the duration of the study, no plaques were observed
on any of the negative controls indicating absence of
contamination.

Adenovirus enumeration

Human lung cells (A549, ATCC® CCL-185) were propa-
gated in Dulbecco’s Minimum Essential Medium
(DMEM high glucose with HEPES, Greiner, Monroe,
NC) supplemented with 10% fetal calf serum (Fisher Sci-
entific) and 1% sodium pyruvate (Fisher Scientific) under
5% CO, atmosphere and at 37 °C. Test cultures of A549
cells were planted and grown to 90% confluency for 4
days in 25 cm? filter capped flasks at 37 °C using a main-
tenance medium (as described above) except: 1) the
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addition of antibiotic-antimycotic solution (1% Vv/v,
Fisher Scientific) and 2) reduced fetal calf serum amount
of 2% v/v. Prior to inoculation with samples, test cul-
tures were washed with 10 mL of Earle’s Balanced Salt
Solution per flask (EBSS, Fisher Scientific) supplemented
with 1% antibiotic-antimycotic solution. Decimal dilu-
tion series of samples were created using 1X PBS and
five replicate flasks per dilution were utilized. In
addition, ten negative control flasks (containing 10 mL
of 1X PBS instead of the sample) were ran with each
sample batch. Following inoculation, flasks were placed
on a rocker for 90 min to allow for viral attachment/in-
fection to occur. Flasks were then supplemented with
10 mL of maintenance medium and incubated at 37°C
for 3 weeks [68]. During the incubation time, flasks were
examined weekly for the formation of cytopathic effects
(CPE). Concentrations of adenovirus were estimated
using EPA’s Most Probable Number (MPN) calculator
Version 2.0 (https://cfpub.epa.gov/si/si_public_record_
report.cfm?Lab=NERL&dirEntryld=309398).  Resulted
are reported as MPN per 1 mL.

Virus spike preparation

Primary treated wastewater was collected from a local
wastewater treatment plant and used as a source of som-
atic and F+ coliphages. Briefly, 10 mL of wastewater was
syringe filtered (0.22 um pore size) and added to 100 mL
of mid-log culture of appropriate E. coli host. The inocu-
lated host cultures were incubated at 37 °C for 16-18 h,
followed by centrifugation (3800 x g, 15 min) and syringe
filtration (0.22 pm pore size). The resulting coliphage
stocks were titered using DAL as described above and
stored in dark at 4 °C until the beginning of the experi-
ment (~ 24 h).

Human adenovirus 2 (ATCC® VR-846) was obtained
from ATCC and propagated in A549 cells to generate
higher titers. Briefly, A549 cells were infected with
adenovirus as described above for the samples. Following
the development of CPE (typically in < a week), cells
underwent three freeze-thaw cycles, followed by centri-
fugation at 2500 x g for 30 min to pellet cellular debris.
The supernatant was syringe filtered (0.22 um pore size),
titered (as described above for cell culture samples) and
stored in dark at 4°C until the beginning of the
experiment.

Visible light and temperature measurements

For the duration of the study, hourly light intensity
(lum/ft?) and temperature (°C) measurements were re-
corded at both upper and lower SAM levels using
HOBO® UA 002-08 data loggers (Onset Computer
Corporation, Bourne, MA). The temperature at the top
level (16.67 +1.18°C) was slightly higher (paired t-test,
p =0.0394) compared to the bottom level 16.59 + 0.88 °C),
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but the light intensity was considerably greater (paired t-
test, p < 0.0001) at the top (54.34 + 146.73 lum/ft>) com-
pared to the bottom level (9.47 + 19.15 lum/ft?).

Data analysis

All concentration data were log;o transformed prior to
data analyses. Log;o reductions were calculated by sub-
tracting concentrations obtained on day “n” (where “n”
represents days 1, 3, 5 or 8) from concentration at the
beginning of the experiment (day 0). GraphPad Prism
version 7.01 (GraphPad Software, La Jolla, CA) was used
to conduct a two-way analysis of variance (ANOVA with
interactions) with Tukey’s multiple comparison test to
evaluate the effects of two factors (indigenous micro-
biota including protozoa and sunlight) on decay. This
software was also used to conduct the paired t-tests,
one-way ANOVA and Pearson product momentum
correlation to assess significant differences in light
temperature measurements, across different virus mea-
surements and to identify potential correlations trends
in decay patterns, respectively.

Results

Decay characteristics in freshwater environment

Overall, average log;y reduction on days one and eight
for all treatments was greatest for adenovirus (1.48 +
0.99), followed by F+ (0.79 £ 1.53) and somatic (0.61 +
1.21) coliphages, although these differences were not
statistically significant (p =0.0794). After 8 days, expos-
ure to sunlight and indigenous microbiota (Treatment
A) resulted in the greatest decay for all three organisms
(log1o reductions of 2.92 +0.39, 4.48 +0.38, 3.41+0.19
for somatic coliphages, F+ coliphages and adenovirus,
respectively) (Table 1, Figs 1, 2 and 3). Exposure to sun-
light only (Treatment C) resulted in log;, reductions of
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2.31+0.20, 1.17 £ 0.01 and 1.54 + 0.24 for somatic co-
liphages, F+ coliphages and adenovirus respectively,
while shaded treatments (Treatments B and D) typic-
ally yielded the least decay (log;y, range: 0.05-1.11)
(Table 1, Figs 1, 2 and 3). Decay pattern of all viruses
was strongly correlated (r* range: 0.754—0.881, p value
range: 0.0002 -<0.0001), although it was the most
noticeable for F+ coliphage and adenoviruses (r*=
0.881, p <0.0001).

Effect of experimental variables on decay of somatic
coliphages

After 1 day of exposure, neither variable (ambient sunlight
and protozoan grazing) had a significant effect on decay,
and log;o reductions for all treatments were negligible.
Over the course of the next 48 h (day three), unfiltered
treatments containing indigenous protozoa exhibited
greater decay (log;, reduction values: 1.17 +0.04 and
1.40 + 0.12; (Treatments A and B, respectively) compared
to filtered treatments (< 1 log;o reduction; Treatments C
and D) (Table 1, Fig. 2). While presence of protozoa was
the only significant variable affecting decay at day three
(Table 2) and contributing ~ 86% to variation in the data
set, the interaction between variables was also significant
(p=0.0026) indicating that the effect of protozoa was
dependent on sunlight exposure (Table 2). Forty-eight
hours later (day five), effects of protozoa began to dimin-
ish (Fig. 1, Table 1), and sunlight irradiation became the
dominant factor affecting the decay (log;o reduction
values: 1.34+0.17 and 1.66 +0.19 and for Treatments A
and C, respectively) and contributing ~ 94% to the ob-
served variation in decay (Table 2). At day eight, which
was the final time point, solar irradiation continued to be
the dominant factor (~ 95% contribution to the observed
variability in the dataset) and was the only influential

Table 1 Log, reduction values for somatic coliphage, F+ coliphage and adenovirus. Treatments: A (exposure to sunlight and
indigenous microbiota including protozoa), B (exposure to only indigenous microbiota including protozoa), C (exposure to sunlight

only), D (exposure to neither)

Organism Time point Treatment
A B @ D

Somatic 1 -0.10+0.17 —0.20+0.09 —-0.09 + 0.05 -0.13+0.13
3 117 £ 004 140+0.12 081 +0.05 0.70 + 0.04
5 134 +£0.17 0.18 £0.02 1.66 +0.19 020+ 0.13
8 292 +039 0.05+0.03 232+0.20 0.14 + 0.00

F+ 1 —0.06 = 0.10 —0.10£0.21 —0.08 + 0.08 012+ 0.18
3 162 +0.22 1.14+£0.17 0.88 + 0.09 1.00 + 0.14
5 3.16 £ 0.11 -0.06+0.18 065+ 0.11 029 +0.15
8 448 + 038 0.19+0.05 1.17 £ 001 039 +0.15

Adenovirus 1 0.81 £ 0.00 1.23° 1.04 £ 051 099 £ 120
8 341 +£0.19 1.00+0.22 1.54 +0.24 111 +£0.10

Single sample
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Fig. 1 Effect of treatment variables on changes in somatic coliphage concentrations over time. Error bars represent standard deviation.
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Fig. 2 Effect of treatment variables on changes in F+ coliphage concentrations over time. Error bars represent standard deviation. Treatments: A
(exposure to sunlight and indigenous microbiota including protozoa), B (exposure to only indigenous microbiota including protozoa), C
(exposure to sunlight only), D (exposure to neither)
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Fig. 3 Effect of treatment variables on changes in adenovirus concentrations over time. Error bars represent standard deviation. Treatments: A
(exposure to sunlight and indigenous microbiota including protozoa), B (exposure to only indigenous microbiota including protozoa), C
(exposure to sunlight only), D (exposure to neither)

variable (Table 2) causing the log;o reduction values of
2.92 +£0.39 and 2.32 +0.20 for Treatments A and C, re-
spectively (Table 1, Fig. 1).

Effect of experimental variables on decay of F+
coliphages

Similar to somatic coliphages, decay of F+ coliphages
was minimal within the first 24 h of exposure and nei-
ther variable had significant effect on decay (Tables 1

and 2, Fig. 2). At day three, 48 h later, exposure to indi-
genous microbiota had a significant effect on decay con-
tributing ~ 50% to the observed variations in the data set
with minimal interactions (Table 2).

The greatest decay occurred in Treatment A (exposure
to sunlight and biota; log;o 1.62+0.22), followed by
Treatment B (exposure to biota only; logg 1.14 +0.17)
and finally Treatments C and D (exposure to sun only
and exposure to neither variable; < 1.00 log;o reduction

Table 2 Two-way ANOVA with Tukey's post-hoc test of treatment effects during each time point. Statistically significant values are

bolded

Organism Time Sun Protozoa Interaction
%O;;St) p value % contribution® p value % contribution® p value % contribution®

Somatic 1 03330 11.03 0.5509 4.027 0.6883 1.799
3 0.1793 1.045 <0.0001 86.18 0.0026 8.913
5 <0.0001 94.13 0.0793 1.552 0.1092 1.248
8 <0.0001 95.28 0.0796 09771 0.0259 1.805

F+ 1 03738 7.364 0.2977 10.3 0.2033 15.93
3 0.0917 8448 0.0016 49.88 0.0130 23.26
5 <0.0001 49.63 <0.0001 18.06 < 0.0001 31.47
8 <0.0001 50.31 <0.0001 18.91 < 0.0001 24.13

Adenovirus 1 0.7955 1.843 0.9957 0.0008 0.7477 2.853
8 <0.0001 49.23 0.0001 18.86 < 0.0001 23.89

#Percent contribution to variability in the dataset
All of the boldface entries in Table 2 are significant at an alpha level of 0.05
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each) (Table 1, Fig. 2). Presence of protozoa continued
to significantly affect the decay of F+ coliphages at day
five, but its contribution to the variability was less (~
18%). Exposure to sunlight became a dominant sig-
nificant variable on day five, contributing nearly 50%
to the observed variation in the dataset (Table 2).
Overall, the greatest decay occurred for the treatment
containing both, indigenous protozoa and sunlight
(logio reduction: 3.16 + 0.11), indicating that the effect
of variables was co-dependent (Table 1). During the
final time point (day eight), the effect of both vari-
ables (as well as their interaction) continued to be
statistically significant and their contribution to the
decay remained similar to that at day five (p =0.0001;
Table 2). Decay continued to be the most pronounced
when F+ coliphage were exposed to both variables
(logio reduction Treatment A: 4.48 +0.38), followed
by exposure to sunlight only (log;y reduction Treat-
ment C: 1.43 £ 0.10) while the decay in the remaining
two treatments was negligible (Table 1, Fig. 2).

Effect of experimental variables on decay of infectious
adenovirus 2

Although decay data for adenovirus is limited, similar to
both coliphages, neither variable had a significant effect
on decay within the first 24h of exposure (Table 2,
Fig. 3). Over the course of 8 days, both sunlight and in-
digenous microbiota were significant factors contribut-
ing to the decay of adenovirus (Table 2, Fig. 3). Sunlight
was more important variable contributing nearly 50% to
the observed variations in the data set, followed by inter-
actions between the variables (~24%) and indigenous
biota (~19%) (Table 2). In sunlight treatments, adeno-
virus reduction in presence of protozoa (Treatment A)
was approximately 2 log;, greater compared to the re-
ductions in their absence (Treatment C) (3.41 £0.19 vs
1.54 £ 0.24) (Table 1, Fig. 3), whereas the reduction in
dark treatments was ~ 1 log;,

Discussion

Recent reports indicate that the majority of recreational
waterborne illnesses are caused by viral pathogens
[14-17]. As a result, routine monitoring of recre-
ational waters with FIB may not adequately represent
viral pathogen presence due [69], at least in part, to
different decay trends between these two groups [18].
Coliphages are an attractive alternative because they
have similar morphological characteristics to those of
many pathogenic viruses suggesting they can better
mimic their survival compared to FIB [70, 71]. Earlier
studies reported that somatic and F+ coliphages were
adequate surrogates for fate and transport of polio-
virus [72] and noroviruses [73], respectively. In this in
situ field study we used a SAM to compare the decay
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characteristics of somatic and F+ coliphages to that of
infectious adenovirus and to evaluate the effect of
ambient sunlight and indigenous protozoan communi-
ties on their decay.

The effect of ambient sunlight (and associated UV-A
and UV-B radiation) on decay of various indicators and
pathogens is likely one of the most commonly studied
abiotic environmental factors [74]. Briefly, the damage
caused by ambient sunlight can be classified into two
categories, direct and indirect based on the mode of ac-
tion [75]. Direct damage is caused by UV-B and it results
in a formation of pyrimidine dimers, while UV-A causes
indirect, photooxidative damage which can be exogenous
or endogenous depending on the location of free radicals
and reactive oxygen species [75]. Earlier studies noted
that the decay of infectious adenoviruses exposed to nat-
ural and simulated sunlight [50, 76, 77] was typically
greater than their corresponding qPCR signal [52, 53, 78]
in both marine and freshwaters. Similar findings were
observed for infectious somatic and F+ coliphages
[44, 50, 66, 76]. We also noted a strong influence of
ambient sunlight on decay of infectious coliphages
and adenovirus 2, especially after 5 days of exposure,
although it is worth noting that we used a singular,
laboratory propagated strain of adenovirus and that
indigenous, environmental strains may exhibit greater
resilience [79-81]. Furthermore, the effect of ambient
sunlight was more pronounced for somatic coliphages,
compared to F+ coliphages and adenoviruses. This is
consistent with previous studies [50, 66, 76, 82]
reporting a greater susceptibility of somatic coliphages
to sunlight compared to other viral groups. While ex-
posure to both UV-A and UV-B spectrum is detri-
mental, earlier studies investigating the mechanism of
sunlight action, suggest that indirect, photooxidative
damage may be the primary mechanism for adeno-
virus and F+ coliphages [44, 51, 76], while direct
damage caused by UV-B is the dominant mechanism
for somatic coliphages [44, 76]. However, additional
controlled, laboratory based mechanistic studies are
needed to confirm that the greater susceptibility of
somatic coliphages, as compared to F+ coliphages and
adenoviruses, to sunlight is due to differential decay
modes of action.

Ciliates and heterotrophic nanoflagellates are effective
grazers in the water column [83] and an important part
of microbial food webs in many different aquatic habi-
tats [84]. The abundance of these two groups in oligo-
mesotrophic waters, such as William H. Harsha Lake is
typically estimated to be between 10> and 10" cells per
mL [85, 86]. While the effects of protozoan predation
have been demonstrated for FIB and other bacteria in
field studies [54—56, 66], the role biotic interactions play
in decay of viruses is rarely explored. Laboratory feeding
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experiments demonstrated uptake of various adenovi-
ruses (serotypes 2, 11 and 41) by ciliate Euplotes octocar-
inatus [87] and a free-living amoeba, Acanthamoeba
castellanii [88], as well as adsorption of adenovirus 2 on
the surface of wild ciliates isolated from active sludges of
a wastewater treatment plant [87]. However, direct im-
munofluorescent antibody techniques were used to de-
tect adenoviruses inside and on the surface of the
protozoan cells [87, 88] and it is unclear whether the vi-
ruses were infectious. Laboratory decay studies con-
ducted in the dark and in the absence of indigenous
microbiota (autoclaved ground and river water) noted
extended persistence of infectious adenovirus 2 and 41
[89, 90], but the faster decay of infectious poliovirus type
1 was noted in the presence of indigenous microbiota
(compared to autoclaved controls) [91], suggesting that
indigenous microbiota play an important role in the
decay of infectious viruses.

Like adenovirus laboratory feeding experiments, a recent
report demonstrated macropinocytosis and digestion of
T4 coliphage in food vacuoles of ciliate Tetrahymena ther-
mophila [92], suggesting that active virophagy by proto-
zoans in environmental waters may be an important
mechanism for viral attenuation. Similarly, ingestion by
suspension feeding heterotrophic flagellates Thaumato-
monas coloniensis and Salpingoeca spp. (rather than
adsorption) was demonstrated for MS2 coliphage in
groundwater [93]. Furthermore, some studies suggest that
MS2 coliphage may be a source of nutrients for predatory
protozoa [93, 94], further supporting the notion that pre-
dation may be an important biotic factor influencing viral
decay. The limited number of field studies suggest that
the removal of enterophages (bacteriophages infecting
Enterococcus faecalis) [95] and F+ coliphages [96] is
greater in unamended lake and river waters compared to
the filtered and/or autoclaved controls, but decay of latter
group appears to be subgroup specific [96]. However, a
marine water in situ study showed a minimal effect of
indigenous microbiota on decay of somatic and F+ coli-
phages, as well as GB-124 bacteriophage infecting Bacter-
oides fragilis [66], suggesting that the effect of protozoan
communities on viral decay may be influenced by water
type (fresh versus marine).

We observed a significant reduction of infectious
adenovirus 2 and both coliphage groups (although it was
more pronounced for the F+ compared to somatic coli-
phage) in the presence of indigenous protozoa and
under the influence of ambient sunlight. This was espe-
cially pronounced after 3 to 5 days of exposure to indi-
genous protozoan communities, a trend that is
consistent with the time required for freshwater proto-
zoan communities to adjust to the influx of prey organ-
isms [97-99]. This finding suggests that indigenous
protozoa likely plays an important role in the decay of
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infectious viruses (indicators and pathogens alike), es-
pecially in freshwater habitats and in conjunction with
ambient sunlight, although the magnitude of that effect
is influenced by the time point and the viral target.
Future studies are needed to clarify the nature of
ecological interactions between protozoans and viruses
and to better characterize the interplay between sun-
light irradiation and impact of indigenous protozoa on
viral decay.

Conclusions

In summary, our results indicate that both somatic and
F+ coliphages decay at similar rates to infectious adeno-
viruses in a freshwater aquatic habitat. This finding im-
plies that their persistence in environmental waters
could be similar and that coliphages may be suitable sur-
rogates for adenovirus decay in these systems. Further-
more, while we show that the exposure to ambient
sunlight plays an important role in viral decay, its effect
was especially pronounced with somatic coliphages, sug-
gesting that the mechanism of action may differ among
the viruses studied. Lastly, our data suggests that proto-
zoans play an important role in the decay of somatic and
F+ coliphages and infectious adenoviruses in aquatic en-
vironments. While controlled laboratory-based studies
can provide important insights into the effect of environ-
mental factors on decay, additional field studies closely
mimicking natural conditions are warranted to better
characterize the interactions between indigenous proto-
zoan communities and infectious viral pathogens and
indicators.
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