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ABSTRACT: Metabolomics is becoming a mature part of analytical chemistry as evidenced by the growing number of publications
and attendees of international conferences dedicated to this topic. Yet, a systematic treatment of the fundamental structure and
properties of metabolomics data is lagging behind. We want to fill this gap by introducing two fundamental theories concerning
metabolomics data: data theory and measurement theory. Our approach is to ask simple questions, the answers of which require
applying these theories to metabolomics. We show that we can distinguish at least four different levels of metabolomics data with
different properties and warn against confusing data with numbers. This treatment provides a theoretical underpinning for
preprocessing and postprocessing methods in metabolomics and also argues for a proper match between type of metabolomics data
and the biological question to be answered. The approach can be extended to other omics measurements such as proteomics and is
thus of relevance for a large analytical chemistry community.

Metabolomics concerns the measurement of small
biochemical compounds (metabolites) in samples

obtained from biological systems or, in a broader context,
from samples that contain such metabolites (extracts from
natural foods, environmental samples, etc.). Such measure-
ments are subsequently used to infer relevant information
about the associated (biological) system related to a certain
research question.
Nowadays, there is a whole variety of metabolomics

measurements available which can be categorized either by
the type of instruments used (mostly liquid chromatography−
mass spectrometry (LC−MS), gas chromatography−mass
spectrometry (GC−MS), capillary electrophoresis−mass spec-
trometry (CE−MS), and NMR) or by the type of measure-
ment performed. The latter pertains to whether the measure-
ment is targeted to a certain number of (known) metabolites
or to an untargeted analysis in which also (many) unknown
metabolites are being measured. There are also methods which
are a combination of both. A typical pipeline for a
metabolomics study runs through different steps: formulating
a biological question, experimental design, sampling, measur-
ing, preprocessing the data, analyzing the preprocessed data,
visualization of results, and answering the biological question.1

An often neglected part of the above-mentioned pipeline is
the difference between numbers and data. This is a very
fundamental issue at the heart of any measurement. We will
explain this issue starting from asking a few very simple

questions about whether numbers in a metabolomics experi-
ment can be meaningfully compared to each other. To answer
these questions, we have to introduce two theories, namely,
data theory and measurement theory. After that, we will give
(partly) answers to the questions and try to come to a
synthesis. As a running example throughout this paper, we will
consider measuring lipids in blood using LC−MS.
The goals of this paper are (1) provide a theoretical

underpinning of preprocessing methods; (2) give guidelines
for a proper use of data analysis methods and propose
alternatives; (3) warn against conclusions which are not
supported by the (properties of) the data; (4) argue for a
proper match between data properties, biological question, and
data analysis method; and (5) creating awareness that numbers
(from an instrument) is not yet data.
In short, we provide a theoretical framework for thinking

about and dealing with metabolomics data. In a broader
context, we would like to create awareness that numbers are
not data, which is highly relevant in this era of Big Data. We
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will not discuss the specifics of the different preprocessing and
data analysis methods nor of related topics such as missing
data handling and measurement error. There are many papers
already discussing this. We invite the metabolomics practi-
tioners to apply our framework on their way of analyzing
metabolomics data.

■ SIMPLE QUESTIONS
We start by visualizing the numbers obtained from an LC−MS
experiment on lipids in blood (see Figure 1). The raw data can

be arranged in intensities obtained at a certain m/z value at a
certain retention time (rt), and the combined index rt.mz
indicates a column in the matrix containing the samples in its
rows. Looking at Figure 1, we can ask simple questions to what
extent the numbers are comparable, specifically:
(1) If A > C; does that have a meaning?
(2) If A > B; does that have a meaning?
(3) Does A − C have a meaning?
(4) Does A − B have a meaning?
(5) Does A/C have a meaning?
(6) Does A/B have a meaning?
which should be taken as examples, e.g., when A < C, then

question one has to change accordingly. Note that moving
from question one to three puts a higher demand on the
numbers, e.g., if A/C is meaningful then necessarily A > C must
have a meaning (but not vice versa!). This notion will be
formalized later.
The questions asked above are relevant for a subsequent

data analysis. Take the example of PCA (For a short
explanation of the methods, see the Supporting Information.),
the workhorse of metabolomics data analysis. The score-plots
of a PCA are usually interpreted in terms of distances between
dots representing the samples, where samples far apart are
regarded as very dissimilar and vice versa. However, scores are
linear combinations of the original variables (i.e., numbers),
and this assumes that for distances in scores plots to be
meaningful, at least also the original numbers should be
comparable (at least at the level of A−C). Similar reasonings
hold for loading plots and for the results of OPLS-DA and
other often used techniques. Hence, it makes sense to answer
the above posed questions.
Actually, there is even a more basic question to ask before

considering the simple questions: is it even meaningful to start
comparing the values A, B, and C? This question is key in the
field known as data theory. The next questions regarding at
which level comparisons are possible is the subject of
measurement theory. Therefore, both will be explained briefly

in the sequel. This paper will be mainly concerned with mass-
spectrometry based measurements; the case for NMR is a little
different and will be touched upon in the end.

■ DATA THEORY
A set of notions regarding comparability is called data theory
and was pioneered by Coombs2 and explained for multiway
analysis.3 The first important notion in data theory is
conditionality, where we can distinguish column-, row-, and
matrix-conditionality.
When considering numbers arranged in a matrix (such as in

Figure 1), then different types of comparisons can be made:
between numbers across rows in the same column (Figure 1,
between A and B) and between numbers across columns in the
same row (Figure 1, between A and C). When such data can be
compared meaningfully, the data are called column-conditional
and row-conditional, respectively. When data can be mean-
ingfully compared across rows and columns, then these data
are called matrix-conditional.
The prototypical example of row-conditional data are

metabolomics measurements of urine, e.g., using NMR.
Depending on the different urine histories of the subjects,
the urine can be more or less concentrated. This makes the
values within one column of a data matrix incomparable since
the (unknown) dilution factor of the subjects destroys the
comparability. The typical solution of this problem is found in
normalizing the different samples thereby attempting to
achieve matrix-conditionality. Whether this completely solves
the problem is a matter of debate and it also depends on the
research question. Actually, different types of metabolites are
differently excreted by the kidney: some are only excreted by
filtration, some are (partly) readsorbed, and readsorption is
achieved by different transporters, for example, one for acidic
amino acids, one for dibasic amino acids, one for neutral amino
acids.4 This could justify a normalization per certain metabolite
classes rather than normalizing all metabolites in the same
manner. Moreover, the type of normalization may also depend
on the type of sample, e.g, whether it originates from urine,
serum, or tissue. Discussing these issues further is beyond the
scope of this paper.
A more serious problem regarding comparability as

discussed in data theory is lack-of-invariance: the numbers in
a single column do not have the same meaning. This problem
is more fundamental than conditionality. Whereas in
conditionality, numbers cannot be compared since there are
(unknown) arbitrary differences, in lack-of-invariance the
meaning of the variables changes within a column. The
prototypical example is unsynchronized time series data (see
Figure 2, panel a). The time series of three subjects are
collected for multiple metabolites; in this figure, only one
metabolite is shown. The series are not synchronized, therefore
the measurements at, e.g., physical time point t4 cannot be
compared across subjects because they pertain to different
states of the biological process measured with the metabolite.
Hence, the meaning of the measurement at time point t4
changes and is not invariant.
A naive arrangement of the numbers is shown in Figure 2,

panel b). This is called naive since the lack-of-invariance is not
taken into account. A more accurate arrangement of the
numbers is shown in Figure 3 because now it is clear that each
subject has its own unique time points (see the subscript i on
the variables indicating time points). Obviously, the numbers
as shown in Figure 3 cannot be used as such. Remedies of this

Figure 1. Schematic of raw measurements of lipids in blood. Legend: i
is a row in the matrix; j is a column; A, B, and C are specific numbers
in the matrix; rt.mz is the retention time-mass spectrometry index.
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problem are found in alignment procedures (e.g., using
warping approaches5). After such an alignment of all
metabolites, assuming that this has solved the lack-of-
invariance problem, the numbers can be arranged in a three-
way array and analyzed with proper three-way methods such as
PARAFAC.6

It is important to realize that such lack-of-invariance
problems can also be solved by using data analysis methods
that do not require the numbers to be synchronized. One such
an alternative for the case of Figure 2 is to concatenate the data
sets per subject (time versus metabolites) in such a way that all
subject-matrices are stacked on top of each other with the
metabolites as the common mode. Then methods like
simultaneous component analysis (SCA)7 can be used. This
is one of the ways to solve the synchronization problems in
batch statistical process monitoring where the batches are also
not synchronized.8 Hence, the properties of the data have
repercussions on the methods that can be applied and the type
of biological questions that can be solved.

■ MEASUREMENT THEORY
After having established that a comparison between numbers is
meaningful, the next question is at what level this can be done.
This was pioneered by Stevens9 and later taken up and further
developed by several authors.10−13 A nice introduction is given
by Hand14 and a summary is given in Table 1 which is
explained briefly. In the Supporting Information, we give a
more formal treatment with an illustrative example.
The basic notion in measurement theory is that we want to

represent (properties of) a system by numbers, i.e., we want to
give a numerical representation of a system. The lowest
measurement level is nominal data which are merely
(exclusive) categories. Examples are different types of cars,

different countries, etc. The data are only used as class labels,
and these can be changed as long as each class receives a
unique other label. Hence, the permissible transformations, the
transformations between numerical representations that keep
the relationships in the corresponding system intact, are one-
to-one transformations. The type of statistics to be used for
this type of data are number of cases, frequencies, χ2-tests, etc.
The next level of measurement scale are ordinal data. The

prototypical example is survey data in which respondents can
score on certain issues using the answers strongly disagree,
disagree, neutral, agree, strongly agree. Obviously, there is an
order in these answers; and these answers can be labeled from
1 to 5. The difference between 2 and 1 on the one hand and
between 3 and 2 on the other hand, although exactly equal,
does not have a meaning. The system can also be represented
using a different set of numbers, e.g, 2, 4, 7, 8, 9, but the
transformation between the two numerical representations
needs to be monotonic. The type of statistics to be employed
are the ones for the lower-scaled measurement (i.e., nominal
data) and in addition median, interquartile range (IQR), etc.
Interval-scale data is the next level. An example is degree

Celsius where the numbers zero and hundred are arbitarily
chosen. Stated otherwise, this scale does not have a natural
zero and unit. This means that another scale (x′) can be used
with x′ = αx + β (α > 0), and this scale has the same meaning
for the system; an example is Fahrenheit where α = 9/5 and β
= 32. Nevertheless, the ratio of differences between values of
this scale has meaning in terms of the system, e.g., in using

calendar times =−
− 41980 1960

1945 1940
can be interpreted in a

meaningful way as the first period being four times as long
as the second one. However, the ratio = 21980

990
does not have a

meaning; 1980 is not twice as old as 990, hence, the name
interval-scale. In addition to statistics at the lower measure-
ment levels, means and standard deviations can be used
meaningfully for interval-scaled data.
The next level is ratio-scaled data with examples length and

weight. A ratio-scaled variable has no natural unit. Length can
be expressed in meters or centimeters, but it has a natural zero.
Hence, the permissible transformation is x′ = αx (α > 0). In
addition to the lower measurement levels, also coefficients of
variation can be used meaningfully for ratio-scaled data.
The highest degree of measurability is absolute scale data,

e.g., count data. Such data has a natural zero and a natural unit,
and the only permissible transformation is the identity. Apart
from the measurement levels mentioned above, there are still
other types of more exotic scales.10

When considering the simple questions, it is clear that
metabolomics measurements can have different measurement

Figure 2. Lack-of-invariance illustrated: (a) unsynchronized times
series of several subjects and (b) the naive arrangement of the
numbers.

Figure 3. Proper arrangement of the numbers whereby each
individual i receives its own time points.

Table 1. Formal Treatment of Types of Data Scalesa

scale-type example permissible transformations
permissible
statistics

nominal categories one-to-one number of cases
ordinal survey data monotonic median, IQR
interval degree

Celsius
positive linear transformation mean, standard

deviation
calender
time

x′ = αx + β (α > 0)

ratio length mass similarity transformation x′ =
αx (α > 0)

coefficient of
variation

absolute counts x′ = x all previous
aFor explanation, see the text.
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scales. It is certainly not always the case that metabolomics
measurements are measured on a ratio-scale. If simple
questions 1 and 2 are answered affirmative, then the data is
at least ordinal-scaled. If simple questions 3 and 4 are answered
affirmative, then the data is at least interval-scaled; and if
simple questions 5 and 6 are answered affirmative, then the
data is ratio-scaled. This will be explained in the next section.

■ LEVELS OF METABOLOMICS MEASUREMENTS
Level 0 Measurements: Raw Numbers. Given the

knowledge explained above regarding different aspects of
comparability, we now turn to the simple questions. The most
basic measurement readouts of an LC−MS measurement of
blood-lipids are shown in Figure 4a. This is simply a list of raw
intensities measured per sample in an LC−MS run arranged in
an rt.mz format and will be called level 0 numbers.

We can now start by answering the first simple question.
Suppose that A0 > C0: does that have a meaning? There are
two cases to consider. Case a, where the numbers pertain to
fragments of different metabolites (we do not consider trivial
cases of spurious signals due to noise). For this case, the
answer is that A0 > C0 has no meaning since the response
factors of both metabolites are different and at this point
unknown (see Supporting Information, Calibration Models).
Hence, these numbers do not reflect (relative) concentrations
within the system. Case b is shown in Figure 4b and pertains to
intensities of different fragments (this does not hold for
adducts; their ratios can depend on the concentrations). of the
same metabolite (and, thus, at the same rt). In that case, the
ratio A0/C0 may have meaning since it refers to the same
metabolite. In fact, such a ratio should also hold for the same
fragments of that metabolite in other rows, thus A0/C0 = B0/D0
(assuming alignment of rt.mz values). Comparing A0 with B0 in
case a, we run into a lack-of-invariance problem since the rt.mz
values are not aligned. Even when alignment would not be a
problem, we still have only row-conditional numbers since
there may be batch and sample workup differences between
the samples.
Level 1 Measurements: Alignment, QC, and IS-

Corrected. One of the first steps being done after acquiring
the raw data is alignment of the chromatograms, global-IS
correction and QC correction of the data (see the Supporting
Information, Internal Standards). Alignment is needed to
combat the lack-of-invariance problem by assuring that the
same feature is now represented in a single column so that
each column represents the same compound. Global IS

correction is used to reduce sample workup and injection
volume errors. The QC correction step is needed to reduce the
within and between measurement batch drift of the instru-
ments.15

After this data cleaning, we arrive at Level 1 measurements
(Figure 5). The columns now represent features and have the

same meaning across each column. A feature can represent one
individual lipid molecule but can be also due to a combination
of two or more lipid molecules which are isomers but cannot
be differentiated with the mass spectrometric method. An
example is phosphatidylcholine PC (22:1/18:O) where
without MS/MS, the position of the unsaturated fatty acid
cannot be determined, and the position of the double bond
requires even further advanced methods.
For comparing A1 and C1, the same argument goes as for the

Level 0 measurements. Comparing A1 with B1 is now
meaningful since they pertain to the same feature and the
numbers are column-conditional due to the IS and QC steps.
Still, A1 and B1 are measured intensities and not directly
interpretable as concentrations. In general, a calibration model
has four regions: (i) a below limit of detection region, (ii) a
linear region, (iii) a concave region (flattening), and (iv) a
saturation region (see the Supporting Information, Calibration
Models). If A1 and B1 are both in region ii, then their ratio can
be interpreted as a ratio of concentrations. Hence, the numbers
are ratio-scaled. If they are both in the concave region, then a
ratio is not meaningful anymore but if A1 > B1, then it can still
be concluded that the concentration at measurement A1 is
larger than the concentration at measurement B1. Hence, the
numbers are ordinal-scaled. (actually, a bit more than ordinal-
scaled since the calibration model has a specific shape.) If one
or both of A and B are in the saturated region iv, then a
comparison is meaningless. Summarizing, the conclusion about
comparability in this case depends crucially on the shape of the
calibration model which is unknown at this point.
Until now, we have been discussing numbers. By using

instrumental analysis theory into the transition from level 0 to
level 1, we have arrived at data because the numbers in level 0
have become a certain meaning. In short: data = numbers +
meaning.

Level 2 Measurements: Group IS-Corrected. It is also
possible to have internal standards for a group of lipids, e.g.,
separate standards for triglycerides and certain phospholipid
classes such as phosphoethanolamines, phosphoethanolserines,
and cholesterols. Compared to level 1, the signal of the feature
representing one individual lipid or a combination of isomeric
lipids is better quantified as a more appropriate IS is used; the
IS should be chosen such that the IS is matching the structure

Figure 4. Level 0 of LC−MS measurements: (a) rt.mz is a specific
combination of retention time and m/z ratio, i is an index for sample, j
is an index for column; (b) Met1 means metabolite 1, Frag1 is
fragment 1, and Frag2 is fragment 2 of the same metabolite 1.

Figure 5. Level 1 of LC−MS measurements after Global-IS and QC
correction.
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of the lipid such that effects such as ion suppression is
compensated. Hence, at this level, the metabolite or lipid class
of a feature has to be identified. The results are called level 2
measurements and shown in Figure 6.

For comparing A2 and B2, the conclusions are the same as
for the level 1 measurements. In comparing A2 and C2, we now
have to distinguish between A2 and C2 in the same lipid-class
or not. When A2 and C2 are in the same lipid-class (Figure 6,
panel a) and if we can expect similar response factors, then
these numbers are comparable. Whether the numbers A2 and
C2 are ratio- or ordinal-scaled depends again on the region of
the calibration models in which A2 and C2 are. If the numbers
A2 and C2 are in different lipid classes (Figure 6, panel b), then
we have in principle again level 1 measurements. Note that in
the transition from numbers to data, we have not only used
instrumental analysis theory but also chemical theory, in
particular, theory regarding the behavior during analysis
(ionization) and chemical similarity between lipids.
Level 3 Measurements: Concentrations. The highest

level of measurements is obtained after having built calibration
models for all individual lipids. Obviously, for each rt.mz
feature, the structure of the lipid has to be known, which is not
a trivial task (but outside of the scope of this paper). At this
level, concentrations of a lipid are determined rather than a
relative concentration, i.e., a ratio versus an internal standard.
This requires that an authentic standard is available, and that
thus the lipid is fully identified. An example is the
quantification of prostaglandin E2, a bioactive lipid, where
absolute concentrations measured in a patient can then be
compared to reference values. For this, the most ideal IS is an
isotopically labeled prostaglandin E2 eluting at the same
retention time and experiencing the same ion suppression. For
practical reasons, often calibration models within a class of
lipids are constructed using only a limited number of
standards. This is possible if the response factors are proven
to be the same or a (preferably on theory based) model for the
response factor of each lipid is applied16 (see the Supporting
Information, Internal Standards and Calibration Models).
These allow for a transformation from intensities to
concentrations for all numbers in the matrix of Figure 7.
This results in matrix-conditional data, and the data are ratio-
scaled.
Level 4 Measurements: Biological Activities. Up until

now, the focus has been on concentrations of the lipids.
Suppose that the interest is in the lipids as ligands in a
biological activity study. It is known that ligands have an

affinity for a receptor which can be modeled by a (nonlinear)
sigmoidal dose−response function which is usually specific for
each lipid. An example of such a bioactive lipid is again
prostaglandin E2. At level 4 measurements, the bioactive effect,
e.g., the pro-inflammatory effect on the vasculature in an in-
vitro model, is measured rather than the concentration. From
this perspective, the data in level 3 are now suddenly column-
conditional since the values A3 and C3 have become
incomparable due to the differences in dose−response
functions. Moreover, because of the sigmoidal relationship,
the values A3 and B3 are not ratio-scaled anymore but ordinal-
scaled (actually, a bit more than ordinal-scaled since the dose−
response curves are sigmoidal.) When all dose−response
curves are known, then the data could be transformed to
biological activities again and become ratio-scaled matrix
conditional. This could be called level 4 data, which are tailor-
made for a specific purpose.

■ SYNTHESIS
From the previous presentation, it is clear that there is an
interplay between numbers, data, theory, and type of biological
question. An attempt to synthesize this is shown in Figure 8.

The blue ellipsoid marked “Numbers” represent the raw
numbers coming from an instrument. They do not represent
data yet, as explained above. Instrumental analysis and
chemical/physical theory should be used to turn these
numbers into data (arrow A). These data have then certain
properties, conditionality, measurement scale, depending on
the original numbers and the theory that is used to turn them
into data. This is exemplified above in the different levels of

Figure 6. Level 2 of LC−MS measurements after group-IS and QC
correction. (Panel a) A2 and C2 are in the same lipid class (indicated
by shades of blue) and (panel b) A2 and C2 are in different lipid
classes.

Figure 7. Level 3 of LC−MS measurements after using calibration
models.

Figure 8. Synthesis of the foregoing. Legend: arrow A represents the
transition from numbers to data using chemical- and instrumental
analysis theory; arrow B represents the translation from a biological
question to a model and modeling objective; and, finally, arrow C asks
whether A and B are properly matched.
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metabolomics measurement with increasing efforts to change
the properties of the data, e.g, by using internal standards going
from level 0 to level 1 and using calibration models going from
level 2 to level 3.
The biological questions pertain to certain biological

systems, and these questions need to be formalized in a
model to be able to confront the question with the data. The
term model should be taken in a broad context, e.g., even
simple correlations can be considered models. The modeling
objective is then formulated in terms of which parameters have
to be estimated, which loss-functions to use, which algorithms
to use, etc. As an example, if the blood-lipids are measured for
a group of controls and patients and if the data are (at least)
interval-scaled, then OPLS-DA can be used to find biomarkers.
The crucial part of Figure 8 is arrow C. There should be a

match between modeling objectives and properties of the data.
Citing the example above, if time-series data of the lipids are
available for different subjects and these are not synchronized
(or cannot be synchronized), then it does not make sense to
use three-way models. If the data are only ordinal scaled, then
we cannot fit quantitative systems biology models to the data.
If there are discrepancies in arrow C, then there are two routes
to take: change the properties of the data or change the
modeling objective. For the example of unsynchronized time-
series data, we have to switch to simultaneous component
analysis (see the section Data Theory) models (thereby
possibly also rephrasing the biological question). To fit systems
biology models, we have to make calibration models for all
lipids and make all data in the concentration form. Obviously,
there are many examples of how to solve such discrepancies.

■ BROADER CONTEXT: CONSIDERATIONS FOR THE
FIELD

Repercussion for Metabolomics Data Analysis. The
above presented theory has repercussions for metabolomics
data analysis. In the subsection Correlations, we will show
what it means for correlations as a simple example but similar
types of considerations hold for more complicated methods
such as PCA and OPLS-DA since these methods use
correlations. In the subsection Overview, we will subsequently
give an overview.
Correlations. To show how correlations are affected by

different comparability properties, we present a small example.
Suppose that intensities of three lipids are measured at level 1
(global-IS and QC corrected and aligned). The data for five
samples are presented in eq 1:
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Ç
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12 10 8
8 5 4

10 . .
6 . . (1)

This data is column-conditional and, depending on whether
the lipids are measured within the linear range of the
calibration models, ordinal or ratio-scaled within a column.
The Pearson correlation matrix of this data is
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1 0.5 0.5
0.5 1 0.5
0.5 0.5 1 (2)

assuming that the numbers are ratio-scaled. Suppose now that
we have made calibration models for all three lipids and the
concentrations are as follows:
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6 2 4
4 1 2
5 . .
3 . . (3)

then this matrix has exactly the same (Pearson) correlations as
the one of eq 1 (all intensities were in the linear range of the
calibration models). Hence, the column-conditionality of the
data does not hamper the use of correlations, and when using
correlations, there is no need for calibration models. The
reason is that going from intensities to concentrations
(assuming that the numbers are in the linear range of the
calibration models) are simple linear transformations and
correlations are invariant under such linear transformations. If
the original intensities were on an ordinal-scale, then similarly
Spearman correlations could be used.
Following our example, suppose that we are interested in

biological activities and have measured these activities
corresponding to the above-mentioned concentrations of
prostaglandin E2 and related lipids, and these activities are
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where lipid two is in the saturation phase of the dose−response
curve; lipid one also shows nonlinear behavior, and lipid three
is in the linear range. The correlation matrix of these activities
is
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1 0.76 0.33
0.76 1 0.87
0.33 0.87 1 (5)

which is clearly different from eq 2 because of the nonlinearity
of the dose−response curves.

Overview. This section discusses the repercussions of the
foregoing discussion for metabolomics data analysis. It should
not be read as a cookbook about what (not) to do but merely
as some remarks about things to consider when performing
metabolomics data analysis. Table 2 summarizes the remarks.
The notions of conditionality and measurement scales were

explained in the previous sections and summarized in Table 2.
As also explained in the foregoing, the data obtained from level
1 and level 2 can be ordinal or ratio- scaled depending on the
form of the calibration model and the specific measurement.
When we are in the ordinal-scaled regime, then nonmetric
methods can be applied such as the Mann−Whitney two-
sample tests and nonmetric multidimensional scaling.17 Also
optimal scaling for multivariate analysis is then an option.18

When we can assume ratio-scaled data (and at least level 2)
then the whole (metric) machinery of PCA, PLS, and OPLS-
DA is at our disposal. When the data is in the ordinal-scaled
regime and still methods such as PCA and OPLS(-DA) are
applied, it is unclear at this point whether the results from such
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an analysis are (in)valid: as mentioned earlier the data is also a
bit more than ordinal-scaled.
FAIR Data. Recently, the life sciences and especially the

omics field starts to agree that data should be FAIR (findable,
accesible, interoperable, reusable). This allows to reuse data or
to combine data from different sources. However, so far often
not much information is provided about the quality and theory
of the data: how secure is the identification of a metabolite or
lipid? How quantitative are the data: is the data for the
metabolites ratio-scaled or ordinal-scaled? If FAIR data is not
provided with the proper measurement information and theory
(i.e., meta-data), they are actually more numbers than data
(see Figure 8).
Data Fusion. A field of growing interest is data fusion and,

specifically, fusion of metabolomics data with other types of
omics data. The issues of scale-type and comparability (in
general, data characteristics) also play a dominant role in this
field but until to now have received little attention. An obvious
question to ask is whether two data sets can be compared,
likewise as comparing two columns in a matrix of measure-
ments as explained above. When different types of omics
measurements are performed on the same set of samples, then
such questions arise when the two data sets are going to be
fused.
Differences in scale-type between two omics data sets also

often occur, e.g., when fusing metabolomics with mutation data
which are intrinsically binary. Several methods exists for fusing
such types of data,19−22 but comparability issues as explained
above have received little attention.
NMR. For NMR, the situation is different than for MS-based

metabolomics and we will briefly explain the levels 0−4 for
NMR. At level 0, the raw NMR data is considered. These are
row-conditional since values in the same column cannot be
compared without preprocessing for two reasons. First, the
NMR-spectra may not be aligned so that there is lack-of-
invariance and, second, even if the spectra are aligned there
may still be dilution effects (e.g., in urine spectra) hampering
between sample comparisons. Within a row (that is, within the
same spectrum) the numbers are comparable because they all
pertain to counts of hydrogen atoms.
If all preprocessing has been done (aligning, calibration (e.g.,

ERETIC signal), and normalization) then we arrive at levels
1−2. The data are now row- and column conditional, hence,

matrix conditional. In essence, the data pertains to counts of
hydrogen atoms and are not concentrations yet. To arrive at
concentrations, the peaks have to be identified, quantified, and
calibrated thus thereby arriving at level 3 which can be done by
current software such as mNOVA and Chenomx. These
concentrations are ratio-scaled and matrix conditional. Also in
this case, if interest shifts to biological activities, then the same
conclusions (for level 4) hold as for the case of MS-based
measurements.

Other Omics Measurements. We do not give a full
treatment here, but much of the theory explained above also
holds for other types of omics measurements. MS-based
proteomics is a clear example, but similar simple questions
treated in this paper can also be asked about, e.g., RNAseq data
as collected in gene-expression measurements or in micro-
biome research. We invite researchers in those areas to
consider these simple questions too!
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