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Abstract: Hepatitis C virus (HCV) is a major causative agent of acute and chronic hepatitis. It
is estimated that 400,000 people die every year from chronic HCV infection, mostly from severe
liver-related diseases such as cirrhosis and liver cancer. Although HCV was discovered more than
30 years ago, an efficient prophylactic vaccine is still missing. The HCV glycoprotein complex, E1/E2,
is the principal target of neutralizing antibodies (NAbs) and, thus, is an attractive antigen for B-cell
vaccine design. However, the high genetic variability of the virus necessitates the identification of
conserved epitopes. Moreover, the high intrinsic mutational capacity of HCV allows the virus to
continually escape broadly NAbs (bNAbs), which is likely to cause issues with vaccine-resistant
variants. Several studies have assessed the barrier-to-resistance of vaccine-relevant bNAbs in vivo
and in vitro. Interestingly, recent studies have suggested that escape substitutions can confer antibody
resistance not only by direct modification of the epitope but indirectly through allosteric effects,
which can be grouped based on the breadth of these effects on antibody susceptibility. In this review,
we summarize the current understanding of HCV-specific NAbs, with a special focus on vaccine-
relevant bNAbs and their targets. We highlight antibody escape studies pointing out the different
methodologies and the escape mutations identified thus far. Finally, we analyze the antibody escape
mechanisms of envelope protein escape substitutions and polymorphisms according to the most
recent evidence in the HCV field. The accumulated knowledge in identifying bNAb epitopes as well
as assessing barriers to resistance and elucidating relevant escape mechanisms may prove critical in
the successful development of an HCV B-cell vaccine.

Keywords: hepatitis C virus; antibody escape; B-cell vaccine; virus neutralization

1. Introduction

Hepatitis C virus (HCV) infection is one of the leading causes of liver-related disease
and liver transplantation in developed countries [1,2]. The World Health Organization
(WHO) estimates that at least 70 million people are chronically infected with HCV world-
wide and that approximately 400,000 people die every year from complications of long-term
HCV infection, such as cirrhosis and hepatocellular carcinoma [3].

HCV is a single-strand positive-sense RNA virus (Baltimore classification, group IV)
belonging to the Hepacivirus genus of the Flaviviridae family [4]. HCV has been classified
into 8 genotypes with a variability of about 30% at the nucleotide and amino acid levels
and more than 80 subtypes with a variability of about 20% at the nucleotide level [5–8].
The virus genome encodes a single polyprotein that is processed into 3 structural proteins,
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6 nonstructural proteins and the viroporin, p7 [9]. The structural proteins are, by definition,
components of the virus particle, which consists of the RNA genome encapsulated by the
core protein, which is further enveloped in a lipid bilayer of cellular origin in which the
transmembrane glycoprotein complex, E1/E2, is embedded. The nonstructural proteins
serve critical functions in viral replication, translation, morphogenesis, and release into the
extracellular environment [9].

In May 2016, WHO proposed the “Global Health Sector Strategy on Viral Hepatitis,
2016–2021”, with the intention of eliminating viral hepatitis as a public health problem by
2030 and naturally focusing on the main causative agents: hepatitis B and C. However, this
goal has proven difficult to achieve for HCV without the development of a prophylactic
vaccine. HCV treatment regimens have reached cure rates of around 95% in clinical trial and
cohort studies [3,10]. However, treatment does not protect from reinfection, and high drug
cost remains a barrier in most developing countries [11]. Furthermore, WHO estimates
that, globally, only 19% of chronic HCV carriers have been diagnosed [3] due to lack of
symptoms in early stages of the infection and inadequate pro-active screening efforts.

1.1. E1/E2 as a Target of Neutralizing Antibodies in Vaccine Development

Around 70% of HCV-infected patients will develop chronic infection [3]. The remain-
ing 30% of people acutely infected with HCV spontaneously clear the infection without
treatment [3,12], and around 80% of these patients are able to control and clear HCV reinfec-
tion [13]. Acute self-limited infection correlates with the presence of neutralizing antibodies
(NAbs) in the early phase of HCV infection [14–17]. Moreover, the rapid induction of NAbs
has been related with virus clearance [16] and pre-infusion of NAbs has been shown to
prevent HCV infection in chimpanzees [18,19] and human liver chimeric mice [20–23].

The E1/E2 complex is the principal target of NAbs and, consequently, an attractive
antigen for B-cell-based vaccine designs [24]. E1/E2 is important for receptor interactions
during viral entry as well as membrane fusion with the host cell and viral particle release
from infected cells [25]. During virus entry, the initial attachment occurs by interactions
between the HCV-associated apolipoproteins, cell surface proteoglycans, and the scav-
enger receptor class B type I (SR-BI) [26,27]. Following attachment, E1/E2 interacts with
the tetraspanin CD81, and the virions are translocated to the tight junctions where the
HCV–CD81 complex interacts with claudin-1 and occludin, facilitating internalization via
clathrin-mediated endocytosis [28–30]. E1/E2 is highly glycosylated, and several studies
have shown roles of E1/E2 N-linked glycans in proper protein folding, virus entry, and
protection from NAbs [31,32]. The 278 N-terminal amino acids of E2 constitute the recep-
tor binding domain (RBD), which is followed by the stem region that connects the RBD
with the C-terminal transmembrane domain (TMD) (Figure 1). The RBD contains amino
acids critical for binding to the HCV co-receptor, CD81 (Figures 1 and 2A), along with
conserved epitopes that are the target of NAbs with broad neutralization activity (bNAbs)
and, therefore, it has been suggested that most bNAbs inhibit HCV infection by blocking
CD81 binding [24,33]. However, it is worth noting that the introduction of an affinity tag in
E2 left the virus susceptible to neutralization by tag-specific antibodies, likely because the
bulk of a bound antibody can interfere sterically with protein function [34]. The RBD con-
tains 4 regions with high genetic diversity named hypervariable regions (HVR), including
HVR1 (384–410), HVR2 (461–481), HVR3 (431–466), and the intergenotypic variable region
(IgVR) (570–580) (Figure 1). In most isolates, HVR1 corresponds to the 26–27 N-terminal
amino acids of E2. Several studies have shown that HVR1 modulates the interaction of
E1/E2 with entry co-receptors such as CD81 and SR-BI in addition to preventing antibody
neutralization by acting as an immune decoy, perhaps by hindering access to conserved
NAb epitopes. This latter effect likely functions through an incompletely understood
mechanism involving the stabilization of “closed” antibody-resistant E1/E2 states [35–40].
As is discussed in the following sections, several studies suggested that E1/E2 exists in
an equilibrium between and open (antibody-sensitive) and closed (antibody-resistant)
states [41–43]; however, there are currently no published structures to support this hy-
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pothesis and, as such, they cannot be adequately represented here. HVR1-deleted HCV
recombinants typically have greatly increased susceptibility to NAbs [36,38,39], which has
also been verified in vivo [37]. The remaining HVRs have received less attention, but it
seems that HVR2 and IgVR are essential in E1/E2 oligomerization, HCV particle formation,
and virus entry [44,45], and that HVR3 may play a role in binding to co-receptors during
virus entry [46].

Figure 1. Schematic representation of the primary E1/E2 sequence, including functional regions and epitope clusters.
Domain legends not defined in the main text: NTD (N-terminal domain), pFP (putative fusion peptide), CR (conserved
region), CD81bs (CD81 binding site). CD81bs and conformational epitopes defined as in Gopal et al. 2017 [47]. Residues
comprising each epitope are reported in red, residues involved in the interaction with CD81 in green. N- and O-glycosylation
sites are depicted as black and red branched forks, respectively.

1.2. E1/E2 Immunogenic Epitope Clusters

The nomenclature of E1/E2 immunogenic clusters has been recently reviewed [48–51].
Zhang et al. described the antigenic sites (linear epitopes) 412–419 (AS412) and 434–446
(AS434) [52,53] (Figures 1 and 2B). Some antibodies against AS412 and AS434 have shown
broad neutralization activity, and these antigenic sites have been proposed as useful targets
in HCV vaccine designs [48,54]. AS412 sits immediately downstream of HVR1 and is highly
conserved. This conservation extends to residues that are important for CD81 binding (W420
and H421 [33,55]) as well as the N-linked glycosylation sites N417 and N423. NAbs against
AS412 include 3/11 (anti-E2 murine monoclonal antibody (MAb) [56], AP33 (anti-E2 murine
MAb) [57], HC33-related antibodies (anti-E2 human MAb (HMAb)) [58], H77.39 (anti-E2
murine MAb) [59], and HCV1 (anti-E2 HMAb) [60]. Notably, alanine substitution at positions
329, 613, and 624, outside the AS412 itself, reduced AP33 and HCV1 binding to E1/E2, sug-
gesting that AS412 accessibility was allosterically modified [47]. Structural studies of E2 have
described AS412 as a disordered region with an inherent high degree of structural flexibil-
ity [61–63]. Linear peptides corresponding to AS412 have been observed to bind to different
NAbs in three distinct conformations: β-hairpin (in which the peptide folds back on itself),
extended, and an intermediate V-shaped conformation [64–70] (Figure 2C). The structural
analysis of AS412 bound to bNAbs AP33 and HCV1 showed a β-hairpin conformation dis-
playing a hydrophilic face and a hydrophobic face on opposite sides of the hairpin, in which
the NAbs predominantly interact with the amino acids L413 and W420 [66,67]. The V-shaped
conformation of AS412 has been observed in structural analysis of a peptide containing
AS412 in complex with bNAbs HC33.1, HC33.4, and HC33.8 [68,69]. The residues 414 and
415 adopt an antiparallel β-sheet with the variable region of the heavy chain of HC33.1, while
the rest of AS412 assumes a coil conformation [68]. The extended conformation of AS412 was
observed in complex with the poorly neutralizing antibody, 3/11 [70]. The low neutralizing
capacity of 3/11 may indicate that this conformation of AS412 has the least relevance for
mature virus particles. AS434 is a linear epitope composed of highly conserved residues
important for E2 binding to CD81 [71,72]; however, AS434 is recognized by both bNAbs and
non-neutralizing antibodies [52,72]. Non-neutralizing antibodies against AS434 have been
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shown to disrupt the interaction of bNAbs with AS412 [52]; on the other hand, antibodies
against AS434 include the human HC84-related bNAbs with potent neutralization activity
against HCV genotypes 1–6 [72,73]. Finally, a third linear epitope composed of residues
523–538 (AS523) has been shown to be involved in the neutralizing face of E2 together with
the AS412 and AS434 [61] (Figures 1 and 2B). Similarly to AS412 and AS434, AS523 contains
highly conserved residues necessary for E2 interaction with CD81 [33]. To our knowledge, no
antibodies exclusively targeting AS523 have been described. Antibodies that target epitopes
which contain AS523 include 1:7, A8 (anti-E2 HMAbs) [74], H77.31, H77.36 (anti-E2 murine
MAbs) [59], and CBH5 (anti-E2 HMAb) [75].

Figure 2. Structural mapping of E1/E2 CD81bs, epitope clusters, and escape mutations. (A) Residues
participating or affecting the binding to CD81 according to Gopal et al. 2017 [47] are represented in
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purple. The CD81bs originally defined by competition assays, mutagenesis, and electron microscopy
is indicated as a dashed line in all structures. (B) Depicts antigenic sites AS412, AS434, and AS523.
(C) Solved crystal structures of AS412 peptide in complex with AP33 (PDB ID: 4GAG), HC33.1 (PDB
ID: 4XVJ), and 3/11 (PDB ID: 4WHY). Yellow arrows depict β-sheet secondary structures. (D) Depicts
antigenic regions 1–5. (E) Depicts antigenic domains A–E. Epitopes are consistently depicted in green,
position of described escape mutations in AS412 (412, 413, 415, 417, 419, 434, 610, 665), AR3A (431,
438, 442), AR4A (696), AR5A (665 and 680), domain B (438, 439), and domain E (412, 413, 415, 417,
419, 434, 610, 665) are shown in red (see Table 1 for escape mutation overview). All epitope clusters
are mapped on the E1/E2 ectodomain structural model described in Castelli et al. 2017 [76]. Escape
mutations in E1 (A349D for AR5A and M345T for AR3A) are not shown as these were not included
in the model.

In addition to the antigenic sites described above, other groups have defined other
systems of nomenclature to classify continuous and noncontinuous epitope clusters on
E1/E2 mainly through antibody binding competition assays. Law et al. used a phage display
library to isolate antibodies from a patient infected with HCV genotype 1 [22,23]. Using
cross-competition assays, the epitopes recognized by these antibodies were classified into 5
antigenic regions (AR) [22,23] (Figures 1 and 2D). AR1 antibodies have poor neutralizing
activity and only bind to E2 from HCV genotype 1 [22]. AR2 is distal to the RBD of E2,
and antibodies against AR2 were initially thought to be specific against HCV genotype
1. However, we found that low or non-existent neutralization by AR2-specific antibodies
was due to a high level of epitope protection by HVR1 as we observed effective AR2A
neutralization activity against HVR1-deleted viruses from genotypes 1 to 3 [22,38]. AR3
overlaps with the RBD and is highly conserved between HCV genotypes, showing broad
neutralization activity against HCV genotypes 1–6 [22]. Antibodies against AR4 and AR5
only recognize folded E1/E2 complexes and have shown broad neutralization activity across
HCV genotypes 1–6 [23]. Finally, AR3 and AR4 antibodies have been shown to be capable
of protecting an HCV-permissive humanized mouse model from HCV challenge [77].

A different classification of epitope clusters was proposed by Keck et al. By using anti-
body cross-competition with human antibodies, they identified 4 conformational epitope
clusters in E2, denominated antigenic domains A to D, and one linear cluster designated
antigenic domain E [72,78,79], which is equivalent to AS412 [33,78] (Figures 1 and 2E).
These antigenic domains do not represent protein domains but, rather, clusters of E2
immunogenicity. Antibodies against domains B to E have shown broad neutralization
against diverse HCV genotypes, whereas antibodies against domain A (residues 581–584
and 627–633) cannot neutralize HCV infection nor block CD81 binding [79–82]. Domain B
(residues 441–443 and 529–535) and domain D (residues 420–428, 441–443 and 616) overlap
with AR3, and both include important residues for CD81 interaction [22,58]. Domain B
is highly immunogenic as antibodies against domain B are commonly found in infected
patients [17,83]. NAbs against domain C (residues 544–549) overlapped with AR5 during
immune competition analysis and epitope mapping. However, while AR5 NAbs only
recognize folded E1/E2, domain C NAbs can also bind to E2 alone [23]. Thus, while HCV
diversity is high, several highly conserved epitope clusters exist, indicating a high degree
of functional constraint across HCV genotypes. The successful targeting of these clusters is
likely to be instrumental in developing an HCV vaccine.

2. HCV Variability and Neutralization Escape

An important challenge in developing an HCV vaccine is the virus’ ability to evade
antibody neutralization by mutational escape [24,84]. The lack of proofreading capacity
of the HCV RNA-dependent RNA polymerase and the high viral replication rates result
in a continually evolving within-host population of divergent viral quasispecies [85,86].
Although the generation of quasispecies is a random process, the selective pressure of
the immune system results in the gradual appearance of escape mutants and genetic
polymorphisms associated with resistance to T- and B-cell immune targeting [87,88]. In
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the following sections, we will summarize HCV studies of antibody neutralization in vitro,
escape mutations, and genetic polymorphisms associated with antibody evasion.

3. Development of In Vitro Systems to Study Antibody Neutralization and Escape

For many years, the study of HCV was hampered by the lack of robust in vitro cell
culture systems. The generation of HCV pseudoparticles (HCVpp) allowed the study of
virus entry, including the role of putative entry co-receptors and the neutralization capacity
of NAbs [89]. However, the HCVpp model system has several shortcomings, including the
fact that it did not permit the study of other aspects of the viral cycle or of virus escape
through antibody- or antiviral-induced culture adaptation.

The study of the full viral cycle was made possible with the development of full-
length HCV cell culture systems (HCVcc), which permit the incorporation of diverse HCV
structural protein sequences and initially depended on the highly replication-competent
genotype 2a isolate, JFH1 [90–93]. These culture systems have been used to study the full
viral cycle and the effect of NAbs and antivirals on viral infectivity and adaptation in vitro.
In addition, they have formed the basis for various ways to examine escape and the barrier
to resistance of HCV-specific bNAbs as reviewed in the following section.

4. Advancements in the Study of HCV Antibody Escape
4.1. In Vitro Escape Studies Using HCVcc

The development of HCVcc systems has enabled in vitro study of antibody escape and
assessment of barriers to resistance for important bNAbs. This permits the prediction of
future challenges with the emergence of potentially vaccine-resistant viruses and suggests
ways in which to minimize such concerns [94]. However, many HCV isolates are either
highly fit or naturally resistant to NAbs, both of which enable the virus to spread in culture
in the presence of high concentrations of NAb without acquiring escape mutations [95,96].
Circumventing this problem has typically been done by only studying NAb escape using
HCVcc that incorporate highly NAb-sensitive HCV isolates. Gal-Tanamy et al. exposed the
highly bNAb-sensitive HCVcc, Hj3-5 (isolate H77, genotype 1a), to six sequential rounds of
neutralization with the bNAb, AP33 (targeting AS412), followed by amplification in naive
cultured cells [97]. Through this methodology, they identified the substitutions N415Y
(E2) and E655G (E2). Reverse genetic studies showed that N415Y dramatically increased
AP33 neutralization resistance, and this effect was greatly increased in the presence of
E655G. Interestingly, E655G alone only conferred a modest increase in AP33 resistance.
Keck et al. studied the barrier to resistance of antibodies against the antigenic domain B,
such as CBH-2 and HC-11, and the antigenic domain E antibody, HC33.1, by using the
highly bNAb-sensitive HCVcc JFH1 (genotype 2a) [78,80]. For CBH-2 and HC-11, they
serially passaged JFH1 in the presence of increasing concentrations of antibody, starting at
half the IC50 to 10–50 times the IC50 [80]. Following treatment with HC-11, they identified
the substitution L438F (E2) that induced bNAb-specific resistance but also decreased viral
fitness. For CBH-2, they identified the substitution A439E (E2), which conferred CBH-2-
specific resistance without affecting fitness. For the antibody HC33.1, they employed a
similar approach to identify multiple escape pathways [78]. HCVcc that escaped HC33.1
treatment contained the substitution N417T (E2) in combination with additional single or
double substitutions in E2 that conferred different degrees of antibody resistance. N417T
alone did not confer resistance against HC33.1 but increased HCVcc fitness and sensitivity
to neutralization. N417T, in combination with N434D (E2) or K610R (E2), conferred low
bNAb-specific resistance. HC33.1 resistance was higher with N417T combined with S419N
(E2), while the highest effect was conferred by the combination N417T with L413I (E2) [78].

The escape studies mentioned above were limited to highly sensitive HCVcc, likely
due to difficulties in working with naturally bNAb-resistant isolates that would require a
considerable amount of antibody as evidenced by Pantua et al. and Gu et al., who serially
cultured the bNAb-resistant HCVcc, Jc1 (genotype 2a) until it spread in the presence of
increasing concentrations of AP33 (up to 200 µg/mL or ~40 times of the IC90 concentration)
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or another AS412-specific antibody Mab24 (up to ~200 µg/mL or ~20 times of the IC90
concentration) [64,98]. Through this approach, they identified the substitution N415D (E2)
as well as N417S and N417T (E2). These substitutions increased resistance to AP33, Mab24,
and other antibodies against AS412, such as HCV1. Further analysis showed that N417S
and N417T shifted the N-linked glycosylation site from N417 to N415, which contributed
to AP33 and Mab24 resistance. Structural analysis showed that HCV1 and AP33 bind to a
similar AS412 β-hairpin structure, which is glycosylated at position N417 and N423 [66,67].
While glycans at N417 and N423 are pointing away from the epitope/paratope interface,
the glycan introduced at N415 by N417S/T substitutions is buried in this interface and,
thus, the glycan shift to position N415 sterically obstructs HCV1, AP33, and Mab24 binding.
Remarkably, the N417 to N415 glycan shift increased sensitivity against HC33.1, which
recognizes another conformation of AS412 [78]. Structural studies have shown that HC33.1
interacts with a V-shape conformation of the linear epitope, where the glycan at N415 is
placed outside the interface and flanking HC33.1 [68]. Thus, the presence of a glycan at
N415 may assist in the interaction with E2, perhaps explaining the increased affinity of
HC33.1 with AS412.

Finally, a different approach was used by Duan et al., in which they introduced
naturally occurring substitutions or polymorphisms observed at positions 412–426 of
genotypes 1 and 2 into the HCVcc, J6/JFH1 [99]. Thus, they identified the resistance
substitution Q412H that conferred resistance against AS412 bNAbs from chimpanzees
vaccinated with HCV recombinant E1/E2 but not against an immunoglobulin preparation
composed of polyclonal antibodies from HCV patients.

4.2. Validation of AS412 Escape In Vivo

In addition to in vitro escape studies as outlined above, escape substitutions have
been found during in vivo antibody treatment. Escape variants against the antibody
HCV1, targeting AS412, have been identified in both chimpanzee and human studies.
Chimpanzees were infected with HCV and treated with HCV1 during the acute HCV
infection phase, or after they developed chronic infection [18]. Following 42 days of HCV1
treatment, the escape substitutions N415K or N415D (E2) emerged. Similarly, the escape
substitution N417S was identified in emerging viruses after a single dose of HCV1 antibody
to a chronic HCV-infected chimpanzee. In humans, the capacity of HCV1 to clear HCV
infection after liver transplantation was tested in a clinical trial by treating infected patients
with multiple doses of HCV1 [100,101]. While not all patients were able to clear HCV
infection, a delay in viral rebound was observed among all treated subjects. Like the
chimpanzee studies, emerging viruses exhibiting substitutions N415K/D/S and N417S
were identified in antibody-resistant variants found in patient sera. As mentioned above,
the described substitutions at position N415 and N417 reduce E2 binding and neutralization
sensitivity to HCV1 [18,64,97].

In vivo escape studies have been focused on bNAbs that recognize AS412 and, thus,
more information is needed for bNAbs targeting other vaccine-relevant epitopes. Pre-
viously, Farci et al. identified HVR1 escape mutants by incubating an H77 virus inocu-
lum with serum containing NAbs against HVR1 and infecting chimpanzees with the
virus/antibody mix [102]. Although they showed that chimpanzees can be used as an
in vivo model to study antibody escape, biomedical research in chimpanzees is nowadays
banned in most developed countries. Small animal infection models would be an attractive
alternative using, for example, HCV-permissive human liver chimeric mice to identify
escape substitutions following antibody treatment in vivo. An example of this approach is
the identification of the substitution D476G (E2), which was observed during treatment of
HCV-infected mice with polyclonal antibodies from a chronic-phase HCV patient serum
termed H06 [37]. In vitro testing showed that the emerging substitution, D476G, conferred
broad, low-level antibody resistance against both H06 antibodies as well as the three bN-
Abs AR3A, AR4A, and AR5A, showing the feasibility of using this mouse model to study
bNAb escape in vivo. Importantly, the observed overlaps in emerging escape substitutions
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between in vitro and in vivo studies also supports the use of cell culture approaches to
study HCV antibody escape.

4.3. Induction of Antibody Escape in the NAb-Sensitive HVR1-Deleted HCVcc

While numerous important in vitro studies have assessed escape for HCV bNAbs,
the studies have, apart from Pantua et al. and Gu et al., been based on treating broadly
bNAb-sensitive HCVcc, introducing a potential bias in the results. Importantly, the studies
have also focused on single isolates of HCV, ignoring the potential differences in escape,
which are likely given the high sequence diversity of the virus. However, the study of
inherently NAb-resistant HCV isolates is made difficult by the high expenditure of antibody
needed to induce escape, and this problem is naturally compounded by trying to study
escape for multiple isolates. Accordingly, we tried to induce resistance by passaging the
moderately bNAb-resistant HCVcc, H77/JFH1 (genotype 1a), and the resistant HCVcc,
J6/JFH1 (genotype 2a), in the presence of high concentration of the bNAb, AR5A [95], but
found that J6/JFH1 escaped treatment without acquiring envelope protein substitutions. In
contrast, H77/JFH1 acquired the substitution A349D (E1), which conferred broad, low-level
bNAb resistance. In separate studies, we tried to generate escape by treating H77/JFH1
with higher amounts of the bNAbs AR3A and AR4A [42,103]. For AR4A, we identified
the substitution M345T (E1), but this substitution only increased fitness and did not affect
AR4A resistance [103]. Surprisingly, treatment of H77/JFH1 with AR3A antibody also led
to the appearance M345T, which induced low-level AR3A-specific resistance in addition to
its effects on fitness, implying that M345T could be allosterically modifying access to the
AR3A E2 epitope [42]. These studies confirmed how difficult it is to induce escape even in
moderately NAb-resistant HCVcc, which can spread in culture without developing NAb
escape substitutions or may merely gain substitutions that increase fitness.

Table 1. Advancements in the study of HCV antibody escape.

Escape
Substitutions Antibody Studied HCV Isolate Location Resistance Mechanism Reference

N415Y AP33 H77 genotype 1 E2; AS412, Domain
E

Direct modification of
the epitope [97]

97E665G AP33 H77 genotype 1 E2; AS412, Domain
E

Indirect modification of
the epitope [97]

L438F HC-11 JFH1 genotype 2 E2; Domain B Direct modification of
the epitope [80]

A439E CBH-2 JFH1 genotype 2 E2; Domain B Direct modification of
the epitope [80]

N417T/N434D HC33.1 JFH1 genotype 2 E2; Domain B Indirect modification of
the epitope [78]

N417T/K610R HC33.1 JFH1 genotype 2 E2; Domain B Indirect modification of
the epitope [78]

N417T/S419N HC33.1 JFH1 genotype 2 E2; AS412, Domain
E

Direct modification of
the epitope [78]

N417T/L413I HC33.1 JFH1 genotype 2 E2; AS412, Domain
E

Direct modification of
the epitope [78]

N415D AP33/Mab24 Jc1 genotype 2 E2; AS412, Domain
E

Direct modification of
the epitope (broad

increase in antibody
sensitivity)

[64,98]

N417S/T AP33 (Mab24 only
for N417S) Jc1 genotype 2 E2; AS412, Domain

E

Direct modification of
the epitope (Glycan shift

and broad increase in
antibody sensitivity)

[64,98]
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Table 1. Cont.

Escape
Substitutions Antibody Studied HCV Isolate Location Resistance Mechanism Reference

Q412H

Chimpanzees and
patients serum

enriched against
AS412

J6 genotype 2 E2; AS412, Domain
E

Direct modification of
the epitope [99]

N415K/D HCV1 in vivo H77 genotype 1 E2; AS412, Domain
E

Direct modification of
the epitope [18]

N417S HCV1 in vivo H77 genotype 1 E2; AS412, Domain
E

Direct modification of
the epitope (Glycan

shift)
[18]

N415K/D/S HCV1 in vivo genotype 1 E2; AS412, Domain
E

Direct modification of
the epitope [100,101]

N417S HCV1 in vivo genotype 1 E2; AS412, Domain
E

Direct modification of
the epitope (Glycan

shift)
[100,101]

D476G HO6 J6 genotype 2 E2 Broad impact on
antibody sensitivity [37]

A349D AR5A H77 genotype 1 E1 Broad impact on
antibody sensitivity [95]

M345T AR3A H77 genotype 1 E2: AR3
Indirect modification of
the epitope and increase

of virus fitness
[42]

L665W AR4A H77 genotype 1 E2; AR5 Direct modification of
the epitope [95]

L665S AR5A J6 genotype 2 E2; AR5 Direct modification of
the epitope [95]

S680T AR5A J6 genotype 2 E2; AR5 Indirect modification of
the epitope [95]

I696T/N AR4A J6 genotype 2 E2; AR4

Direct modification of
the epitope (I696N

increased broad
sensitivity to other

antibodies)

[103]

L438S AR3A H77 genotype 1 E2; AR3 Direct modification of
the epitope [42]

F442Y AR3A H77 genotype 1 E2; AR3 Direct modification of
the epitope [42]

D431G AR3A J6 genotype 2 E2; AR3

Direct modification of
the epitope (broad

increase in antibody
sensitivity)

[42]

In order to overcome this limitation, the studies of AR3A, AR4A, and AR5A NAb
escape mentioned above also employed bNAb-sensitive HVR1-deleted variants of the
studied HCVcc, namely H77/JFH1∆HVR1 (genotype 1a) and J6/JFH1∆HVR1 (genotype
2a) [42,95,103]. By passaging H77/JFH1∆HVR1 in the presence of AR5A we identified
the substitution L665W (E2), which caused high levels of AR5A-specific resistance [95].
Additionally, L665W increased AR5A resistance in a panel of diverse HCVcc, spanning
genotypes 1 to 6, while decreasing virus fitness of genotypes 2, 3, 4, and 6. Interestingly,
in a similar approach for J6/JFH1∆HVR1, we identified the substitution L665S (E2), which
only caused low-level AR5A resistance. However, in combination with another co-selected
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substitution, S680T (E2), this resistance was significantly boosted, suggesting a more com-
plex resistance pathway and highlighting the importance of studying escape in multiple
HCV isolates. L665S decreased AR5A sensitivity but reduced viral fitness, while the com-
bination with S680T further increased AR5A resistance and compensated the fitness loss.
Surprisingly, S680T alone increased AR5A sensitivity and did not affect fitness, suggesting
a complex relationship between these two positions and the AR5A epitope. Similarly,
we identified the substitution I696T (E2) in J6/JFH1∆HVR1 that conferred AR4A-specific
resistance, but we were unable to induce escape for H77/JFH1∆HVR1 [103]. Addition-
ally, we identified the resistance mutation I696N (E2), which reduced AR4A sensitivity
of J6/JFH1∆HVR1 but did not affect AR4A sensitivity of parental J6/JFH1. This was likely
because I696N greatly increased broad bNAb sensitivity of the parental HCVcc. Finally, we
identified the resistance mutations L438S (E2) and F442Y (E2) for H77/JFH1∆HVR1, but they
dramatically reduced fitness of the parental HCVcc that retained HVR1 [42]. Substitutions
at position L438 and F442 have been shown to reduce binding to CD81 and, thus, it is
possible that the loss of fitness is due to deficient CD81 engagement during entry [47,71].
For J6/JFH1∆HVR1, we observed the substitution D431G (E2), which increased AR3A re-
sistance, whereas it only marginally affected AR3A sensitivity of the parental J6/JFH1.
Interestingly, D431G increased broad bNAb sensitivity in analogy to the AR4A escape
substitution I696N.

5. Evidence for Different Mechanisms of HCV NAb Resistance

The escape studies reviewed above not only revealed important information about HCV
bNAb epitopes and their barrier to resistance, but in many instances, they also shed light on
distinct escape mechanisms employed by the virus. Specific changes in the epitopes (such as
the substitution of an epitope/paratope contact residue) was induced by substitutions L413I
(HC33.1), N415K/D/S/Y (AP33, HCV1), S419N (HC33.1), D431G (AR3A), L438F (HC-11),
L438S (AR3A), A439E (CBH-2), F442Y (AR3A), I696T/N (AR4A), and L665W/S (AR5A),
thus directly impacting the antibody–antigen interaction [42,64,95,97,103] (Figure 3A). A
variation on the theme of substitutions that directly alter the epitope is exemplified by the
glycan-shift resistance substitutions N417S or N417T, which shifts the N-linked glycosylation
of N417 to position N415, thus interfering with binding of bNAbs AP33 and HCV1 [64]
(Figure 3B). In addition to these more straightforward mechanisms of antibody escape,
evidence also exists for epitope-specific allosteric effects causing bNAb resistance at distant
sites, as substitutions that do not appear to be part of the epitope itself are able to specifically
alter HCV sensitivity against individual bNAbs (Figure 3C). This is exemplified by E655G,
that enhanced resistance against AP33 in the presence of N415Y, the E1 substitution M345T
that increased AR3A resistance, or S680T that enhanced AR5A resistance in the presence
of L665S but made the virus more susceptible to AR5A in the absence of L665S [95,97].
Such allosteric effects with a broader impact on NAb sensitivity (i.e., involving multiple
epitopes) have also been described. Examples include escape substitutions such as, A349D,
N415D, N417S, D431G, D476G, and I696N that affect resistance against a broad range of
bNAbs [37,95,98,103] (Figure 3D). Notably, such resistance substitutions frequently also
affect the SR-BI entry dependency of HCV. While the mechanism of these allosteric effects
are still largely unknown, recent findings suggest that the E1/E2 envelope protein complex
exists in a dynamic equilibrium between “open” (NAb-sensitive) and “closed” (NAb-
resistant) states, as will be addressed in a subsequent section. Finally, mutations that increase
HCV fitness also appear to increase the virus ability to spread in culture in the presence
of bNAbs, likely by increasing the total number of HCV particles that remain infectious
in the presence of a given concentration of antibody (Figure 4A) as well as possibly by
augmenting cell-to-cell spread (Figure 4B) and/or increasing speed of entry, likely through
an altered interaction with SR-BI (Figure 4C) [42,95,96,104,105]. The substitutions N417D
for H77/JFH1∆HVR1, I345V for J6/JFH1∆HVR1, and N417T for JFH1 increased viral fitness
without affecting bNAb sensitivity against the bNAbs used to induce escape [78,95]. It is
important to emphasize that a single substitution can have more than one of these effects
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or have different effects in different virus variants. For example, M345T (E1) induced
epitope-specific allosteric resistance against AR3A while also increasing fitness [42].

Figure 3. Mechanisms of direct HCV escape from neutralizing antibodies. (A) Contact residue
change. Substitutions that directly alter a contact residue, whereby antibody–antigen affinity is
reduced. (B) Glycan shift. Altered glycosylation can lead to HCV resistance to NAbs. The glycan
masks the broadly neutralizing epitope on the viral glycoproteins, thus preventing neutralization
of the viral particle. (C) Local allosteric change. Substitutions at positions not directly within the
epitope can alter HCV sensitivity to a specific NAb by inducing local allosteric changes that alter
specific NAb epitope accessibility. (D) Global allosteric change. Substitutions at positions not directly
within the epitope can alter HCV sensitivity to a wide range of NAbs by inducing global allosteric
changes that alter NAb epitope accessibility.

Figure 4. Indirect HCV neutralizing antibody escape by increased viral fitness, cell-to-cell spread,
and speed of entry. HCV mutations can lead to (A) increased production of viral particles, thus
increasing the number of infectious particles at any given concentration of antibody; (B) increased
cell-to-cell spread, resulting in an increase in viral particles avoiding NAbs present in the extracellular
environment; and (C) increased speed of entry, affording NAbs in shorter time to interact with their
epitopes on the viral particles in the extracellular environment.

6. Both Naturally Occurring and Cell Culture Adaptive Envelope Substitutions
Regulate Broad HCV Neutralization Sensitivity

Similarly to the E2 substitutions, D431G and I696N, culture adaptation studies of
HCV have identified a number of envelope protein substitutions that increase broad NAb
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sensitivity [104–108]. Similarly, naturally occurring envelope protein substitutions that
affect broad NAb sensitivity have been identified in diverse HCV genotypes and subtypes.
Natural variation in bNAb resistance across HCV isolates has been attributed to resistance-
associated envelope polymorphisms (RAPs). Such polymorphisms have been identified
through neutralization clustering and sequence analysis of panels of HCVpp displaying
E1/E2 complexes of patient-derived sequences [109,110] and by reference alignment and
phylogenetic analysis of genotype 1a sequences to find codons that vary deep in the
phylogenetic tree [111]. Additionally, we recently identified RAPs by an in-depth reverse
genetics approach, studying the sequence determinants of bNAb resistance between two
HCVcc isolates of the same genotype, H77 and TN (both genotype 1a) [43]. This work was
based on our previous finding that HCV isolates with highly diverse neutralization profiles
become similarly sensitive to bNAbs targeting diverse conserved E1/E2 epitopes by the
removal of HVR1, indicating that these epitopes were significantly more conserved than
initially supposed [38]. Interestingly, we found that isolate differences in bNAb sensitivity
are linked to extra-epitopic variation, specifically RAPs in the N-terminal part of E2 [43].
Several of these RAPs were found within positions 400–404 in the C-terminus of HVR1,
that has been shown to accumulate mutations during chronic infection [112,113]. Although
the effect of a single RAP is often minor, combinations of such polymorphisms can alter
antibody sensitivity by as much as 2000-fold [43]. However, the effect of individual RAPs
varies across bNAb epitopes [43], which opens up the possibility that HCV accumulates
these polymorphisms to fine-tune accessibility of epitopes as they become targeted by the
host immune system.

7. Broad Neutralization Sensitivity of HCV Is Regulated by Global Envelope
Conformation Dynamics

Similarly to substitutions that increase broad NAb sensitivity as mentioned before
(A349D, N415D, N417S, D431G, D476G and I696N), our recent finding that removal of
N-linked glycans on E2 broadly modulated bNAb sensitivity (both positively and nega-
tively) [32] indicates a mechanism involving indirect protection from bNAbs rather than
direct steric shielding of specific neutralization epitopes on E1/E2, as was previously
suggested [31]. Interestingly, the broad NAb sensitizing or protective effect of individ-
ual E2 glycans as well as the broad effect of some escape substitutions is absent when
HVR1 is removed [32,42,103]. Thus, N-linked glycans, RAPs, and HVR1 seem to modulate
cross-epitope bNAb sensitivity through a shared mechanism. We speculated whether this
mechanism involved perturbation of global conformation dynamics of the HCV envelope
glycoproteins. Such dynamics have been described using X-ray scattering of proteins
in solution [114] and have been examined in flaviviruses such as dengue virus, West
Nile virus, and Zika virus. Here, antibody binding, neutralization, and cryo-electron
microscopy studies are providing convincing evidence of the existence of structurally dy-
namic virions where the envelope proteins exist in a dynamic equilibrium between “open”
(neutralization-sensitive) and “closed” (neutralization-resistant) states (e.g., envelope pro-
tein breathing) [115–117]. Expanding on previous HCV studies showing temperature
dependence of virus neutralization [41], we performed temperature-dependent neutral-
ization experiments with various modified HCVcc using multiple NAbs, which indicated
that a mechanism involving perturbation of global conformation dynamics of the HCV
envelope glycoproteins is responsible for modulating bNAb sensitivity [32,43]. Thus, it
seems likely that RAPs as well as N-linked glycans mediate their effects on NAb sensitivity
by regulating an existing HCV global envelope protein equilibrium from “open” to “closed”
states, in which the stability of the “closed” states depends on the presence of HVR1 [32,43].

7.1. Local Conformations of AS412 Correlate with Global States of E1/E2

E1 polymorphisms have so far not been linked to significant effects on antibody
sensitivity [110]. Accordingly, polymorphisms that broadly affect neutralization sensitivity
of HCV are located in different parts of E2 (mainly the N-terminal region), including
position 400–405 in HVR1, AS412, immediately downstream of HVR1, the front-layer
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region (aa 421–459) and the central β-sheet (aa 526–569) [43,110,111]. These polymorphisms
may cause local structural rearrangement which, in turn, seem capable of influencing global
conformation dynamics of E1/E2 to alter broad bNAb sensitivity. However, the impact of
RAPs on conformations of local E2 sites might be concealed by the inherent differences in
the global availability of these sites on E1/E2. Thus, to begin addressing this possibility, we
recently performed a comparison of relative neutralization sensitivity of antigen-binding
fragments (Fabs) with the corresponding MAbs targeting AS412 based on the idea that
Fabs, due to their smaller size, better penetrate “closed” more-resistant states of E1/E2 [43].
We compared MAb:Fab neutralization sensitivity of HCV to the antibodies HC33.4 and
AP33, which recognize an extended V-shaped form and a β-hairpin-like conformation,
respectively, of the conserved, but structurally flexible AS412 (Figure 2C). Interestingly, our
data were consistent with the hypothesis that broadly protective polymorphisms increased
the Fab vs. MAb potency of AP33, seemingly skewing the AS412 conformational space
towards β-hairpin-like conformations [43]. As several regions of E2 are characterized by
analogous conformational plasticity [118], similar phenomena would be of interest to test
for other bNAbs.

7.2. bNAb Resistance Influences Entry Dependency on HCV Co-Receptors

HCV interactions with the tetraspanin CD81 were recently proposed to occur via
two routes, either directly or with prior engagement of the co-receptor SR-BI [119], which
offers a partial explanation for why HCV isolates do not seem to depend completely on
SR-BI interaction for viral entry. Interestingly, we found that RAPs increased HCV entry
dependency on SR-BI, and that this correlated closely with the propensity of the virus to
interact with CD81, suggesting a role of SR-BI during virus entry in mediating transitions
from “closed”, bNAb-resistant conformational states of E1/E2 to “open” bNAb-sensitive
states, the latter of which are primed for CD81 engagement [43]. This provides an attractive
mechanistic explanation for the proposed existence of SR-BI dependent and independent
routes of infection. Consequently, the positive effect of increased RAP-mediated bNAb
protection might come at the cost of a more complicated entry pathway, which could help
explain why HCV patient isolates present such a variety of RAP compositions.

8. Conclusions and Future Directions

Modulation of bNAb sensitivity by envelope protein escape substitutions, RAPs,
HVR1, and N-linked glycans is not fully recapitulated on soluble E2 nor on cell-associated/
extracted E1/E2 protein [32,42,43,110,120], suggesting a dearth in relevant models for
studying antibody–E1/E2 interactions at a molecular level. This is possibly due to the
importance of interactions within higher-order structural forms of the E1/E2 heterodimer
on the virion surface [121,122], or because of a lack of virus-associated lipoproteins, as
exemplified by the fact that high-density lipoprotein (HDL) and ApoE have been shown to
increase differences in neutralization sensitivity [123–125].

The extensive efforts to understand HCV E1/E2 immunogenicity and, particularly,
immunogenic epitope clusters, has permitted the identification of important HCV epitopes
and antibodies useful for rational vaccine design. Such designs should ideally induce
potent bNAbs against epitopes with high barriers to resistance in order to prevent the
generation of vaccine-resistant variants. This phenomenon of vaccine resistance is observed
for HBV, and given the fact that HCV is an intrinsically much more variable virus, such
problems would be expected to be compounded [94]. A more salient comparison may be the
emergence of vaccine-resistant variants for the RNA virus, SARS-CoV-2, which is the global
health crisis emergent in 2020. Similarly to HCV E1/E2, the spike protein of SARS-CoV-2
has been found to accumulate escape mutations under the selective pressure of NAbs [126].
Further, many of the escape mutations identified in vitro have already been observed
in circulating human isolates [126,127]. Although it is not clear how antibody escape
would affect vaccine-induced immunity against SARS-CoV-2, the knowledge generated by
studying escape would be an important tool for future vaccine designs.
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AR3A and AR4A seem to represent promising vaccine targets as the bNAbs directing
against them are broadly neutralizing with high potency, protect in animal challenge
models and show high barriers to resistance. In contrast, for studied bNAbs targeting
AS412, domain B and E, and AR5, the barrier to resistance appears lower. However, escape
has not been studied for the majority of HCV NAbs and it is possible that other broadly
reactive NAbs with high barriers to resistance target these or other antigenic domains
or regions. In addition, it should be noted that finding ways in which to target multiple
conformations of E2, such as recently described E2 A and B conformations or even of the
linear E2 epitope AS412, may hinder HCV escape for this conserved epitope [43,128].

The study of antibody escapes in vitro using culture infectious viruses and in vivo in
permissive animal models remains the only reliable way to determine barriers to resistance
for HCV NAbs. These studies will be critical in selecting vaccine antigens for the develop-
ment of HCV vaccine candidates capable of inducing enduring cross-genotype protection
from HCV chronicity and impede the emergence of HCV escape variants.
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