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Dopamine (DA) containing midbrain neurons play critical roles in several psychiatric and
neurological diseases, including schizophrenia and attention deficit hyperactivity disorder,
and the substantia nigra pars compacta neurons selectively degenerate in Parkinson’s dis-
ease. Pharmacological modulation of DA receptors and transporters are well established
approaches for treatment of DA-related disorders. Direct modulation of the DA system
by influencing the discharge pattern of these autonomously firing neurons has yet to be
exploited as a potential therapeutic strategy. Small conductance Ca2+-activated K+ chan-
nels (SK channels), in particular the SK3 subtype, are important in the physiology of DA
neurons, and agents modifying SK channel activity could potentially affect DA signaling
and DA-related behaviors. Here we show that cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-
methyl-pyrimidin-4-yl]-amine (CyPPA), a subtype-selective positive modulator of SK chan-
nels (SK3 > SK2 > > > SK1, IK), decreased spontaneous firing rate, increased the duration
of the apamin-sensitive afterhyperpolarization, and caused an activity-dependent inhibi-
tion of current-evoked action potentials in DA neurons from both mouse and rat midbrain
slices. Using an immunocytochemically and pharmacologically validated DA release assay
employing cultured DA neurons from rats, we show that CyPPA repressed DA release in
a concentration-dependent manner with a maximal effect equal to the D2 receptor ago-
nist quinpirole. In vivo studies revealed that systemic administration of CyPPA attenuated
methylphenidate-induced hyperactivity and stereotypic behaviors in mice. Taken together,
the data accentuate the important role played by SK3 channels in the physiology of DA
neurons, and indicate that their facilitation by CyPPA profoundly influences physiological
as well as pharmacologically induced hyperdopaminergic behavior.
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KCNN

INTRODUCTION
Small conductance Ca2+-activated K+ channels (SK channels,
KCa2, encoded by KCNN genes) are widely distributed in the
central nervous system, with the SK1 and SK2 subtypes expressed
mainly in cortical/limbic areas and SK3 mostly in the striatum,
habenula, and in the monoaminergic nuclei (Sailer et al., 2004;

Abbreviations: aCSF, artificial cerebrospinal fluid; AP, action potential; CyPPA,
cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine; DA,
dopamine; ECL, enhanced chemiluminescence; i.p., intraperitoneal; mAHP,
medium duration afterhyperpolarization; NS8593, (R)-N -(benzimidazol-2-yl)-
1,2,3,4-tetrahydro-1-naphtylamine; SK, small conductance Ca2+ activated K+ con-
ductance; s.c., subcutaneous; SNc, substantia nigra pars compacta; TH, tyrosine
hydroxylase.

Sarpal et al., 2004). SK channels are voltage-insensitive K+ chan-
nels activated exclusively by a rise in the intracellular Ca2+ concen-
tration (Köhler et al., 1996) and, owing to their functional coupling
to Ca2+ influx sources, SK channels serve as important feedback
regulators of Ca2+ signaling in neurons. SK channels expressed
in the soma control excitability and firing patterns by generat-
ing a Ca2+-dependent afterhyperpolarization of medium duration
(mAHP) after single spikes or trains of action potentials, whereas
SK-mediated hyperpolarization of dendritic spines following exci-
tatory input accelerates Mg2+ block of NMDA receptors and thus
contributes to synaptic plasticity in the hippocampus (Stocker,
2004; Hammond et al., 2006). In dopaminergic (DA) neurons
of the substantia nigra pars compacta (SNc), cyclic activation of
SK3 channels is important for timing and stability of the slow
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endogenous pacemaker activity exhibited by these neurons (Wol-
fart et al., 2001), and SK inhibitors induce irregular or even burst
firing (Shepard and Bunney, 1988; Johnson and Wu, 2004; Waroux
et al., 2005; Ji and Shepard, 2006; Ji et al., 2009; Herrik et al.,
2010).

The relationship between firing rate and firing pattern of DA
neurons versus the intensity and quality of DA signaling in their
target areas, including the striatum and cortex, has long been
debated. A current belief is that DA exerts two main actions: a
tonic, far reaching influence caused by regularly firing DA neurons
slowly releasing DA from sites weakly influenced by DA uptake
such as varicosities and dendrites; and a phasic influence governed
by synchronized burst firing, mediating a synaptic DA transmis-
sion temporally and spatially restricted by the activity of the DA
transporter (Grace, 1991). Physiologically, burst firing/phasic DA
release is elicited by unexpected reward and is thought to repre-
sent a positive learning signal for goal-directed behaviors (Schultz,
2007). Recently, a unifying mathematical model of DA neuron
firing, release, uptake, and receptor activation confirmed that syn-
chronized bursting can be the mechanism that modulates the
balance between activation of D1 and D2 receptors (Dreyer et al.,
2010). A disturbed balance between tonic and phasic DA transmis-
sion has been proposed to underlie some DA-related disorders,
including schizophrenia, attention deficit hyperactivity disorder
(ADHD), and melancholic depression (Grace et al., 2007), and
may also play a role in addiction, in particular toward alcohol
(Hopf et al., 2011). Emerging evidence also suggest increased
bursting of DA neurons in Parkinson’s disease (Bishop et al.,
2010).

The importance of the SK3 channel in regulating the firing
pattern of DA neurons makes it a possible target for therapeutic
intervention in DA-related disorders. The structural and func-
tional similarity between SK channel isoforms suggest that subtype
selectivity may be difficult to obtain and present a potential obsta-
cle for drug development at this target (Wulff et al., 2007). Another
challenge is the translations from actions on the cloned channel to
the physiology of DA neurons, and the eventual influence on DA
transmission and behavior.

We have attempted to address some of these ques-
tions using cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-
pyrimidin-4-yl]-amine (CyPPA; Hougaard et al., 2007), the first
subtype-selective positive gating modulator of SK3 channels
(SK3 > SK2 > > > SK1, IK). Our results show that CyPPA strongly
reduces activity and excitability of DA neurons in slices, inhibits
the spontaneous release of DA from cultured DA neurons express-
ing SK3, and is capable of inhibiting hyperactivity and stereotypic
behaviors induced by methylphenidate in vivo.

MATERIALS AND METHODS
ANIMAL ETHICS AND PERMISSIONS
Procedures involving animals for the preparation of brain slices
and cell cultures were conducted in strict accordance with the
guidelines described in the Guide for Care and Use of Laboratory
Animals, the policies adopted by the Society for Neuroscience,
and the Danish Committee for Experiments on Animals. For the
behavioral studies, all testing procedures were in accordance with

the “Guide for the Care and Use of Laboratory Animals” (2011)
and the Danish Animal Experimentation Act.

CHEMICALS AND REAGENTS
CyPPA and NS8593 were synthesized at NeuroSearch A/S,
Ballerup, Denmark (Strøbæk et al., 2006; Hougaard et al., 2007).
For the in vitro experiments, CyPPA and NS8593 were prepared
as a 10 mM stock solution in dimethylsulfoxide (DMSO) and
stored in aliquots at −20˚C. The final concentration of DMSO
in the experimental solutions was ≤0.1%, a concentration which
had no effect on the activity of DA neurons in slices or on the
release of 3H-DA from cell cultures. For the in vivo experiments,
CyPPA was freshly dissolved in a 5% cremophor/glucose solu-
tion 1 h before testing. Methylphenidate hydrochloride (Sigma-
Aldrich, Copenhagen, Denmark) was freshly dissolved in a 5%
glucose solution 1 h before testing. CyPPA was administered
intraperitoneally (i.p.) and methylphenidate was given via the
subcutaneous (s.c.) route in injection volumes of 10 ml/kg.
Apamin was purchased from Sigma-Aldrich (Copenhagen, Den-
mark) and stored as a stock solution in acetic acid (0.01%).
Trypsin, DNAse, penicillin/streptomycin, poly-l-lysin, glutamine,
pargyline, ascorbate, cytosine arabinoside, and Dulbecco’s phos-
phate buffered saline (PBS) were all purchased from Sigma-
Aldrich (Copenhagen, Denmark). Neurobasal media and B-27
were obtained from Invitrogen (Nærum, Denmark) and 3H-
DA was acquired from PerkinElmer Life and Analytical Sciences
(Boston, MA, USA)

The primary antibodies used were a rabbit polyclonal anti-
SK3 antibody (1:100, APC-025) from Alomone Labs (Jerusalem,
Israel) and a monoclonal mouse anti-tyrosine hydroxylase anti-
body (1:150, clone LNC1) from Millipore (Copenhagen, Den-
mark). Secondary antibodies used were Alexa Fluor® 488 goat
anti-mouse IgG (1:800) and Alexa Fluor® 568 goat anti-rabbit
IgG (1:800) purchased from Invitrogen (Nærum, Denmark).
ProLong® Gold antifade reagent was obtained from Invitro-
gen (Nærum, Denmark). Paraformaldehyde was acquired from
Ampliqon (Skovlunde, Denmark). All inorganic salts were pur-
chased from commercial dealers and of the purest grade
available.

MIDBRAIN SLICES
C57BL/6J mice (9–15 post-natal days old, Charles River, Wilm-
ington, MA, USA) or Sprague-Dawley rats (10–13 post-natal days
old, Taconic, Ry, Denmark) were used for experiments. The ani-
mals were sacrificed by decapitation and the brains were rapidly
removed and placed in ice-cold modified artificial cerebrospinal
fluid (aCSF) consisting of (in mM): 124 NaCl, 4 KCl, 1.25
NaH2PO4, 1.2 MgSO4, 25.7 NaHCO3, 2.45 CaCl2, 0.15 ascorbate,
and 11 glucose bubbled with 95% O2 plus 5% CO2 (pH 7.35,
295–305 mOsm). Coronal sections (250 or 300 μm) containing
the SNc were prepared using a vibrating tissue slicer (WPI, Sara-
sota, FL, USA) or (Leica VT1200, Ballerup, Denmark), transferred
to a custom incubation chamber, and submerged in aCSF at room
temperature for a minimum of 1 h. Individual slices were sub-
sequently transferred to the recording chamber and superfused
(1.5 ml/min) with oxygenated aCSF at 30˚C.
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ELECTROPHYSIOLOGY
Whole-cell patch-clamp recordings were made from putative DA
neurons in the SNc visualized using an Olympus BX51WI micro-
scope equipped with a CCD camera (OLY-150IR). Borosilicate
patch pipettes were filled with a solution containing (in mM): 131
K-gluconate, 9 KCl, 20 HEPES, 0.1 EGTA, 5 Mg-ATP, and 0.5 GTP
TRIS (pH 7.2, osmolarity 280–290 mOsm, resistance 18–20 MΩ,
mouse slices) or 135 K-gluconate, 10 KCl, 10 HEPES, 1 MgCl2,
5 Mg-ATP, and 0.5 Na-GTP (pH 7.2, osmolarity 280–290 mOsm,
resistance 8–10 MΩ, rat slices). Current clamp recordings were
performed using an Axoclamp 2B (Molecular Devices, Sunnyvale,
CA, USA) or an EPC9 (HEKA, Lambrecht, Germany) amplifier.
Experimental control, data acquisition, and basic analyses were
done with the pCLAMP 10 (Molecular Devices) or Patchmas-
ter (HEKA) software packages. Input resistance was estimated by
measuring the change in membrane voltage produced by rec-
tangular current pulses of sufficient duration (250 ms) to fully
charge the membrane capacitance. In experiments involving cur-
rent pulse injections, cells were hyperpolarized slightly in order to
suppress spontaneous spiking during measurements. Compounds
were applied to the superfusate by exchanging the aCSF for a solu-
tion that differed only by the addition of a known concentration
of test compounds.

PREPARATION OF MIDBRAIN NEURON CULTURES
To obtain enough tissue for the release assay, DA neurons were
cultured from rats. The ventral part of the mesencephalon of
prenatal Sprague-Dawley pups (e14; Taconic; Gl. Ry, Denmark)
was dissected under 10 times magnification. The tissues were
placed in a HEPES buffered saline (HIB) containing (in mM):
129 NaCl, 5 KCl, 25 HEPES, 9.1 glucose, 0.04 phenol red (pH
7.4), and roughly split by forceps. After mild trypsination (0.2%
trypsin and 40 μg/ml DNAse at 37˚C for 15 min) the tissue was
centrifuged to remove enzymes and re-suspended in Neurobasal
media supplemented with 10% fetal calf serum and B-27, 2 mM
glutamine, penicillin/streptomycin (0.5 U/ml/0.5 μg/ml), and fur-
ther disaggregated by repeated mechanical trituration using a
steel needle and a disposable syringe. The cells were plated at
a final density of 0.5 × 106 cells/ml on poly-l-lysine (10 μg/ml)
coated cover slips for immunohistochemistry, and 48 well culture
plates (NUNC, Denmark) for the release assay. Cells were main-
tained in culture for 7–8 days in 5% CO2/95% O2 at 37˚C. After
2 days culturing, the media was changed to serum free media with
addition of 5 μM cytosine arabinoside. Under these conditions,
glial proliferation was reduced to less than 2% of the total cell
number.

IMMUNOCYTOCHEMISTRY, CONFOCAL MICROSCOPY, AND IMAGING
Cultured rat midbrain neurons (8 days in vitro), grown on glass
cover slips, were fixed with 2% paraformaldehyde in Dulbecco’s
PBS (pH 7.4) for 15 min at room temperature. Quenching was
performed by 30 min incubation with 0.1% Triton X-100/4% low-
fat milk powder in a wash buffer containing (mM): 100 Tris HCL
(pH 7.5) and 150 NaCl. The cells were then incubated for 1 h with
primary antibody diluted in wash buffer. Secondary antibodies
were diluted in wash buffer and applied for 45 min. After washing
the labeled cells were mounted in ProLong® Gold antifade reagent.

Laser scanning confocal microscopy was performed using the Leica
TCS SP2 system equipped with argon and helium–neon lasers. The
objective was 63X W, NA 1.2. Sequential scanning was employed to
allow separation of signals from the channels. The obtained images
were processed using Adobe Photoshop® CS2 version 9.0.2.

HEK293 CELL CULTURE AND TRANSFECTIONS
HEK 293 cells were grown in DMEM supplemented with 100 U/ml
penicillin, 100 mg/ml streptomycin, and 10% FCS at 37˚C in a
humidified atmosphere with 5% CO2. The cells were transiently
transfected with rat SK1, SK2, or SK3 in pXOOM (Peitersen et al.,
2006) using the Lipofectamine-Plus Reagent system (Invitrogen,
Nærum, Denmark). Two days after transfection, the cells were
scraped in ice-cold PBS and pelleted at 1000 rpm for 2 min. The cell
pellet was re-suspended in SDS sample buffer [2% (w/v) SDS, 5%
(v/v) β-mercaptoethanol, 0.02% (w/v) bromophenol blue, 10%
(v/v) glycerol, 12.5% (v/v) stacking gel buffer] and kept at −80˚C
until use.

WESTERN BLOTTING
Purified rat brain membranes (RBM; 30 μg/lane), total lysates of
midbrain neuron cultures and lysates from HEK293 cells express-
ing rSK1, rSK2, or rSK3 were separated on 4–15% SDS-PAGE poly-
acrylamide gels using the Bio-Rad Laboratories minigel system
(Hercules, CA, USA). Proteins were transferred onto a Hybond-
P PVDF transfer membrane (Amersham Biosciences, 0.45 μm)
in 25 mM Tris base, 200 mM glycine, 20% methanol using a
mini transblot (Hercules, CA, USA). After transfer, the mem-
branes were incubated for 1 h at room temperature in blocking
buffer (PBS containing 4% low-fat milk powder). The mem-
brane was incubated overnight at room temperature in block-
ing buffer containing anti-SK3 antibody (1:300 dilution). Bound
antibody was revealed with HRP-conjugated donkey anti-rabbit
antibody (1:10000, Jackson immunoresearch Laboratories, West
grove, PA, USA) in blocking buffer for 45 min, followed by visu-
alization with a homemade ECL solution. Immunoblots were
exposed on hyperfilm ECL (Amersham Biosciences, Brøndby,
Denmark).

DOPAMINE RELEASE
Cultured rat brain neurons were incubated for 45 min (5%
CO2/95% O2 at 37˚C) in a buffered salt solution containing (in
mM): 120 NaCl, 5 KCl,1, 2 CaCl2, 1.2 MgSO4, 1 ascorbic acid, 5
glucose, pargyline (40 mg/l; pH 7.4) supplied with 50 nM 3H-DA,
and then washed three times at room temperature. After addi-
tion of 200 μl buffer for 5 min at 37˚C, 200 μl was sampled and
counted (Tri-Carb 2800TR, Perkin Elmer) for estimation of basal
DA release (B). Stimulated release (S) was performed by increas-
ing the KCl concentration to 25 mM (1:1 exchange with NaCl) or
inclusion of the pharmacological agents in question. Finally, the
cells were lysed by addition of 200 μl SDS (1%) for 1 h, and there-
after collected and counted (L). The relative release was calculated
as the difference between the fraction of stimulated release and the
fraction of basal release (Anderson et al., 2009) after the following
formula:

Relative release =
(

S

S + L

)
−

(
B

B + S + L

)
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BEHAVIORAL STUDIES
Female NMRI mice (24–26 g) obtained from Taconic (Ry, Den-
mark) were used for behavioral testing. After arrival, mice were
allowed a minimum of 7 days acclimatization prior to testing.
The subjects were housed eight per cage in Makrolon III cages
(20 cm × 40 cm × 18 cm), with food and water available ad libi-
tum on a 12/12 h light/dark cycle with lights-on at 6 am. All
cages were enclosed within a Scantainer (Scanbur A/S, Køge, Den-
mark). Group housing and isolation from males were chosen to
prolong estrus above the normal 4–5 days (Ma et al., 1999), and
to promote synchronous cycling (Koyama, 2004). Experiments
were performed between 9:00 and 16:00 h in temperature and
humidity-regulated rooms (22–24˚C, relative humidity: 60–70%),
and each animal was used only once.

Exploratory activity was evaluated in test cages (20 cm × 40 cm
× 18 cm, TSE Systems, Bad Homburg, Germany) equipped with
infrared sensors (6 × 2) for automatic acquisition of animal move-
ments. Mice were individually placed in cages, and locomotor
activity was recorded via interruption of infrared sensor pairs
and processed on a computer (ActiMot software, TSE Systems,
Bad Homburg, Germany). The testing period was set to 30 min in
order to reveal the effect of compound on active exploratory loco-
motor activity. Mice were injected with CyPPA or vehicle 15 min
before testing.

Methylphenidate-induced hyperactivity was assessed by using
the same apparatus as described for the exploratory activity exper-
iments. Mice were injected (i.p.) with vehicle or CyPPA 15 min
before administration of methylphenidate (2.5 mg/kg or saline,
s.c.) and locomotor activity was recorded immediately thereafter. A
60 min test period was chosen since the effects of methylphenidate
on motility are of slow onset and peak at approximately 30 min
following s.c. administration.

In a separate group of experiments, methylphenidate-
induced stereotypic behavior was induced by administration of
methylphenidate (40 mg/kg or saline, s.c.), 15 min after the mice
were treated with CyPPA or vehicle (i.p.). Animals were then
placed in transparent Makrolon cages (25 cm × 30 cm × 12 cm),
fitted with a corrugated cardboard floor. The degree of stereotypic
gnawing of the corrugated cardboard floor was scored after 60 min
(rating scale: 0–6; 0 = absence of gnawing; 6: pronounced gnaw-
ing of the cardboard floor) by a trained observer blinded to the
treatment groups.

STATISTICAL ANALYSES
Data are presented given as means ± SEM. Significance testing
was performed using Student’s t -test, paired t -tests, or two-way
analysis of variance (ANOVA) followed by Tukey or Holm Sidak
multiple comparison tests, as appropriate. Data were considered
statistically significant when P < 0.05.

RESULTS
MIDBRAIN SLICE ELECTROPHYSIOLOGY
CyPPA is a positive gating modulator that concentration-
dependently increases the apparent Ca2+-sensitivity of recom-
binant SK3 channels (EC50 = 5 μM), and to a lesser degree SK2
channels (EC50 = 13 μM), with limited effect on SK1 and IK
channels (Hougaard et al., 2007). However, the compound also

inhibits Nav channel currents from rat dorsal root ganglion neu-
rons at slightly higher concentrations (IC50 = 11 μM). In order to
elucidate which was the predominant effect on DA neurons we per-
formed current clamp recordings from visually identified SNc DA
neurons in midbrain slices. DA neurons were selected on the basis
of well established characteristics including size, shape, presence
of spontaneous activity, and a hyperpolarization-induced depo-
larizing current, I h, mediating a pronounced “sag” response. We
first explored the effect of CyPPA in slices from C57BL/6J mice.
The DA neurons exhibited a spontaneous, slow (1.9 ± 0.5 Hz,
n = 16) pacemaker discharge characterized by broad action poten-
tials (>2.5 ms measured at 1/2 AP amplitude) separated by deep
afterhyperpolarizations (AHP), and slowly ramping depolariza-
tions leading to the next spike, as illustrated in Figure 1A (black
trace). Application of CyPPA, at a concentration of 10 μM, quickly
slowed the firing frequency and eventually silenced the neuron
completely (blue trace). Co-application with the negative gating
modulator NS8593, which decreases the apparent Ca2+-sensitivity
of SK channels, (green trace) reestablished regular spontaneous
pace-making at a slightly lower frequency than the control situa-
tion. Subsequent abolishment of all SK channel activity, by adding
the SK channel blocker apamin (300 nM), resulted in irregular
firing at somewhat higher frequency (red trace). The effect of
CyPPA on the spontaneous firing was concentration-dependent
and Figure 1B shows the concentration-response curve compiled
from a series of independent experiments. An EC50 around 2 μM
is inferred from this curve. The effect on evoked isolated AP’s is
shown in Figure 1C. Examples were obtained before and during
application of 10 μM CyPPA, after co-application with NS8593,
and after further addition of apamin. CyPPA caused a pronounced
increase in the duration of the mAHP, whereas the AHP ampli-
tude was less affected. Co-application with NS8593 just blunted
the CyPPA effect, whereas apamin completely abolished the SK-
mediated component of the AHP, again showing limited effect
on the early peak AHP. Note that both inhibitors spared the
fAHP immediately following the AP. As shown in the Appen-
dix (Figure A1 in Appendix), very similar effects of CyPPA and
apamin were obtained with rat DA neurons, securing that a possi-
ble species variation in the basic pharmacology of DA neurons is
not an issue.

The effects of increased SK channel activation on DA neu-
rons exposed to an increased excitatory drive, were studied by
eliciting trains of action potentials by current injections of vary-
ing durations (200 or 800 ms) and intensities (0.05–0.5 nA). We
investigated the effects on the spike frequency adaptation at the
plateau depolarization, as well as the effect on the post train AHP
(ptAHP). Figure 2 (left trace) illustrates the typical response of
a DA neuron to a 0.5 nA, 200 ms stimulation eliciting a train of
four spikes with increasing mAHPs, increasing interspike inter-
vals, and a pronounced ptAHP. Application of CyPPA (10 μM)
abolished all spikes, except the initial one and prolonged the
ptAHP. During co-application of CyPPA and apamin (300 nM),
the spike trains returned, now without visible mAHPs or increas-
ing interspike intervals, and only with a very slowly developing
ptAHP (middle trace) that was not present after single AP’s. The
compiled experiments are analyzed in Figure 3. For both the
short and long depolarizing pulses, the number of evoked spikes
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FIGURE 1 | CyPPA inhibits spontaneous activity via. prolongation of

the apamin-sensitive medium afterhyperpolarization (mAHP) in SNc

DA neurons in mice midbrain slices. (A) Typical pacemaker-like activity
(black trace), is inhibited by superfusion with 10 μM CyPPA (blue trace),
which increases mAHPs and eventually silences firing activity.
Co-administration with 10 μM NS8593 resumes pacemaker firing (green
trace), whereas apamin (300 nM) caused a slightly further increase in firing
frequency and more irregular firing. (B) Concentration-response curve of
spontaneous firing activity before and after CyPPA superfusion (control, 1,
3, 10 μM, n = 7, 2, 3, and 5 respectively. One-way ANOVA followed by Holm
Sidak multiple comparison test. *P < 0.05 and ***P < 0.001). (C) Overlain
single spikes before and after CyPPA (10 μM), CyPPA + NS8593 (10 μM),
and CyPPA + NS8593 + apamin (300 nM). Color coding as in (A). Note the
prolongation of the mAHP by CyPPA, which is reduced by NS8593, and
completely blocked by apamin.

increased with the current intensity and decreased with increasing
concentrations of CyPPA (Figures 3A,B, left). The inhibitory
effects of CyPPA on AP generation were more pronounced the
higher the stimulation intensity and the longer the stimulation
duration. At the highest current intensities and 10 μM CyPPA the
effects were significant in both short and long pulse experiments
[200 ms, 0.5 nA: F(3,21) = 4.19; P = 0.018 and 800 ms, 0.2 nA;
F(3,15) = 3.54; P = 0.041, respectively). The effects of 10 μM
CyPPA on amplitude and duration of ptAHP are shown in the mid-
dle and right panels of Figure 3. CyPPA increased the ptAHP peak
amplitude by approximately 1.3 and 1.6 fold, respectively (200 ms:
t 4 = −2.797, P = 0.049; 800 ms: t 2 = −4.507, P = 0.046). CyPPA
even more pronouncedly increased the duration of the ptAHP (3.5
and 2 fold, quantified as the 50% decay time from the peak value)
in both the short and the long pulse experiments (200 ms, 0.5 nA:
t 4 = −4.702; P = 0.009; 800 ms, 0.2 nA: t 2 = −4.3427; P = 0.047).

We also explored the ability of CyPPA to revert bursting of DA
neurons experimentally induced by NS8593 (see Discussion for
context). Figure 4 shows a typical example of NS8593-induced
bursting characterized by long plateau depolarizations with accel-
erating AP activity suddenly interrupted by strong hyperpolariza-
tions, which may well correspond to the non SK-mediated ptAHP
activated by strong depolarizations (Figure 2). Co-application of
10 μM CyPPA occluded this conductance and caused pacemaker
rhythmicity to be reestablished at a slightly lower activity level than
observed before application of NS8593.

In summary, the prevailing effect of CyPPA on DA neurons
from both rat and mice SNc, is decreased spontaneous firing,
increased duration of the mAHP, causing spike frequency adapta-
tion, and a prolonged ptAHP following long depolarizing stimuli;
all effects clearly attributable to positive modulation of apamin-
sensitive SK channels. The ability of CyPPA to revert the effect
of a negative SK channel modulator further strengthens this con-
clusion. The slight depression of AP heights in some experiments
with 10 μM CyPPA, for example the co-application experiment
with NS8593, may well reflect a slight Nav channel block under
these conditions.

DOPAMINE RELEASE FROM CULTURED MIDBRAIN NEURONS
In order to verify the effect of the altered excitability/firing pattern,
and to determine its consequences on release of DA from nerve
terminals/dendrites, we established and validated a DA release
assay based on a primary culture of neurons derived from rat
embryonic midbrain. On average, 10% of the neurons in the cul-
ture were tyrosine hydroxylase (TH) positive (results not shown),
and were identified as DA neurons. To examine whether SK3 was
expressed in these cultures, Western blot analysis using an SK3
specific antibody was performed. A band of approximately 70 kDa
was detected in midbrain culture lysates documenting expression
of SK3 in the cultures. A band of similar size was observed in RBM
lysates and HEK293 cells transfected with rSK3, but was absent
in HEK293 cells transfected with rSK1 and rSK2, demonstrating
specificity of the SK3 antibody (Figure 5A). To demonstrate pre-
served expression of SK3 in identified cultured DA neurons, we
performed co-immunostainings with antibodies directed against
SK3 and TH (Figure 5B). TH+ neurons displayed SK3 immunore-
activity with the densest SK3 staining associated with the soma,
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FIGURE 2 | CyPPA inhibits evoked spike trains and prolongates the post

train afterhyperpolarizations (ptAHP) in midbrain slices from mice. (A)

Representative spike trains evoked by a 200 ms, 0.5 nA current injection
under control conditions (left), after 10 μM CyPPA (middle), and with

co-application of 300 nM apamin (right). The dotted line indicates the V m

(−56 mV) prior to first control current injection. (B) Overlays highlighting the
prolongation of the ptAHP by CyPPA, and the presence of a slow apamin
insensitive component.

FIGURE 3 | Summary of the effects of current pulse intensity [(A):

200 ms; 0.1, 0.25, 0.5 nA; (B): 800 ms; 0.05, 0.1, 0.2 nA] and CyPPA

concentrations (1, 3, and 10 μM) on DA neuron activity,

ptAHP-amplitude, and -duration. The number of spikes decrease
concentration-dependently most obviously at the longer pulses, reflecting the

significance of increasing mAHP (n = 8, 3, 4, 5, 200 ms pulse; n = 6, 3, 3, 3,
800 ms pulse). Middle panels, peak amplitude of ptAHP compared with
baseline membrane potential (V m) before and after 10 μM CyPPA (n = 3).
Right panels, time for 50% repolarization from peak of ptAHP to baseline V m

before and after 10 μM CyPPA (n = 3). *P < 0.05 and **P < 0.01.

where clustered as well as diffuse, possibly intracellular, staining
was observed. The dendrites also revealed a clustered staining pat-
tern in contrast to the axons of TH+ neurons where very little SK3
immunoreactivity was detected. Some staining for SK2 was also
observed in the culture, but no consistent expression of SK2 was
associated with TH+ neurons (data not shown).

The cultured DA neurons were capable of accumulating 3H-
DA, which could be inhibited by 1 μM benztropine showing
specific uptake mediated by the DA transporter (data not shown).

When the DA neurons were subsequently kept under standard
conditions, a basal release of DA was observed probably due to
preserved spontaneous firing of these neurons in culture. Depo-
larization of the membrane by increasing the extracellular K+
concentration to 25 mM stimulated the DA release by 2.5 fold
(Figure 5C). In contrast, TTX (1 μM) or Cd2+ (30 μM) inhib-
ited the spontaneous release showing that Nav-dependent AP
formation and Ca2+ influx are important. Figure 5D shows
the effects of specific dopaminergic reference compounds. The
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cultures responded to the DA antagonist haloperidol (3 μM)
by a threefold stimulation of DA release, most likely indicating
inhibition of a tonically active D2 auto-receptor, resulting in an

FIGURE 4 | CyPPA reverses the effect of the negative SK channel

modulator, NS8593, on the spontaneous activity of rat SNc neurons in

midbrain slices. Pacemaker-like AP firing recorded under control conditions
(upper panel) is changed into bursting upon application of 10 μM NS8593
(middle panel). Note the progressive decrease in spike amplitude during the
plateau phase and the sudden hyperpolarizations separating the bursts.
Co-application of CyPPA (10 μM) decreases the number of spikes, reduces
the duration of the plateau and increases the precision of action potential
firing.

increase in firing rate and DA release. Consistently, addition of
10 μM quinpirole, a D2 receptor agonist, repressed dopamine
release. Figure 5D also shows the effect of increasing concen-
trations of CyPPA; at 3 μM little effect was detected, whereas 10
and 30 μM showed a significant inhibition of spontaneous DA
release.

BEHAVIORAL STUDIES
In order to assess the effect of CyPPA on spontaneous exploratory
locomotor activity, the compound was administered to otherwise
un-treated NMRI mice exposed to a novel environment (see Mate-
rials and Methods for details). As shown in Figure 6A, CyPPA
significantly reduced the total activity level over the 30 min test
session at a dose of 30 mg/kg [F(3,167) = 31.5, P < 0.001], but was
devoid of effect at doses of 3 and 10 mg/kg. To elucidate a possible
increased effect of CyPPA in hyperactive animals, we also tested the
compound in a methylphenidate-induced hyperactivity paradigm
(Figure 6B). A relatively low dose of methylphenidate (2.5 mg/kg,
s.c.) engendered a significant increase in activity over the 60 min
test period (P < 0.001). Methylphenidate-induced hyperactivity
was attenuated by pretreatment with CyPPA at doses of 10 and
30 mg/kg [F(4,407) = 45.9, P < 0.001 for both], but was with-
out significant effect at 3 mg/kg. Finally, the effect of CyPPA on
dopaminergic stereotypies was tested. As shown in Figure 7, a
high dose of methylphenidate (40 mg/kg, s.c.) induced a signifi-
cant increase in stereotypic behavior (P < 0.001) over the 60 min
test period. Methylphenidate-induced stereotypic behavior was
significantly reduced by CyPPA at doses of 10 and 30 mg/kg
[F(4,25) = 13.67,P < 0.05 and P < 0.001, respectively], but was
devoid of effect at 3 mg/kg.

FIGURE 5 | CyPPA inhibits spontaneous and evoked release of

dopamine formTH/SK3 positive cultured rat midbrain neurons. (A)

Western blot detection of SK3 in rat midbrain cultures. Extracts of HEK293
cells transiently transfected with rSK1, rSK2, and rSK3 and adult rat brain
membranes (RBM) as well as lysates from cultured midbrain neurons were
separated on 4–15% SDS-PAGE and immunoblotted with anti-SK3 antibody.
A band of approximately 70 kDa was detected in midbrain cultures, RBM
lysates, and HEK293 cells transfected with rSK3. This band was absent in
lanes loaded with HEK293 cells expressing rSK1 and rSK2. (B)

Immunodetection of SK3 subunits in rat midbrain cultures. Cultured

midbrain neurons (8 days in vitro) were double-labeled for SK3 and tyrosine
hydroxylase (TH). In TH-positive dopaminergic neurons, the SK3 subunit
displayed a primarily somatic–dendritic localization whereas little
immunoreactivity was associated with axons (arrow). Scale bar 20 μm. (C)

Basal release and stimulated release with 25 mM KCl or inhibited release
with 30 μM Cd2+ and with 1 μM TTX. (D) Basal release and stimulated
release with 3 μM haloperidol and inhibited release with 10 μM quinpirole.
Blue bars represent inhibited release with increasing concentrations of
CyPPA (*P < 0.05, **P < 0.01). The data presented are representative of
three independent experiments.
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FIGURE 6 | CyPPA depresses explorative activity and

methylphenidate-induced hyperactivity in mice. (A) Effect of CyPPA
on basic explorative activity. Data are expressed as mean total
distances traveled + SEM. Mice were injected with vehicle (i.p.; open
bar) or CyPPA (3, 10, and 30 mg/kg, blue bars) 15 min before testing.
***P < 0.001 versus vehicle treated group (two-way ANOVA followed
by Tukey’s multiple comparison test, n = 7). (B) Effects of CyPPA on

methylphenidate (METH)-induced hyperactivity. Data are expressed as
mean total distances traveled + SEM. Mice were dosed (i.p.) with
vehicle (open bar) or CyPPA (3, 10, and 30 mg/kg) 15 min before
administration of METH (2.5 mg/kg, s.c.) or saline, respectively (blue
bars). ###P < 0.001 versus vehicle treated group, ***P < 0.001 versus
METH treated group (two-way ANOVA followed by Tukey’s multiple
comparison test, n = 7).

FIGURE 7 | CyPPA counteracts methylphenidate-induced stereotypies

in mice. Effects of CyPPA on methylphenidate (METH)-induced stereotypy.
Data are expressed as mean total gnawing score + SEM. Mice were dosed
(i.p.) with vehicle or CyPPA (3, 10, and 30 mg/kg) 15 min before
administration of METH (40 mg/kg, s.c.) or saline, respectively (blue bars).
###P < 0.001 versus vehicle treated group, #P < 0.05, ***P < 0.001 versus
METH treated group (one-way ANOVA followed by Tukey’s multiple
comparison test, n = 6).

DISCUSSION
This study addressed the effect of the SK3/SK2 selective posi-
tive modulator CyPPA on DA neurons from rats and mice. The
combined results extend previous studies asserting the expression
and critical role of SK3 channels in the physiology and phar-
macology of these neurons (Wolfart et al., 2001; Sailer et al.,
2004; Sarpal et al., 2004), since CyPPA-enhancement of the
SK3 Ca2+-sensitivity altered firing properties and DA release
from midbrain neurons, effects that most likely also explain the
observed dampening of dopaminergic hyperactivity induced by
methylphenidate.

CyPPA concentration-dependently (EC50 = 2 μM) reduced the
autonomous firing rate of DA neurons in coronal slices from both
mice and rat midbrains, with an essentially full silencing at a con-
centration of 10 μM. Paying specific attention to the previously
described off-target inhibition of Nav-channels currents from rat
dorsal root ganglion neurons, we document here, using several
lines of evidence, that the dominating effect of CyPPA is attrib-
utable to SK3 channel facilitation. Firstly, cells silenced by CyPPA
returned to a spontaneous firing mode upon co-superfusion with
NS8593, a negative SK channel gating modulator, or apamin, a SK
channel blocker. In addition, CyPPA prolonged both the duration
of the mAHP following single autonomous – or evoked action
potentials, as well as the ptAHP following trains of spikes elicited
by constant current pulses of varying intensity, all in an apamin-
sensitive manner. These results converge with the finding that
1-EBIO, the prototype SK/IK channel activator, mainly slows the
off-rate of Ca2+ from the SK channel, thereby extending the time
the channel stays open upon a sudden Ca2+ removal (Pedarzani
et al., 2001), a condition that mimics the local Ca2+-clearance
following an action potential. Furthermore, CyPPA reduced the
frequency of current-evoked APs in an activity-dependent manner
(more effectively the higher the stimulation frequency), a mode-
of-operation closely mimicking the action of 1-EBIO and NS309,
the unselective SK channel activators that have previously been
characterized on DA neurons (Wolfart et al., 2001; Ji et al., 2009).
Finally, in our analysis we also specifically exploited the fact that, in
terms of mode-of-action, CyPPA behaves as a classic positive gat-
ing modulator of SK3 channels, including its mode-of-interaction
with negative gating modulators (compounds that decrease the
apparent Ca2+ affinity). As shown previously for NS309, the effect
of CyPPA dominates the effect of a co-applied negative gating
modulator (NS8593; Strøbæk et al., 2006; Ji et al., 2009; Jenk-
ins et al., 2011). In the current context, we specifically showed
that the firing pattern of a DA neuron being switched to sta-
ble bursting by addition of NS8593 was reverted to near normal
pace-maker rhythmicity by co-applying CyPPA. Collectively, we
therefore conclude that CyPPA’s main effect on the firing pattern
is via its potentiation of SK3 channel activity.
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The functional consequences of positive SK channel modula-
tion on DA release was assessed using an 8 day midbrain neu-
ronal culture that contained TH+ neurons and which appeared
to retain some level of spontaneous activity. These presumptive
DA neurons expressed SK3 as validated by co-immunostaining
for TH and SK3 proteins. This was supported by functional
measurements showing specific (benztropine sensitive) 3H-DA
uptake via the DA transporter and a continuous Ca2+-dependent
and TTX/Cd2+-sensitive 3H-DA release from these neurons. We
interpret this as the basal DA release from autonomously firing
pace-making DA neurons, a firing mode previously described for
isolated dopaminergic neurons (Puopolo et al., 2007). In accor-
dance, imposing constant depolarizing conditions by addition of
a higher K+-concentration accelerated the TTX/Cd2+-sensitive
release as expected. The DA neurons expressed functional D2
receptors as well, since the cultures responded to both the D2
receptor antagonist haloperidol with an increase in the 3H-DA
release, while the D2 agonist quinpirole attenuated spontaneous
DA release. These effects further imply correct coupling to G-
protein coupled potassium channels (GIRKs), since activation of
D2 auto-receptors increases GIRK conductance, hyperpolarizes
the cell membrane, and diminish the firing rate of the DA neuron.
Conversely, by blocking the tonic inhibitory effects of endoge-
nously released dopamine at DA auto-receptors, a likely outcome
given the non-flow release assay used here, haloperidol would
presumably have caused an increase in firing and a correspond-
ing increase in DA release (Lacey et al., 1987; Pucak and Grace,
1996).

For comparison with conventional DA neuron pharmacology,
we also tested the effect of CyPPA on the pharmacologically val-
idated cultures. CyPPA clearly inhibited the autonomous 3H-DA
release in a concentration-dependent manner (EC50 ∼ 10 μM)
and the maximal concentration of 30 μM was as efficacious as
10 μM of the D2 agonist quinpirole. It is tempting to conclude
that this effect is solely due to SK3 activation, but the effective
concentrations are slightly higher than those used in the elec-
trophysiological experiments and a contribution from the Nav

channel inhibition cannot be ruled out. However, since relatively
high concentrations of both haloperidol and quinpirole are also
needed to obtain maximal efficacy (D2 receptor affinities in the
nanomolar range), the release assay may uniformly be less sensitive
to pharmacological interference.

Based on the observed effects in slices and neuronal cul-
tures, we investigated whether CyPPA could attenuate clas-
sic hyperdopaminergic effects of psychostimulants in vivo.
Methylphenidate blocks DA and norepinephrine (NE) reuptake
transporters, causing an increase in extracellular levels of these
neurotransmitters, but exerts a less potent effect on serotonin
uptake (Kuczenski and Segal, 1997). Using in vivo single unit
electrophysiology of DA neurons, methylphenidate, and other
psychostimulants – have been shown to elicit complex electrophys-
iological responses, with both dampening and excitatory/burst-
inducing elements (Shi et al., 2004). Behaviorally, methylphenidate
promotes a dose-dependent profile that typically manifests as
hyperactivity at lower doses, and marked stereotypic behav-
ior (including biting/gnawing, sniffing, licking) at higher doses
(Randrup et al., 1988). Systemic administration of CyPPA was

found both to diminish methylphenidate-induced hyperactivity
and stereotypic behavior at doses that did not significantly affect
exploratory activity. Although SK3 channels are also expressed
on the NE-containing neurons in the locus coeruleus, the mech-
anisms underlying the observed behavioral changes in response
to CyPPA are most likely due to a dampening of DA activity in
the nucleus accumbens and in nigrostriatal and ventral tegmental
regions thought to be critical for the expression of hyperactivity
(Kelly and Iversen, 1976) and stereotypic behavior, respectively.

Since the founding description of CyPPA as a subtype-selective
SK3/SK2 channel activator (Hougaard et al., 2007) only a few stud-
ies focusing on its effects in the DA system have been published.
(Benítez et al., 2011) showed that the non-selective 1-EBIO as well
as CyPPA, two chemically very disparate molecules, were able to
counteract AMPA neurotoxicity on DA neurons in culture. The
protective role of SK channels was further strengthened by show-
ing that both the peptide blocker apamin and the small molecule
negative modulator NS8593 accelerated the death of DA neurons.
At the in vivo level it has been shown that locally applied 1-EBIO
counteracted the loss of TH+ neurons after 6-OHDA treatment,
whereas apamin accelerated the loss (Aumann et al., 2008). Con-
sidering more broadly the possible role of SK channels in the
protection of DA neurons, it is also worth noting a recent study
(Bishop et al., 2010) showing that DA neurons from genetically
altered mice being deficient in the Parkinson’s disease “suscepti-
bility genes” PINK1 and HtrA2/Omi exhibit increased excitability
and bursting specifically due to down regulated SK3 channel
expression or activity. Thus, positive SK3 channel modulation may
not only acutely affect DA neuron hyperactivity as demonstrated
here, but it may also exert longer lasting neuroprotective effects on
these cells.

It is worth noting that the idea of neuroprotection via SK chan-
nel facilitation is not necessarily limited to DA neurons. Using
cortical neurons, it has recently been shown that NS309 was
able to counteract excitotoxic Ca2+ signaling induced by glu-
tamate or NMDA, and that NS309 could reduce the ischemic
damage in vivo following occlusion of the middle cerebral artery
(Dolga et al., 2011). In support of SK2 channels being co-
expressed and functionally coupled with NMDA receptors in
dendritic spines, a recent study furthermore concluded (Allen
et al., 2011) that 1-EBIO was neuroprotective as well, most
likely by strengthening of the negative feedback of SK2 chan-
nel activation on NMDA receptors. Given the important role of
NMDA receptors in hippocampus-mediated learning and mem-
ory processes, it may not be surprising that both CyPPA and
1-EBIO (Vick et al., 2010) have been reported to impair mem-
ory encoding. The conclusion is that the SK3/SK2 selectivity
ratio of only 2.5 as demonstrated for CyPPA (Hougaard et al.,
2007) is probably too small to obtain a pure stimulation of SK3-
dependent processes in the brain. A preferable therapeutic drug
for DA-related disorders should therefore probably be a mole-
cule even further optimized in the direction of higher SK3/SK2
selectivity.
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APPENDIX

FIGURE A1 | CyPPA inhibits spontaneous activity via prolongation of

the apamin-sensitive mAHP in SNc neurons in rat midbrain slices. (A)

Typical pacemaker-like activity (upper panel) is altered by superfusion with
3 μM CyPPA (second panel), which increases the mAHP and reduces
spontaneous action potential firing, an effect that is reversed by prolonged
washing (third panel). Apamin (300 nM) reduces the mAHP and changes
the firing pattern from pacemaker-like to bursting (lower panel). (B) Single
spikes recorded in the absence of compound (control) or in the presence of
3 μM CyPPA or 300 nM apamin (control trace shown as dimmed for
comparison). Note the prolongation of the mAHP by CyPPA and its block by
apamin.
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