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with respiratory diseases
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Efficient identification of volatile organic compounds (VOCs) is essential for the rapid diagnostication of

respiratory diseases. By detecting specific biomarkers associated with different pathologies one may

distinguish between tuberculosis, nosocomial pneumonia, Aspergillus fumigatus, influenza and SARS-

CoV-2 virus infections. Phosphorene and MoS2 are potential candidates from the class of 2D graphene-

like materials, which can be used as active layers for sensing elements. However, as the target molecules

poorly adhere to the pristine layers, binding centers are created by introducing substitutional impurities.

The adsorbed VOCs induce modifications in the electrical properties of the customized active layers. For

each biomarker and a sequence of substitutional impurities, a pattern of conductivities is obtained, which

enables the detection of an unknown test specimen. Exploring multiple biosensor configurations we find

an optimal design yielding a considerable selectivity for the five biomarker compounds.
1 Introduction

Rapid diagnostication of respiratory diseases is of major
interest for reducing both time and resources for clinical
investigations. It relies on identifying specic biomarkers as
volatile organic compounds (VOCs) from the exhaled air,1 which
have been identied for specic diseases and are preferred due
to their non-invasive character. VOCs analysis has been used in
the diagnostication of pneumonia,2 lung cancer,3 interstitial
lung diseases,4 microbial infections5 and other pathologies via
systemic circulation.6

The standard methods for identifying VOCs include tech-
niques based on mass spectroscopy, like the high-sensitivity,
high-selectivity gas chromatography-mass spectrometry (GC-
MS),7–9 selected ion ow tube technique mass spectrometry
(SIFT-MS)10 and proton-transfer-reaction mass spectrometry
(PTR-MS),11 as well as laser spectroscopical methods,12 which
are rather complex and costly techniques. Besides these phys-
ical detection methods, the chemical routes are gaining
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attention along with the development of new nanomaterials
suitable for biomolecule sensing. These methods are summa-
rized in a recent review.13

Recent studies indicate the possibility to identify organic
molecules absorbed on graphene or graphene-like materials,
based on the modications induced in the electronic properties
of the active layers, which can be evidenced in the conduction
properties, capacitive effects and optical absorption.14–17 Pris-
tine graphene is known for its remarkable conductive proper-
ties, which can be only slightly inuenced by adsorbed
molecules. In contrast, nite-gap graphene-like materials like
phosphorene (BP) and MoS2 offer better prospects. However,
just like graphene, these van derWaals materials have a binding
decit due to the relatively weak interaction between the
monolayers and the targeted molecules. In this case, the typical
strategy is to induce binding centers by introducing point-
defects like vacancies or substitutions. Several theoretical
studies were focused on modifying graphene (GR), for instance,
using transition metal substitutions for sensing glucose14 or
graphene oxide for VOC detection.16 Electrochemical sensors
and biosensors using various forms of graphene have been
developed, such as noncovalently or covalently functionalized
GR composites, structurally engineered GR, vertical and porous
GR, hydrogels, aerogels and etched GR.18 Also, other carbon-
based structures like the B4C3 monolayer were employed in
the detection of various VOCs such as methanol (CH3OH),
formaldehyde (H2CO), toluene (C7H8) and acetone (C3H6O).19

Besides graphene, several families of graphene-like mate-
rials are in the focus as active layers in nanoelectronic devices,
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owing to their nite and tunable band gaps. In particular, BP
and MoS2 have intermediate band gaps of ∼0.3–1.5 eV20 and
0.9–1.6 eV,21 respectively. This variation is attributed to the
differences in the number of layers, where the largest band gap
corresponds to the monolayer form of each material. In
contrast, the hexagonal boron nitride (hBN) with a wide band
gap of ∼5.9 eV can be used as an insulating support layer.22

An early study employing rst-principles calculations has
indicated the potential of phosphorene for selective adsorption
and distinct I–V response for detecting CO, CO2, NH3, NO, and
NO2 gas molecules.23 Soon aer, the realization of
phosphorene-based gas sensors was experimentally proved for
NO2 detection.24 Aerwards, various modications of phos-
phorene and other phosphorene allotropes were investigated
for sensing specic organic molecules. Pt-decorated phos-
phorene was shown to provide a propitious room temperature
VOC gas sensor response for the targeted molecules, such as
acetone, ethanol, formaldehyde, methanol, toluene, CO2, and
H2O.25 Ultrahigh-sensitive gas sensors were proven for NO, NO2,
NH3, and CO molecules, based on Si- and S- doped phosphor-
ene.26 Also, novel green phosphorene was investigated as
a potential chemical gas sensing material for inorganic gas
molecules and water, under doping with extrinsic impurities27

and as a promising biosensor for detection of furan and p-
xylene biomarkers.28 In addition, theoretical studies indicated
that phosphorene and phosphorene oxides are suitable for toxic
gas detection.29 Several other applications of bulk black phos-
phorus, few-layer black phosphorus, and phosphorene are
detailed in a recent review.30

The transition metal dichalcogenites (TMDs) is yet another
class of 2D materials that has proven its effectiveness in mole-
cule sensing: defect-engineered VSe2 for ammonia sensing,31

SnS monolayers for the detection of VOCs like ethylene, ethane
and benzene,15 Al-doped MoSe2 monolayer as a promising
biosensor for exhaled breath analysis, specic to lung cancer
compounds, like isoprene, acetone and 2-propenal.17

In this paper we investigate the possibility of tuning the
active layers based on two graphene-like materials, namely BP
and MoS2, in order to differentiate between biomarkers specic
to ve respiratory diseases: inuenza, SARS-CoV-2 virus, noso-
comial pneumonia, tuberculosis and Aspergillus fumigatus. We
choose a set of ve biomarkers, namely thiirane associated with
inuenza A, subtypes H1N1 (human), H6N2 (avian) and H9N2
(avian);32 acetone associated with Streptococcus pyogenes and
inuenza A infections,33 but also identied in breath samples
from SARS-CoV-2 patients;34 N-methyl-2-methylpropylamine
associated with Pseudomonas aeruginosa nosocomial infec-
tions;35 cyclohexanone identied in breath samples of patients
infected with Mycobacterium tuberculosis,36 and 2-Pentylfuran
identied in breath samples from SARS-CoV-2 patients37 and
breath samples of patients with Aspergillus fumigatus.38 Two
types of device structures are considered, which comprise BP
and MOS2 monolayers on top of insulating hBN support.
Binding centers are created by doping the active layers with
group-IV, group-VI and transition metals (TMs). Using high
throughput calculations we determine the electronic structure
modications induced by the presence of the biomarkers. For
1804 | RSC Adv., 2024, 14, 1803–1812
each biomolecule and doping sequence a specic pattern
emerges for the electrical conductivity. We propose a scheme
for enhanced detection based on identifying patterns rather
than single values and show that the biomarkers can still be
discerned in spite of some statistical changes in the molecule
congurations induced by thermal noise.

2 Device models and methods

Modied 2D graphene-like materials have been widely used as
biosensing elements and the intermediate gap BP and MoS2
semiconductors have a good potential to be used as active
layers. However, the pristine monolayers are less chemically
reactive, which results in a poor binding capacity of the
biomolecules. Therefore, inducing point defects by creating
vacancies or by substitutions with foreign elements is typically
employed. We take the latter approach and investigate three
groups of substitutions, corresponding to group-IV (C, Si, Ge),
group-VI (S, Se) and TMs (Mn, Fe, Co, Ni, Cu). The substitutions
are expected to provide binding centers to biomarkers, though
the binding strength needs to be determined.

We pursue the identication of ve VOCs, associated with
respiratory diseases: thiirane (inuenza), acetone (SARS-CoV-2,
inuenza), N-methyl-2-methyl-1-propanamine (nosocomial
pneumonia), cyclohexanone (tuberculosis) and 2-pentylfuran
(Aspergillus fumigatus, SARS-CoV-2). The process of biomarker
detection is summarized in Fig. 1. For each of the two materials,
BP and MoS2, a number of ten customized layers are consid-
ered, corresponding to a substitution type. Each group of
substitutions has a different chemical behavior, which
enhances the overall selectivity of the biosensor. The changes in
the density of states (DOS) induce modications of the electrical
conductances, which are grouped into patterns that should be
matched with the test case. To this end, we employ ab initio
calculations, from which we obtain the electrical behavior and,
subsequently, the test patterns are matched against the refer-
ence ones.

The individual sensor elements consist of rather extended
segments of the active layers (BP and MoS2) on top of hBN
substrate as depicted in Fig. 2. It has been established that the
mere presence of an hBN supporting layer reduces the band gap
of phosphorene39,40 and a similar effect takes place in the
MoS2@hBN system, previously found due to the interaction
with several dielectric environments.41,42 This has to be taken
into account, as the reduction of the band gap enhances the
conductivity of the active layers, which is further inuenced by
the different doping elements.

The electronic properties of BP@hBN and MoS2@hBN with
substitutional point defects are investigated by density func-
tional theory (DFT) calculations. The supercells are constructed
such that mismatch between the active- and the supporting
layers is minimized, retaining the 2D periodicity of both layers.
Specically, for BP@hBN system, the resulting supercell was
formed using 3 × 5 BP unit cells and 4 × 5 unit cells for hBN.
Post-adjustments led to mismatches of 1.6% and 4.2% in the~a
and ~b directions, respectively. The subsequent heterostructure
portrayed tightly knit interlayer interactions, with interlayer
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 Biosensor design workflow and the working principle for biomarker detection. Binding centers are created in the active layers (BP and
MoS2) using substitutional impurities. The selected biomarkers attached to the active layers induce modifications in the electronic properties,
observed in the electrical conductivities. Depending on their response with regards to a specific biomarker, the biosensor can embed one or up
to ten functionalized monolayers. The conductivity patterns are used to identify an unknown specimen.

Fig. 2 Device structures comprising the active layers (BP and MoS2)
with substitutions and attached biomarker, on top of insulating hBN.
The selected biomarkers associated to the respiratory diseases are
depicted below.
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spacings of ∼2.5 Å between the phosphorene and the hBN
substrate. Multi-layered hBN exhibit an interlayer distance of
∼3.85 Å under AA′ type stacking, corresponding to a 60° inter-
layer rotation. For MoS2@hBN system, the supercell was con-
structed from 4 × 5 MoS2 unit cells and 3 × 4 hBN unit cells.
Minimal mismatches were obtained with a near-perfect align-
ment in the~b direction, with a difference of 0.12% and a slightly
larger one, ∼4.6%, in the~a direction.

The ab initio DFT calculations were performed using the
SIESTA package,43 which employs strictly localized basis sets to
© 2024 The Author(s). Published by the Royal Society of Chemistry
achieve a linear scaling of the computational time with the
system size. For the exchange-correlation functional, the
generalized gradient approximation (GGA) was used adopting
the parametrization proposed by Perdew–Burke–Ernzerhof
(PBE)44 with VDW Grimme-D2 correction.45 Troullier–Martins
norm-conserving pseudopotentials46 were employed, the real
space grid was set by a mesh cutoff parameter of 150 Ry and
a strict 10−4 convergence criterium was used for the density
matrix convergence. For the sampling of the Brillouin zone the
Monkhorst–Pack scheme with a 5 × 5 × 1 grid was employed.
All structures underwent relaxation until the residual forces
were less than 0.04 eV Å−1. The structural optimization was
performed in several steps. First, the systems composed by the
pristine active layers on top of the substrate were relaxed. Next,
the substitutional impurities were introduced and the systems
were relaxed again. In another step, the optimized biomarkers
were attached to the customized active layers and the entire
systems were relaxed to their nal equilibrium congurations.
For the visual representations of the devices and post-
processing of the band structures we used VESTA and the
SISL package.

The binding energies are calculated in order to check the
effectiveness of the created binding centers. Using the total
energies calculated for the device elements (Edev), biomolecules
(Emol) and the systems with attached biomarkers (Edev+mol) one
denes the binding energy, Eb as:

Eb = Edev + Emol − Edev+mol. (1)
RSC Adv., 2024, 14, 1803–1812 | 1805
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The conduction properties are calculated in the framework
of Boltzmann transport equation (BTE), within the constant
relaxation time approximation, s(3) z s0. The electrical
conductivity, s, is determined based on the generalized trans-
port coefficient, L ðaÞðm;TÞ:47

s ¼ L ða¼0Þ; (2)

where:

L ðaÞðm;TÞ ¼ e2
ð
~sð3Þð3� mÞa

 
� vf ð0Þð3;m;TÞ

v3

!
: (3)

In eqn (3), f (0)(3; m, T) is the Fermi-Dirac distribution, which
depends on the carrier energy, 3, chemical potential, m and
temperature, T. The transport distribution function, s̃(3) is
given by:

s̃(3) = hvg2(3)is(3)D(3). (4)

We denote by D(3) the density of states and hvg2(3)i is the
average group velocity.

The conductance patterns that emerge for known specimens
form the reference data sets, {Gref

as }, where a and s label the
biomarker and the substitution type, respectively. Aer these
are determined, in the diagnosis process, one has to compare
the data set of an unknown specimen, {Gtest

s }, with the reference
data of each potential candidate. To this end, we employ the R2

coefficient of determination:

Ra
2 ¼ 1� SSres;a

SStot;a

; (5)

where SSres;a ¼P
s
ðGref

as � Gtest
s Þ2 and SStot;a ¼P

s
ðGref

as � Gref
a Þ2

represent the residual and total sum of squares, respectively.

The averaged conductance is calculated as Gref
a ¼ 1=Ns

PNs

s
Gref
as ,

where Ns = 10 substitutions. The highest value in the {Ra
2} set

determines the most likely biomarker.
Fig. 3 (a and b) Bonding lengths corresponding to susbtitutional atoms a
and d) The binding energies of the molecules which adhere to the active
each of the ten substitutions, four molecule configurations relative to th
structures per device. The colors mark the three groups of substitutions
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Furthermore, the sensor selectivity is connected with the
charge transfer that occurs between the active layer and the
attached molecule, which is dened as:

Dr(~r) = rdev+mol(~r) − rdev(~r) − rmol(~r), (6)

where rdev, rmol, rdev+mol are the charge densities of the device,
molecule and total system, respectively.
3 Results

In a rst step we analyze the bonding lengths which are deter-
mined following the relaxation of the whole structure of the
device, with the molecules attached. The bond lengths were
measured as distances between the substitutional atom in the
active layer and the molecule's binding atom. These belong to
the functional groups, e.g. sulde, carbonyl or amine, which are
likely to bind to the substitutional atom in the active layer. Four
different congurations for each molecule atop of each active
layer were considered. This procedure resulted in 40 calcula-
tions per molecule, i.e. for 4 congurations ×10 substitutional
atoms, totaling 200 cases for each device. For both devices, we
observe that each molecule, in interaction with the active layer,
exhibits a unique series of bonding lengths, which are in close
correlation with the binding energies as shown in Fig. 3. This
observation holds across all examined molecules. Typically,
a small bonding length is associated with a larger binding
energy. One can observe that, for both devices, Eb is larger for
the lighter TM substitutions considered, compared to group-IV
and group-VI elements. In the case of BP@hBN systems, the TM
substitutions tend to create local deformations of the BP layer
and a charge imbalance, while the d type orbitals hybridize with
the molecular orbitals of the target molecule. On the other
hand, group-IV and group-VI elements render a weaker binding.

Starting with the BP@hBN device, as one can see from the
DOS maps in Fig. 4a, using group-IV and group-VI substitutions
nd biomolecules, for BP@hBN and MoS2@hBN devices, respectively. (c
layer, indicated for the same structures. The system index counts for

e substrate and each of the five biomarkers, resulting in a total of 200
: group-IV (C, Si, Ge), group-VI (S, Se) and TMs (Mn, Fe, Co, Ni, Cu).

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 (a and b) Density of states (DOS) in logarithmic scale and (c and d) scaled conductivities,G/G0 for the systems indicated in Fig. 3. The same
color codes apply. The conductances are normalized to the highest value, G0, obtained from the data sets of the two devices.
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on phosphorous has a contrasting effect, inducing p- and n-type
doping, respectively. The Fermi level is pinned by the groups of
in-gap states created by the substitutional impurities, which are
further inuenced by the attached biomarkers. A pattern
emerges for group-IV elements, where carbon induce a relatively
shallow p-type doping, in contrast to Si and Ge substitutions,
where deep energy levels are evidenced. In the case of group-VI
elements, the in-gap states tend to merge with the conduction
band of the BP, conferring the systems a degenerate n-type
character. The DOS and, in particular, the in-gap states distri-
bution are highly sensitive to adsorption of molecules on the
semiconductor surface, which leads to a measurable change in
the electrical properties. As it will be shown in the following this
is also accompanied by a charge transfer from the active layer to
the biomolecule. On the other hand, for MoS2@hBN device,
substituting elements from group-IV and group-VI produces
a rather small impact on the DOS, as the energy levels are
mostly localized at the band edges, as it can be seen in Fig. 4b.
However, a shi in the Fermi level can be observed, depending
also on the nature of the attached biomolecule.

The TM substitutions in the BP@hBN system produce
a larger spread of the energy levels in the band gap of the base
semiconductor, effectively reducing it. Except for Co substitu-
tions, which show a rather intrinsic behavior, the TMs induce
a p-type character, with rather shallow acceptor energy levels,
but broad distribution. In the MoS2@hBN system, the same TM
substitutions create deep energy levels and their pattern is
visibly inuenced by the molecules, in contrast to the group-IV
or group-VI substitutions, which have little impact.

The modications in the electrical conductance, which
manifest uniquely for each interacting molecule within the
examined device, are depicted in Fig. 4c and d. Overall, one can
see a systematic behavior, which stems mostly from the active
layers, customized with the binding centers, but still with
signicant inuence from the attached molecules. For the
BP@hBN device, a sizable conductance is prevalent across most
scenarios concerning the different substitutions. In contrast,
the MoS2@hBN device displays a very low conductivity response
© 2024 The Author(s). Published by the Royal Society of Chemistry
in the molecular sensing for group-IV and group-VI substitu-
tions, which is attributed to its wider bandgap and the lack of
in-gap states generated by these extrinsic impurities. The TMs
enhance the conductivity in both devices, apart from the
systems where the Fermi level is found in the minigaps, e.g. Co
substitution in the BP@hBN and Fe and Ni substitutions in
MoS2@hBN.

The conductivity is strongly correlated with the DOS, where
the in-gap states forming mini-bands and pinning the Fermi
level induce a signicant conduction, in contrast with the
systems where mini-gaps develop. Moreover, one can see that
comparing biomarkers which have the same functional group,
e.g. –OH in case of acetone and cyclohexanone, the conductivity
patterns are very similar. This holds for each of the two active
layers, BP and MoS2. The unique conductivity patterns have
signicant practical implications, especially for the selective
detection, where their specicity enables the precise identi-
cation of various chemical entities. By enhancing the accuracy
of sensing one can potentially identify molecules even at
minimal concentrations, vital for applications requiring trace-
level detection, especially in medical diagnostics.

The biomarker identication is based on comparing the
conductance pattern of the test specimen with the already
established reference data, as shown in Fig. 5. For each mole-
cule, one atomic conguration was selected at random for each
impurity type, to form a test sample, while the remaining three
were averaged to create a comparative data set. Per device, we
considered 1000 test samples for each molecule, obtained by
sampling the existing data sets with different atomic congu-
rations and substitution types. This yielded a total of 5000 test
cases, which were compared to each of the ve reference data
sets per molecule. The highest R2 coefficient provides the most
likely biomarker in the test sample. A typical numerical exper-
iment is illustrated in Fig. 5, where for the BP@hBN device four
out of ve molecule candidates have been predicted with more
than 90% condence: thiirane – 97.89%, acetone – 99.81%, N-
methyl-2-methyl-1-propanamine – 97.84% and 2-pentylfuran –

92.35%. The inaccurate prediction concerns the sample
RSC Adv., 2024, 14, 1803–1812 | 1807



Fig. 5 Identifying biomarkers based on R2 coefficient of determination: the test sample is compared with the reference and the predicted
biomarker is determined based on the largest R2. The reference data sets, corresponding to the five selected biomarkers, are depicted by colored
symbols, the test cases are represented by solid lines.
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containing cyclohexanone – 97.9%, which is mistaken for
acetone – 98.43%. However, this is a small difference and it can
be explained based on the anchoring –OH group present in both
cases. For the MoS2@hBN device, only two out the ve mole-
cules are correctly predicted, namely thiirane – 99.95% and 2-
pentylfuran −98.97%. However, the acetone and cyclohexanone
are placed both as second best R2 scores. This graphical analysis
supplies a quantitative metric, crucial for validating and
enhancing the sensor's operational capability and applicability
across various biomarker candidates.

Next, we evaluate the sensor's response across various
congurations corresponding to the 10 types of substitutions
and molecule orientations. In total, 2Ns − 1 congurations can
be considered, starting from one single stripe per device and up
to all Ns substitutions. The primary target is to nd the optimal
conguration with the highest possible prediction rate for each
1808 | RSC Adv., 2024, 14, 1803–1812
of the ve target biomarkers. The evaluation was performed for
both devices, using a total of 5000 candidate biomolecules, thus
facilitating a comparative representation of the sensor's
performance through bar charts. Increasing the prediction
threshold simultaneously for all 5 biomarkers, we obtained the
optimal congurations for BP and MoS2 based systems, corre-
sponding to C–Si-Ge-Co and C–Se congurations, respectively,
as sown in Fig. 6. The analysis revealed high values for N-
methyl-2-methyl-1-propanamine and acetone, with accuracies
larger than 76%, followed by thiirane and 2-pentylfuran with
61.6% and 63%, respectively, while for the remaining molecule,
cyclohexanone, the condence score is only 50.1%. On the other
hand, the MoS2 device yields lower prediction accuracies, with
the highest scores obtained for cyclohexanone and N-methyl-2-
methyl-1-propanamine. However, the high value of 98% ob-
tained for cyclohexanone shows a complementary response for
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 7 Distribution of charge density differences as the molecules are
attached to active layers. For the two devices, BP@hBN (a–e) and
MoS2@hBN (f–j), we represented dr(~r) for silicon substitutions, for each
five molecules. Larger amount of charge transfer can be correlated
with the performance chart shown in Fig. 6. Charge accumulations
and charge depletion are represented by violet and blue colors,
respectively.

Fig. 6 Typical sensor performance with respect to identifying one of
the five possible biomarkers, for the two devices, (a) BP@hBN and (b)
MoS2@hBN.
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the BP- and MoS2 based devices. On average, a correct predic-
tion of 70.2% is obtained for the BP-based device and a lower
63.9% for the MoS2-based device. A similar performance is
found for other congurations containing C, Si, Ge and Co, Ni
for BP@hBN and the same group-IV element together with S, Se
and Ni for MoS2@hBN. If the total prediction accuracy is
maximized, irrespective of the minimum values obtained for
some of the biomarkers, we obtain higher values for BP@hBN:
96% (thiirane), 83.2% (acetone), 99% (N-methyl-2-methyl-1-
propanamine), 30.2% (cyclohexanone) and 60.4% (2-pentyl-
furan). In this case, only four of the ve biomarkers can be
reasonably predicted and the overall one-out-of-ve prediction
accuracy is over 73.7% for BP@hBN, while for MoS2@hBN the
same conguration with a lower 63.9% accuracy. Again, other
congurations with predominantly group-IV substitutions are
amongst the best performers. From this we may conclude that
the BP@hBN device is a more promising candidate, although
MoS2@hBN can achieve good results on a complementary
group of target biomolecules.

These values, indicative of the sensor's differential respon-
siveness to molecular structures, enable a quantitative assess-
ment of interaction strengths and sensor performance. Higher
values denote more pronounced interactions and can be
correlated with the charge transfer occurring between the
molecules and the active layers, as it is shown in the following.
This data is instrumental in elucidating the sensor's discrimi-
native and predictive capabilities, providing a foundation for
subsequent device optimization.

In a realistic device, additional exhaled compounds may
bring difficulties in the detection process. However, they will
create a typical background that can be identied in a healthy
individual. The key point of our approach relies on identifying
patterns rather than changes for single conductance values and
this can be expanded in terms of number of channels and
© 2024 The Author(s). Published by the Royal Society of Chemistry
further experimentally calibrated, in order to reach the required
resolution. A statistical approach based on a multi-scale
modeling can be performed, that would take into account
multiple congurations of substrate, active layer, biomolecules
and perturbing species described at a local level within DFT,
RSC Adv., 2024, 14, 1803–1812 | 1809



Fig. 8 Charge transfer between the molecule and devices, BP@hBN (a) and MoS2@hBN (b), reflecting the particularities of the substitution–
molecule pairs. The red dots indicate the devices with Si substitutions. The systems are indexed as in Fig. 3.
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followed by their statistical integration into a semi-classical
transport model.

In order to better assess the interaction between the device
and various molecules, a thorough examination of charge
density differences was undertaken. This analysis provides
insights into the charge distribution when the molecule inter-
acts with the device, elucidating the intrinsic electronic char-
acteristics that govern the molecular-device interaction. A
differential charge density analysis helps identify regions of
charge accumulation and depletion upon the formation of the
molecular-device complex, which has direct implications in the
detection process. Typical examples of charge transfer are
shown in Fig. 7, where the two distinct color codes represent the
charge accumulation and the charge depletion. They show for
the case of Si substitution a larger charge depletion for thiirane,
acetone and N-methyl-2-methyl-1-propanamine in the case of
BP@hBN devices and, similarly, for thiirane, N-methyl-2-
methyl-1-propanamine and 2-pentylfuran for the MoS2@hBN
devices. Such visual mappings provide an intuitive compre-
hension of the electron redistribution that takes place upon
molecule-device interaction, thereby offering insights into
potential electronic effects induced by the molecule adhesion to
the device.

The integrated charge difference shown in Fig. 8 reects the
charge transfer occurring when the biomarkers attach to the
active layers. In order to calculate the transferred charge, we
integrate eqn (6) on both molecule and device regions, so that
Qdev + Qmol = 0, where Qdev=mol ¼

Ð
Udev=mol

d3~rDrdev=molð~rÞ. The

device and molecule domains, Udev/mol, are formed by dividing
the simulation box with a planar surface located at 1 Å away
from the linking atom of the molecule with the device. This
enables a suitable partitioning of the two domains, ensuring
that the resultant charge density difference accurately reects
the electron redistribution occurring due to the intimate
molecular interaction with the device. Overall, the charge
transfer is in good correlation with the performance of the
biosensors as shown in Fig. 6, showing that a large charge
transfer generally enhances the biosensor selectivity.

The derived charge density differences and visual plots
thereof serve as a critical tool for interpreting the underlying
1810 | RSC Adv., 2024, 14, 1803–1812
electronic interactions, guiding the optimization of both the
molecule and the device for enhanced performance and reli-
ability in practical applications. Additionally, the insights ob-
tained regarding charge behavior and redistribution will
potentially facilitate the renement of our sensor's selectivity
and sensitivity, by tailoring the electronic environment at the
molecule-device interface.
4 Conclusions

We presented a comprehensive study concerning biomarker
detection using phosphorene andMoS2 graphene-like materials
as active layers, while the selected biomarkers are specic to ve
respiratory diseases. Binding centers are created using substi-
tutional impurities, which enhance the attachment of the
biomarkers to the active layers and the electronic properties are
thus markedly inuenced. In our approach, patterns of electric
conductances are used to identify the specic biomolecules.
Using multiple customizations of the active layers implying
different responses to a biomolecule test specimen, rather than
using a single architecture, the selectivity of the biosensor is
enhanced. The BP@hBN devices can identify with high accu-
racies three of the ve biomolecules, namely thiirane, N-methyl-
2-methyl-1-propanamine and acetone, which are associated
with inuenza, SARS-CoV-2 and nosocomial pneumonia. The
second device, MoS2@hBN, has a smaller selectivity, which
allows, however the identication of cyclohexanone, which is
specic to tuberculosis. Our conductance-pattern matching-
approach allows the future design of modular biosensors with
exible congurations, which can be made readily available for
large scale and fast diagnostication.
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