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Production and use of proteins is under strong selection in microbes, but it is unclear how proteome-level traits relate to ecological
strategies. We identified and quantified proteomic traits of eukaryotic microbes and bacteria through an Antarctic phytoplankton
bloom using in situ metaproteomics. Different taxa, rather than different environmental conditions, formed distinct clusters based
on their ribosomal and photosynthetic proteomic proportions, and we propose that these characteristics relate to ecological
differences. We defined and used a proteomic proxy for regulatory cost, which showed that SAR11 had the lowest regulatory cost
of any taxa we observed at our summertime Southern Ocean study site. Haptophytes had lower regulatory cost than diatoms,
which may underpin haptophyte-to-diatom bloom progression in the Ross Sea. We were able to make these proteomic trait
inferences by assessing various sources of bias in metaproteomics, providing practical recommendations for researchers in the field.
We have quantified several proteomic traits (ribosomal and photosynthetic proteomic proportions, regulatory cost) in eukaryotic
and bacterial taxa, which can then be incorporated into trait-based models of microbial communities that reflect resource allocation

strategies.
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INTRODUCTION
Microbes are constantly faced with an optimization problem:
which proteins should be produced, when, and how many? The
solutions to this problem dictate metabolic rates, cell stoichio-
metry, and taxonomic distribution [1-5]. Yet, it is unclear what
these solutions actually are in terms of proteome composition,
and if different microbes have arrived at different solutions.
Microbes are typically compared based on their unique repertoires
of potential proteins (e.g., [6-8]), but taxa have shared proteins as
well—are these shared proteins produced in similar amounts? Or,
do taxa produce distinct amounts under identical conditions?
Diverse taxa produce proteins in strikingly similar ratios within
some pathways [9], but is stoichiometry conserved between
pathways? The answers to these questions will direct future efforts
for modeling microbial communities. Perhaps microbes can be
represented as collections of genes [10, 11], or, perhaps variation
in proteome composition will shed light on the underpinnings of
their ecological strategies and biogeochemical contributions.
Ecological strategies are ultimately tied to cellular functions and
thus gene expression [12], and models can experimentally test
hypotheses to evaluate such connections. Material models (i.e.,
cultures) have clearly demonstrated that selection acts strongly on
protein production [13-15]. While powerful, these approaches are
limited to only a few culturable organisms, which can overlook
core differences found in less-studied organisms (e.g., [16]).
Computational models have also characterized trade-offs and
metabolic behaviors in microbes (e.g., [17-19]). While models are

critical from a reductionist perspective, characterization and
prediction of microbial activity in their environments remains a
central research goal.

Observing and measuring gene expression in microbes in situ
can also link resource allocation to ecological strategies (e.g.,
[5, 20-24]). For example, diatom and haptophyte transcriptional
dynamics reflect their distinct growth strategies, inferred using
metatranscriptomics [22, 23]. Metaproteomics has similarly
identified increased abundance of transporter proteins across an
oceanographic gradient of decreasing nutrients [5]. Both of these
meta-omic approaches can quantify in situ resource allocation, but
proteins cost more to produce and therefore better reflect
resource allocation [25]. To our knowledge, metaproteomics has
not been used to quantify variation in resource allocation
strategies across microbial groups.

Our objective was to identify and quantify proteomic “traits” for
various eukaryotes and bacteria, by examining microbial pro-
teome composition through a four-week time series at the
Antarctic sea ice edge. We define a proteomic trait as a
characteristic of an organism at the proteome-level, that includes
both the abundance and identity of a protein (or group of
proteins), and is connected to organismal fitness or performance
[26]. Metaproteomics is confronted by several methodological
issues and biases, which we rigorously assess in order to
characterize these proteomes. We subsequently provide practical
recommendations for researchers using metaproteomics to
examine microbial resource allocation. Our analyses suggest
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examining “coarse-grained” proteomes provides a host of
conceptual and technical advantages (coarse-grained defined as
a grouping of functionally or taxonomically (Phylum, Class, Order)
related proteins). Next we use this approach to connect proteomic
resource allocation to the ecology of these plankton. Lastly, we
suggest that characterizing coarse-grained proteomes may be
useful for assessing nutrient deficiency in the ocean.

METHODS

Field sampling

We collected samples once per week over four weeks at the Antarctic sea
ice edge, in McMurdo Sound, Antarctica (December 28, 2014 “GOS-927";
January 6 “G0OS-930", 15 “GOS-933", and 22 “G0OS-935", 2015; as previously
described in [27]). Sea water (150-2501) was pumped sequentially through
three filters of decreasing size (3.0, 0.8, and 0.1 um, 293 mm Supor filters).
Separate filter sets were acquired for metagenomic, metatranscriptomic,
and metaproteomic analyses, over the course of ~3 h, each week (36 filters
in total). Filters for nucleic acid analyses were preserved with a sucrose-
based buffer (20 mM EDTA, 400 mM NaCl, 0.75 M sucrose, 50 mM Tris-HCl,
pH 8.0) with RNAlater (Life Technologies, Inc.). Filters for protein analysis
were preserved in the same sucrose-based buffer but without RNAlater.
Filters were flash frozen in liquid nitrogen in the field and subsequently
stored at —80 °C until processed in the laboratory.

Metagenomic and metatranscriptomic sequencing

We used metagenomics and metatranscriptomics to obtain reference
databases of potential proteins for metaproteomics. We additionally used a
database assembled from a similarly processed metatranscriptomic
incubation experiment [28], conducted with source water from the
January 15, 2015 time point (these samples were collected on a 0.2 um
Sterivex filter and processed as previously described).

For samples from the GOS-927, GOS-930, GOS-933, and GOS-935 filters,
RNA was purified from a DNA and RNA mixture [29]. In total, 2 ug of the
DNA and RNA mixture was treated with 1 pl of DNase (2 U/ul; Turbo DNase,
TURBO DNase, Thermo Fisher Scientific), followed by processing with an
RNA Clean and Concentrator kit (Zymo Research). An Agilent TapeStation
2200 was used to observe and verify the quality of RNA. In total, 200 ng of
total RNA was used as input for rRNA removal using Ribo-Zero (lllumina)
with a mixture of plant, bacterial, and human/mouse/rat Removal Solution
in a ratio of 2:1:1. An Agilent TapeStation 2200 was used to subsequently
observe and verify the quality of rRNA removal from total RNA. rRNA-
deplete total RNA was used for cDNA synthesis with the Ovation RNA-Seq
System V2 (TECAN, Redwood City, USA). DNA was extracted for
metagenomics from the field samples (GOS-927, GOS-930, GOS-933, and
GO0S-935) according to [29]. RNase digestion was performed with 10 ul of
RNase A (20 mg/ml) and 6.8 pl of RNase T1 (1000 U/ul), which were added
to 2 ug of genomic DNA and RNA mixture in a total volume of 100 pl,
followed by 1 h incubation at 37 °C and subsequent ethanol precipitation
in —20°C overnight.

Samples of double stranded cDNA and DNA were fragmented using a
Covaries E210 system with the target size of 400 bp. In total, 100 ng of
fragmented ¢cDNA or DNA was used as input into the Ovation Ultralow
System V2 (TECAN, Redwood City, USA), following the manufacturer’s
protocol. Ampure XP beads (Beckman Coulter) were used for final library
purification. Library quality was analyzed on a 2200 TapeStation System
with Agilent High Sensitivity DNA 1000 ScreenTape System (Agilent
Technologies, Santa Clara, CA, USA). Twelve DNA and 18 cDNA libraries
were combined into two pools with concentration 4.93 and 4.85 ng/ul,
respectively. Resulting library pools were subjected to one lane of 150 bp
paired-end HiSeq 4000 sequencing (lllumina). Prior to sequencing, each
library was spiked with 1% PhiX (lllumina) control library. Each lane of
sequencing resulted in between 106,000 and 111,000 Mbp total and
6900-12,000 Mbp and 4800-6900 Mbp for individual DNA or cDNA
libraries, respectively.

Metagenomic and metatranscriptomic bioinformatics

Metagenomic and metatranscriptomic data were annotated with the same
pipelines. Briefly, adapter and primer sequences were filtered out from the
paired reads, and then reads were quality trimmed to Phred33. rRNA reads
were identified and removed with riboPicker [30]. We then assembled
reads into transcript contigs using CLC Assembly Cell, and then we used
FragGeneScan to predict open reading frames (ORFs) [31]. ORFs were
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functionally annotated using Hidden Markov models and blastp against
PhyloDB [32]. Annotations which had low mapping coverage were filtered
out (less than 50 reads total over all samples), as were proteins with no
blastp hits and no known domains. For each ORF, we assigned a taxonomic
affiliation based on Lineage Probability Index taxonomy [32, 33]. Taxa were
assigned using two different reference databases: NCBI nt and PhyloDB
[32]. Unless otherwise specified, we used taxonomic assignments from
PhyloDB, because of the good representation of diverse marine
microbial taxa.

ORFs were clustered by sequence similarity using Markov clustering
(MCL) [34]. Sequences were assigned MCL clusters by first running blastp
for all sequences against each other, where the query was the same as the
database. The MCL algorithm was subsequently used with the input as the
matrix of E-values from the blastp output, with default parameters for the
MCL clustering. MCL clusters were then assigned consensus annotations
based on KEGG, KO, KOG, KOG class, Pfam, TIGRFAM, EC, GO, annotation
enrichment [28, 32, 35-39]. Proteins were assigned to coarse-grained
protein pools (ribosomal and photosynthetic proteins) based on these
annotations. For assignment, we used a greedy approach, such that a
protein was assigned a coarse-grained pool if at least one of these
annotation descriptions matched our search strings (we also manually
examined the coarse grains to ensure there were no peptides that mapped
to multiple coarse-grained pools). For photosynthetic proteins, we
included light harvesting proteins, chlorophyll a-b binding proteins,
photosystems, plastocyanin, and flavodoxin. For ribosomal proteins, we
just included the term “ribosom*” (where the * represents a wildcard
character), and excluded proteins responsible for ribosomal synthesis.

Sample preparation and LC-MS/MS

We extracted proteins from the samples by first performing a buffer
exchange from the sucrose-buffer to an SDS-based extraction buffer, after
which proteins were extracted from each filter individually (as previously
described) [27]. After extraction and acetone-based precipitation, we
prepared samples for liquid chromatography tandem mass spectrometry
(LC-MS/MS). Precipitated protein was first resuspended in urea (100 pl, 8
M), after which we measured the protein concentration in each sample
(Pierce BCA Protein Assay Kit). We then reduced, alkylated, and
enzymatically digested the proteins: first with 10 pl of 0.5 M dithiothreitol
for reduction (incubated at 60°C for 30 min), then with 20 ul of 0.7 M
iodoacetamide (in the dark for 30min), diluted with ammonium
bicarbonate (50 mM), and finally digested with trypsin (1:50 trypsin:sample
protein). Samples were then acidified and desalted using C-18 columns
(described in detail in ref. [40]).

To characterize each metaproteomic sample, we employed one-
dimensional liquid chromatography coupled to the mass spectrometer
(VelosPRO Orbitrap, Thermo Fisher Scientific, San Jose, California, USA;
detailed in [40]). For each injection, protein concentrations were equivalent
across sample weeks, but different across filter sizes. We had higher
amounts of protein on the largest filter size (3.0 um) and less on the
smaller filters, so we performed three replicate injections per 3.0 um filter
sample, and two replicate filter injections for 0.8 and 0.1 ym filters. We
used a non-linear LC gradient totaling 125 min. For separation, peptides
eluted through a 75 pm by 30 cm column (New Objective, Woburn, MA),
which was self-packed with 4 um, 90 A, Proteo C18 material (Phenomenex,
Torrance, CA), and the LC separation was conducted with a Dionex
Ultimate 3000 UHPLC (Thermo Scientific, San Jose, CA).

LC-MS/MS bioinformatics—database searching, configuration,
and quantification

Metaproteomics requires a database of potential protein sequences to
match observed mass spectra with known peptides. Because we had
sample-specific metagenome and metatranscriptome sequencing for each
metaproteomic sample, we assessed various database configurations,
including those that we predict would be suboptimal, to examine potential
options for future metaproteomics researchers. We used five different
configurations, described below. In each case, we appended a database of
common contaminants (Global Proteome Machine Organization common
Repository of Adventitious Proteins). We evaluated the performance of
different database configurations based on the number of peptides
identified (using a peptide false discovery rate of 1%).

In order to make these databases (Table 1), we performed three separate
assemblies on (1) the metagenomic reads (from samples GOS-927, GOS-
930, GOS-933, and GOS-935), (2) metatranscriptomic reads (from samples
GO0S-927, GOS-930, GOS-933, and GOS-935), and (3) metatranscriptomic
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Table 1. Characteristics of the five different database configurations
we used for metaproteomic database searches.

Database configuration Filter size  Number of protein
sequences in the
database

One-Sample Database 0.1 6.65E + 05

One-Sample Database 0.8 6.42E + 05

One-Sample Database 3 3.34E + 05

Sample-Specific Databases® 0.1 7.13E+ 05

Sample-Specific Databases® 0.8 6.34E + 05

Sample-Specific Databases® 3 4.41E+ 05

Pooled-across-sizes 0.1 8.37E + 05

Databases

Pooled-across-sizes 0.8 8.55E + 05

Databases

Pooled-across-sizes 3 7.23E+ 05

Databases

Metatranscriptome 0.2 4.44E 405

Experiment (T =0)

Metatranscriptome 0.2 2.19E + 06

Experiment (all)

For the “One-Sample Database’ the first time point was used, and all
samples were matched according to filter sizes. For the “Sample-Specific
Databases’ each database was matched with the corresponding metapro-
teomic sample. For the “Pooled-Across-Sizes Databases; databases were
pooled across every time point and matched according to filter size. For
these aforementioned databases, the metagenomic and metatranscrip-
tomic protein coding sequences were pooled. For the “Metatranscriptome
Experiment (T =0); only the first sampling point from the metatranscrip-
tome experiment was included. For the “Metatranscriptome Experiment
(all)” configuration, all protein coding sequences were included from the
treatment outcomes as well as the T=0.

@Averages are presented for Sample Specific Databases.

reads from a concurrent metatranscriptomic experiment, started at the
location where GOS-933 was taken [28]. Database configurations were
created by subsetting from these assemblies. The first configuration was
“one-sample database”, constructed to represent the scenario where only
one sample was used for metagenomic and metatranscriptomic sequen-
cing (we chose the first sampling week). Specifically, this was done by
subsetting and including ORFs from the metagenomic and metatranscrip-
tomic assemblies if reads from this time point were present in that sample
(reads mapped as in [28]), and then removing redundant protein
sequences (P. Wilmarth, fasta utilities). The second configuration was the
“sample-specific database”, where each metaproteomic sample had one
corresponding database (prepared from both metagenome and meta-
transcriptome sequencing completed at the same sampling site), also
done by subsetting ORFs from the metagenomic and metatranscriptomic
assemblies as described above. The third configuration was pooling
databases across size fractions—such that all metagenomic and meta-
transcriptomic sequences across the same filter sizes (e.g., 3.0 um) were
combined. ORFs were subsetted from the metagenomic and metatran-
scriptomic assemblies as above. The fourth and fifth configurations are
from the concurrent metatranscriptomic experiment [28]. The fourth
configuration (“metatranscriptome experiment (T0)") was the metatran-
scriptome of the in situ microbial community (i.e., at the beginning of the
experiment). This database was created by subsetting from the
“metatranscriptome experiment (all)” assembly. Finally, the fifth config-
uration was the metatranscriptome of all experimental treatments pooled
together (two iron levels, three temperatures; “metatranscriptome experi-
ment (all)”). The overlap between databases (potential tryptic peptides) in
different samples is presented graphically in Supplementary Figs. S1-S3.
After matching mass spectra with peptide sequences for each database
configuration (MSGF + with OpenMS, with a 1% false discovery rate at the
peptide level; [41, 42]), we used MS1 ion intensities to quantify peptides.
Specifically, we used the FeatureFinderldentification approach, which
cross-maps identified peptides from one mass spectrometry experiment to
unidentified features in another experiment—increasing the number of
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peptide quantifications [43]. This approach requires a set of experiments to
be grouped together (i.e., which samples should use this cross-mapping?).
We grouped samples based on their filter sizes (including those samples
that are replicate injections). First, mass spectrometry runs within each
group were aligned using MapAlignerldentification [44], and then
FeatureFinderldentification was used for obtaining peptide quantities.

After peptides have been identified and quantified, we mapped them to
proteins or MCL clusters of proteins, which have corresponding functional
annotations (KEGG, KO, KOG, Pfams, TIGRFAM; [28, 32, 35-39]). Functional
annotations were used in three separate analyses. (1) Exploring the overall
functional changes in microbial community metabolism, we mapped
peptides to MCL clusters—groups of proteins with similar sequences.
These clusters have consensus annotations based on the annotations of
proteins found within the clusters (described in detail in [28]). For this
section, we only used peptides that uniquely map to MCL clusters. (2) We
restricted the second analysis to two protein groups: ribosomal and
photosynthetic proteins. For this analysis, we mapped peptides to one of
these protein groups if at least one annotation mapped to the protein
group (via string matching with keywords). This approach is “greedy”
because does not exclude peptides if they also correspond with other
functional groupings, but this is necessary because of the difficulties in
comparing various annotation formats. (3) The last analysis for functional
annotations was for targeted proteins, and we only mapped functions to
peptides where the peptides uniquely identify a specific protein (e.g.,
plastocyanin).

Code for the database setup and configuration, database searching, and
peptide quantification is open source (https://github.com/bertrand-lab/
ross-sea-meta-omics).

LC-MS/MS bioinformatics—normalization

Normalization is an important aspect of metaproteomics: it influences all
inferred peptide abundances. Typically, the abundance of a peptide is
normalized by the sum of all identified peptide abundances. We use the
term normalization factor for the inferred sum of peptide abundances.
Note that the apparent abundance of observed peptides is dependent on
the database chosen. In theory, if fewer peptides are observed because of
a poorly matching database, this will decrease the normalization factor,
and those peptides that are observed will appear to increase in
abundance. It is not known how much this influences peptide quantifica-
tion in metaproteomics.

For each database configuration, we separately calculated normalization
factors. We then correlated the sum of observed peptide abundances with
each other. To get a database-independent normalization factor, we used
the sum of total ion current (TIC) for each mass spectrometry experiment
(using pyopenms; [45]), and also examined the correlation with database-
dependent normalization factors. If normalization factors are highly
correlated with each other, that would indicate database choice does
not impact peptide quantification. Using TIC for normalization may have
drawbacks, particularly if there are differences in contamination, or
amounts of non-peptide ions across samples.

Defining proteomic mass fraction

Protein abundance can be calculated in two ways: (1) the number of copies
of a protein (independent of a proteins’ mass), or (2) the total mass of the
protein copies (the sum of peptides). We refer to the latter as a proteomic
mass fraction. For example, to calculate a diatom-specific, ribosomal mass
fraction, we sum all peptide abundances that are diatom- and ribosome-
specific, and divide by the sum of peptide abundances that are diatom-
specific. Note that this is slightly different to other methods, like the
normalized spectral abundance factor, which normalizes for total protein
mass (via protein length; [46]).

Combining estimates across filter sizes

Organisms should separate according to their sizes when using sequential
filtration with decreasing filter pore sizes. In practise, however, organisms
can break because of pressure during filtration, and protein is typically
present for large phytoplankton on the smallest filter size and vice versa.
We used a simple method for combining observations across filter sizes,
weighted by the number of observations per filter. We begin with the
abundance of a given peptide, which was only considered present if it was
observed across all injections of the same sample. We calculated the sum
of observed peptide intensities (i.e., the normalization factor), and divided
all peptide abundances by this normalization factor. Normalized peptide
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abundances are then averaged across replicate injections. If we are
estimating the ribosomal mass fraction of the diatom proteome, we first
normalize the diatom-specific peptide intensities as a proportion of diatom
biomass (i.e., divide all diatom-specific peptides by the sum of all diatom-
specific peptides). We then summed all diatom-normalized peptides
intensities that are unique to both diatoms and ribosomal proteins, which
would give us the ribosomal proportion of the diatom proteome. Yet, we
typically would obtain multiple estimates of, for example, ribosomal mass
fraction of diatoms, on different filters. We combined the three values by
multiplying each by a coefficient that represents a weight for each
observation (specific to a filter size). These coefficients sum to one, and are
calculated by summing the total number of peptides observed at a time
point for a filter, and dividing by the total number of peptides observed
across filters (but within each time point). For example, if we observed 100
peptides that are diatom- and ribosome-specific, and 90 of these peptides
were on the 3.0 um filter and only ten were on the 0.8 um filter, we would
multiply the 3.0 um filter estimate by 0.9 and the 0.8 um filter by 0.1. This
method uses all available information about proteome composition across
different filter sizes (similar to [47]).

When we estimate the proteomic mass fraction of a given protein pool,
we do not need to adjust for the total protein on each filter. This is because
this measurement is independent of total protein. However, for merging
estimates of total relative abundance of different organisms across filters,
we needed to additionally weight the abundance estimate by the amount
of protein on each filter. Therefore, in addition to the weighting scheme
described above, we multiplied taxon abundance estimates by the total
protein on each filter divided by the total protein across filters on a
given day.

LC-MS/MS simulation

We used simulations of metaproteomes and LC-MS/MS to (1) quantify
biases associated with inferring coarse-grained proteomes from metapro-
teomes, and (2) to mitigate these biases in our inferences. Specifically, we
asked the question: how does sequence diversity impact quantification of
coarse-grained proteomes from metaproteomes? Consider a three
organism microbial community. If two organisms are extremely similar,
there will be very few peptides that can uniquely map to those organisms,
resulting in underestimated abundance. The third organism would also be
underestimated, but to a lesser degree, unless it had a completely unique
set of peptides. A similar outcome is anticipated with differences in
sequence diversity across protein groups, such that highly conserved
protein groups will be underestimated.

Our mass spectrometry simulations offer a unique perspective on this
issue: we know the “true” metaproteome, and we can compare this with an
“inferred” metaproteome. We simulated variable numbers of taxonomic
groups, each with different protein pools of variable sequence diversity.
From this simulated metaproteome, we then simulated LC-MS/MS-like
sampling of peptides. Complete details of the mass spectrometry
simulation are available in [48] and the Supplementary materials. The
only difference between this model and that presented in [48] is here we
include dynamic exclusion. The ultimate outcomes from these simulations
were (1) identifying which circumstances lead to biased inferences about
proteomic composition, and (2) determining the underpinnings of these
biases.

Cofragmentation bias scores for peptides

We recently developed a computational model (“cobia”) that predicts a
peptides’ risk for interference by sample complexity (more specifically, by
cofragmentation of multiple peptides; [48]). This study showed that coarse-
grained taxonomic and functional groupings are more robust to bias, and
that this model can also be used to estimate bias. We ran cobia with the
sample-specific databases, which produces a “cofragmentation score”—a
measure of risk of being subject to cofragmentation bias. Specifically, the
retention time prediction method used was RTPredict [49] with an “OLIGO”
kernel for the support vector machine. The parameters for the model were:
0.008333 (maximum injection time); 3 (precursor selection window); 1.44
(ion peak width); and 5 (degree of sparse sampling). Code for running this
analysis, as well as the corresponding input parameter file, is found at
https://github.com/bertrand-lab/ross-sea-meta-omics.

Description of previously published datasets analyzed
We leveraged several previously published datasets to compare our
metaproteomic results. Specifically, we used proteomic data of
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phytoplankton cultures of Phaeocystis antarctica and Thalassiosira pseudo-
nana [27, 50], and of cultures of Escherichia coli under 22 different culture
conditions [51]. Coarse-grained proteomic estimates were also compared
with previously published targeted metaproteomic data [27].

RESULTS AND DISCUSSION

We characterized proteomic traits of eukaryotic and bacterial taxa
at the Antarctic sea ice edge. To do so, we have leveraged a
combination of sample-specific nucleic acid sequencing and
metaproteomics, assessing various assumptions and challenges
with metaproteomics. Below, we first discuss our methodological
results, and then we examine observations of different proteomic
traits across microbial taxonomic groups. Finally, we touch on
using coarse-grained protein pools for measuring nutrient stress in
the ocean.

Database choice influences peptide identifications and
quantification
The sequence databases from the metatranscriptome experiment
conducted on our third sampling week (January 15, 2015)
outperformed sample-specific databases and other configurations
(in terms of number of peptide spectrum matches, Supplementary
Fig. S4 and Table 1). Specifically, we identified 14,455 unique
peptides using the “metatranscriptome experiment T0” database,
while 8022 unique peptides were identified with the “sample-
specific database” (Supplementary Fig. S4). We identified a core
set of 5127 peptides, regardless of the database chosen
(Supplementary Fig. S4). The database pooled across time points
identified more peptides than the “sample-specific database”,
similar to previous work [52]. The metatranscriptomic experiment
(both “metatranscriptomic experiment (T0)” and “metatranscrip-
tomic experiment (all)”) were more valuable in identifying larger,
primarily eukaryotic organisms (Supplementary Figs. S4-S7).
Overall, the two metatranscriptomic experiment databases
performed similarly in terms of number of identified peptides.
All subsequent analyses use the identified peptides from the
“metatranscriptome experiment (all)” database. Importantly, a
difference between the metatranscriptomes of sample-specific
filters and the metatranscriptomic experiment databases was
sequencing depth (Supplementary Table 1). This difference likely
influenced the metatranscriptomic read assembly, improving the
assembly of eukaryotic-protein sequences and therefore creating
a better database (i.e,, in terms of peptides identified). Note that
databases were constructed after assembly, and then subsetted to
create individual databases (Methods). Overall, deep metatran-
scriptomic sequencing appears to be a promising avenue for
metaproteomics with tailored databases (Supplementary Table 1).
Database choice influenced peptide quantification due to
normalization. We quantified this by correlating sample-specific
normalization factors with each other and with the TIC (i.e, a
database-independent  normalization, Supplementary  Figs.
S$8-510). Examining the correlation between the best- and
worst-performing databases, there was a range of R* values, from
83 to 99% (Supplementary Figs. S8-510). If we consider a peptide
observed in a mass spectrometry experiment with an intensity
value of 100, we expect variation in the inferred value to range
from 92 to 108, reflecting variation in the normalization factor of
16%. This has significant consequences for comparative metapro-
teomics: consider two samples, one with a perfectly matched
database and a second that uses the same database, but is poorly
matched. Using standard methods, the peptides identified in the
second sample will appear to increase in abundance, even if the
abundance is constant. We anticipate that database choice would
similarly affect quantification when other mass spectrometry
methods are employed (e.g., labeled untargeted metaproteomics,
or experiments using data-independent acquisition). Note that our
worst-performing database was still well-matched to the
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community, so for researchers studying very distinct communities
it is vital to address this issue by using database-independent
normalization, or ensuring bias across samples is minimal. We
provided methods for doing both.

One simple alternative is to use a database-independent metric
of total peptide abundance: total MS1 ion current (TIC). We found
that TIC is well correlated with the total peptide abundance
inferred from the best-performing database (with correlation
coefficients 0.98, 0.95, and 0.91 for the 3.0, 0.8, and 0.1 um filter
sizes, Supplementary Figs. S8-510, respectively). This result has
two consequences: (1) it suggested that TIC may be a viable
alternative for normalization in comparative metaproteomics. (2) It
validated the use of our best-performing database, as we
identified most of the abundant peptides in our sample. Given
that these two approaches were highly correlated, we used the
“metatranscriptome experiment (all)” database for all subsequent
analyses.

Taxonomic and functional composition shifted through the
season at the Antarctic sea ice edge

Taxonomic abundance shifted through the season at the Antarctic
sea ice edge (Fig. 1a). The microbial community was dominated by
Phaeocystis antarctica (Haptophyta) early in the season, with
diatoms increasing in relative abundance later (predominantly
Fragilariopsis sp. and Pseudonitzschia sp.). The phytoplankton
bloom progression and high dinoflagellate biomass contribution
were both consistent with previous observations in the Ross Sea
[53, 54]. Bacterial taxa had relatively lower protein biomass and
more consistent relative biomass values through time compared
with eukaryotic taxa. Of the bacterial taxa we observed,
Rhodobacterales was the most abundant group, with abundances
being mostly stable though the season.

We identified shifts in protein abundance by mapping peptides
to de novo protein clusters (irrespective of taxonomic assign-
ments)—including protein clusters with no known function. Earlier
in the season there was a high relative abundance of Chlorophyll
A-B binding proteins and ATP synthase alpha/beta family proteins
(Fig. 1b), which is anticipated because of the higher levels of
dissolved iron [27]. Demonstrating the importance of de novo
protein group assignment, the most abundant protein group in
our entire dataset had no functional annotations (Fig. 1b,
Unknown Protein Cluster 2818, mostly belonging to Ciliates).
Further examination of a representative protein sequence within
this cluster found no functionally similar proteins within the NCBI
non-redundant database. We suggest that these unknown, highly
abundant proteins should be targets for functional
characterization.

Eukaryotic and bacterial taxa have taxon-specific proteomic
allocation strategies

We quantified two simple proteomic traits of microbes: the
ribosomal protein mass fraction and the photosynthetic protein
mass fraction (using a combined estimate across filter sizes,
Supplementary Fig. S11). Eukaryotic taxa formed unique clusters
based on these two traits, with more variation across taxa than
across time points (Fig. 2a). For example, haptophytes had
relatively high proportions of both ribosomal and photosynthetic
protein fractions. Examining the five most abundant bacterial taxa,
we also observed distinct proteomic compositions, with Gamma-
proteobacteria exhibiting the highest ribosomal protein mass
fraction (Fig. 2).

Before examining the underpinnings of these proteomic traits,
we first scrutinized these inferences using mass spectrometry
simulations and additional data sources. Our analysis was limited
to coarse-grained protein functions and taxa, which is robust to
bias arising from variable sample complexity [48]. Our mass
spectrometry simulations suggested that low sequence diversity
in taxa or protein groups can lead to underestimation
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(Supplementary Fig. $S12), but this bias is mitigated by examining
abundant proteins or taxa. Identifying ~50 peptides or more is
evidence that there is sufficient sequence diversity in a protein
group to avoid this type of underestimation (Supplementary Fig.
S12). We identified greater than 50 taxon-specific peptides for
each protein group, indicating that these observations are not
subjected to significant biases arising from sequence diversity. We
therefore restricted our analyses to taxa and protein groups that
are relatively abundant. Note that for dinoflagellates, we observed
relatively few peptides in the photosynthetic proteomic mass
fraction, so our observations are likely underestimating the true
value (Supplementary Discussion, Supplementary Fig. S12).
Despite this underestimation, the true value is probably quite
low (discussed below).

We provided two additional estimates of ribosomal and
photosynthetic protein mass fraction from cultured phytoplankton
(Fig. 2c). Metaproteomics can underestimate taxon-specific
protein mass when taxonomically uninformative peptides are
not used. For example, we might identify a highly conserved
peptide produced by a diatom, but are unable to map it to
diatoms because it also corresponds to other taxa, and this
peptide would be excluded from the quantification of diatoms.
Therefore, we compared the ratios of ribosomal to photosynthetic
protein mass fraction from the metaproteomic observations to
cultured diatoms and haptophytes. Ratios were similar in cultures
compared to populations sampled in situ (Fig. 2c), despite such
culturing experiments occurring under different environmental
conditions. Trends observed in the proportion of transcripts
mapped to ribosomal proteins in different groups of bacteria also
mirrored our estimates of ribosomal protein mass fraction (high
for Gammaproteobacteria and low for SAR11; [21]).

We examined coarse-grained taxonomic groups. It is possible
that within these coarse groupings, different taxa included in
these groupings employ different allocation strategies. We there-
fore sought to determine whether taxonomic sub-groupings
displayed similar expression patterns. This issue is challenging to
assess, because as subgroupings are further examined, there is
increased susceptibility to several biases (as outlined above). We
therefore examined one subgrouping, diatoms, that contained
two dominant species: Fragilariopsis sp. and Pseudonitzschia sp.
The taxonomic assignments for these two diatoms were from the
NCBI nt database. We observed similar proteome estimates for
both ribosomal and photosynthetic proteins amongst both these
subgroups of diatoms (Supplementary Fig. S13), suggesting they
are functionally similar based on these proteomic traits. However,
we cannot exclude the possibility that for other taxonomic groups
the trends observed are due to a diversity of underlying microbial
strategies. Yet at this coarse taxonomic level, we concluded that
different microbial taxa exhibited distinct coarse-grained
proteomes.

We now turn to the ecological relevance of these protein
expression patterns. Protein synthesis is the primary energy sink in
cells [25], and photosynthesis or respiration is the primary
energy source in cells. Why do dinoflagellates have relatively
low photosynthetic protein mass fractions? This taxonomic
group is typically mixotrophic or heterotrophic [55], which would
require larger investment in respiratory proteins for energy
production. Haptophytes and diatoms had similar amounts of
photosynthetic proteins, but very different amounts of ribosomal
proteins (Fig. 2a), so there was no direct trade-off between
producing ribosomal versus photosynthetic machinery (i.e., they
do not form Pareto front) [56, 57]. Gammaproteobacteria had the
highest ribosomal mass fraction within the observed bacterial
taxa, and haptophytes had higher ribosomal mass fractions
compared to diatoms. Gammaproteobacteria ribosomal mass
fraction decreased through the season, perhaps corresponding
with a decreased growth rate as micronutrients are depleted by
the phytoplankton bloom.
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Taxonomic and functional composition shifted through the season. a Measurements of relative change in protein biomass identified

a taxonomic shift at the Antarctic sea ice edge. Protein biomass is calculated as the sum of taxon-specific peptide intensities, weighted by the
protein mass per filter for each sampling time. b Relative change in protein functional clusters shows that unknown protein clusters
contribute greatly to in situ protein biomass, and also identifies a functional shift across weeks.

What are the ecological implications of having more ribosomes?
If we assume constant translation rate per translational apparatus
(but see [58]), taxa then had different total protein synthesis
output. Growth rate is directly related to total protein synthesis
output, because protein comprises a large portion of cell mass. To
have a faster growth rate, microbes’ need to increase protein
synthesis (see [12], for derivation and assumptions). We hypothe-
size that high total protein synthesis output (via high ribosomes) is
more advantageous under high nutrient regimes, as it would allow
an elevated growth rate. Indeed, haptophytes and Gammapro-
teobacteria were more abundant earlier in the season (which had
higher concentrations of dissolved Fe and Mn) [27]. Another
interpretation is that these early-abundant taxa are better suited
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to a dynamic environment. Perhaps these early-abundant taxa
(Gammaproteobacteria, haptophytes) increased investment in
ribosomes as a form of bet hedging, which enables a faster
growth rate in a dynamic environment [59].

Environment-independent proteomic fraction varies across
taxa

What is the cost of responding quickly to a dynamic environment?
We hypothesized that there is a regulatory cost for producing
proteins that are optimal for a set of environmental conditions.
Constitutive protein production does not incur this regulatory cost
at the risk of being mismatched to environmental conditions. If
the proteome is mostly constant across conditions, this indicates a

The ISME Journal (2022) 16:569-579



a Eukaryotic Taxa

J.S.P. McCain et al.

b Bacteria

‘ Taxonomic Group 0.4+ Week
<> O Diatoms O 1
0.154 I:‘ Dinoflagellates 8 O 2
8 ‘ <> Haptophytes 5 . 3
B 5 951 o -
s | me 2
[/ 2]
@ 0.12- @ @
© ©
E S E
= =
°© L © 027 @
o o
5 & &)
T 0091 I
€ =
S [ 5 @)
3 ]
o] o 014 O
o [
0.06 A o ‘ 8 @
L @) 0.0
0.0 0.1 0.2 0.3 M\ 2 \es AN . nales
acte cle crerd oAl < ich@
Flavo 2ptO 110000 Thio
Gan™
Photosynthesis protein mass fraction Taxonomic Group
c Eukaryotic taxa
A Culture

10.04

(Ribosomal protein /
photosynthesis protein)
5

L
w7

o

<3<

v Metaproteome

T
Diatoms

Dinoflagellates

Haptophytes

Taxonomic group
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Examining bacteria only shows variation in ribosomal mass fraction across groups. Note that Thiotrichales are an order within
Gammaproteobacteria, so Gammaproteobacteria here refers to all non-Thiotrichales Gammaproteobacteria. ¢ Ratios of ribosomal protein
mass fraction to photosynthetic protein mass fraction derived from metaproteomic observations and compared with phytoplankton
proteomes observed in culture (Phaeocystis antarctica, Thalassiosira pseudonana [27, 50]).

low regulatory cost, and vice versa. We propose a proteomic trait
that reflects regulatory cost: the proteomic fraction that is
environment-independent. This proteomic trait is quantifiable
using metaproteomics, and due to the dynamic nature of the
ocean, is likely an important selective force for marine microbes.

We classified peptides that are relatively constant across
different environmental conditions, and then summed their
average intensities to get an environment-independent peptide
mass fraction (Fig. 3b, c). Note that (1) peptide intensities were first
normalized by total taxon-specific peptide intensity (they there-
fore sum to one for each taxon), and (2) estimates of environment-
independent peptide mass fraction were combined across filter
sizes. Using previously published proteomic data from replicate
cultures of E. coli under identical conditions, we chose a cut-off
point distinguishing environment-dependent versus -indepen-
dent peptides (represented with vertical lines, Fig. 3a and
Supplementary Fig. S14) [51]. This cut-off point was calculated
by examining the distribution of protein-level coefficients of
variation for each E. coli culture condition, determining the third
quartile, and then taking the mean across all culture conditions
[51]. We then can determine the proportion of the proteome that
is environment-independent and -dependent (using the mean
abundance value per peptide). There are potential biases in this
novel method. We address the impact of these biases using
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published data and by making comparisons with other estimates
of regulatory costs across taxa from previously published work
(see Supplementary Discussion, Supplementary Figs. S14 and S15).

SAR11 had the highest environment-independent peptide mass
fraction across all eukaryotic and bacterial taxa we examined
(Fig. 3a, b and Supplementary Fig. S16), consistent with previous
work suggesting SAR11 has reduced regulatory investment [60].
Within  eukaryotes, dinoflagellates exhibited the highest
environment-independent peptide mass fraction, and dinoflagel-
lates in other oceanic regions also exhibited lower regulatory cost
[20, 22].

Diatoms had a lower environment-independent proteomic
fraction compared with haptophytes, suggesting they have higher
regulatory costs. Recall the previous result that diatoms had a
lower proportion of ribosomes compared with haptophytes (but
similar proportions of photosynthetic proteins; Fig. 2a). We
speculate that two proteomic traits comprise a trade-off for these
two taxa: higher total protein synthesis via more ribosomes (i.e.,
leading to fast growth under high nutrient conditions), but at a
cost of being less able to dynamically regulate their proteomes.
This suggests that in a high nutrient environment (that is also
dynamic), dynamically responding to the environment is not the
optimal strategy. Instead, a better strategy is constitutively
expressing proteins that are favorable for rapid growth (e.g., high
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ribosomal production in haptophytes). The lower ribosomal mass
fraction observed in diatoms would limit their growth in higher
micronutrient environments but make them more successful in
lower micronutrient environments. Ross Sea phytoplankton
blooms typically progress from haptophyte- to diatom-dominated,
as micronutrients stocks (e.g., Fe and Mn) transition from replete
to deplete [53, 61-63]. There is also evidence that Phaeocystis has
a higher Fe requirement [64], which may be related to these
proteomic traits. We posit that differences in regulatory cost and
ribosomal mass fraction between diatoms and haptophytes may
help explain their ecological succession.
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Are some protein functions more often categorized as
environment-independent or environment-dependent? Highlight-
ing some examples, the actin protein cluster was often classified
as environment-dependent (Fig. 3c). Actin is involved in endocy-
tosis, and inorganic Fe uptake occurs via an endocytotic
mechanism (with phytotransferrin) [65]. Perhaps variable expres-
sion of actin is related to the amount of bioavailable Fe, and
previously published proteomic experiments also showed that
actin was differentially expressed due to Fe [66, 67]. ATP synthase-
peptides and chlorophyll A-B binding protein-peptides were also
mostly classified as environment-dependent, likely reflecting

The ISME Journal (2022) 16:569 - 579



J.S.P. McCain et al.

Week O 1t O 2O 3 A s B |

29 380 31 32

Cofragmentation Score

Untargeted proteomics: diatoms

<
A

Untargeted proteomics: haptophytes

A

0.0154

N
2
o
e
f

0.0101

w
@
o
=
f

0.005

n
9
o
=
f

Plastocyanin mass fraction
@
Plastocyanin mass fraction ©

O

017 0.19 0.21
Photosynthetic protein mass fraction

0.000

0.20 0.24 0.28 0.15 0.23

Photosynthetic protein mass fraction

0.32

(2]

Targeted proteomics: Phaeocystis sp. (haptophytes)
4

o
S

0.6

A

5

(=]
'S
L

Peptide
@ GDSITWINNK
(O GGPHNVVFVEDAIPK

Plastocyanin / RuBisCo small
subunit
o
n
| @)

o
=)
L

0.17 0.19 0.21
Coarse grained photosystem protein mass fraction

0.15 0.23

Fig. 4 Coarse-grained proteomes can be used to assess nutrient stress. a, b Comparison of the single-protein biomarker plastocyanin with
the photosynthetic protein mass fraction for diatoms and haptophytes (using discovery proteomics). Points are colored with their
corresponding, sample-specific cofragmentation score (the number of potentially cofragmenting peptides). Cofragmentation scores were
calculated using the sample-specific nucleic acid sequencing, and points colored in gray correspond to peptides that were identified and
quantified with the “Metatranscriptome experiment (all)” database, but were not present in the sample-specific databases. ¢ Comparison of
the single-protein biomarker (using targeted proteomics) plastocyanin with the photosynthetic protein mass fraction for haptophytes. Two
peptides for plastocyanin are shown, and each point represents one technical replicate measurement. Phaeocystis plastocyanin abundance is
normalized to Phaeocystis RuBisCO small subunit abundance, where we used the mean of two taxon-specific peptides (AKPNFYVK and

QIQYALNK) to calculate RuBisCO abundance [27].

higher primary production earlier in the season (Fig. 3c). In
contrast, the ketol-acid reductoisomerase protein cluster (involved
in branched-chain amino acid synthesis) was mostly classified as
environment-independent. It is unclear what the mechanistic
basis for constitutive expression of this protein might be, but
several proteomic studies of diatoms also suggest similar
expression across conditions [50, 66, 67]. Using this extensible
approach to identify constitutively expressed proteins across a
wide array of taxa would shed light on these mechanisms. With
vastly more metaproteomic data being generated (e.g. [68]),
identifying constitutively expressed proteins across diverse taxa
would help answer the question: what are the features of
constitutively expressed proteins? For example, perhaps there
are certain protein functional groupings that are often constitu-
tively expressed.

Coarse-grained proteomes can assess nutrient stress

Proteomics is also used in marine microbiology to assess stress
corresponding to a deficient nutrient (e.g. [4]). For example,
expression of the protein plastocyanin may reflect Fe deficiency,
because plastocyanin does not contain Fe and performs a similar
function as the Fe-containing protein cytochrome ¢ [69].
Biomarkers of physiological stress are increasingly nuanced (e.g.,
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[27]), sometimes taxon specific, and can require targeted mass
spectrometry approaches. Coarse-grained approaches may be a
complementary method for assessing stress or nutrient deficiency.
We compared using coarse-grained proteomes with single-protein
biomarkers. Previous bottle incubation work and targeted
metaproteomics showed that there was a transition to Fe- and
Mn stress at this sampling location in the Ross Sea, so we focus on
Fe-stress indicators [27]. We first solely examined the photosyn-
thetic protein mass fraction compared to the mass fraction of
peptides assigned to the plastocyanin, for diatoms and hapto-
phytes (Fig. 4a, b). This approach is biased by variable complexity
across samples [48], but we predicted the degree of bias with a
quantitative metric (the “cofragmentation score”). This score
reflects the expected number of peptides with similar m/z and
retention times. Overall, there were relatively few potential
cofragmenting peptides (=3), indicating low bias (peptides with
high bias can have upwards to 300 cofragmenting peptides, for
example [48]). We observed a negative relationship between the
photosynthetic protein mass fraction and the plastocyanin mass
fraction (note that these two variables are not independent, as
plastocyanin is considered as part of the photosynthetic mass
fraction). We also examined Phaeocystis antarctica-specific pep-
tides measured with previously published targeted mass

SPRINGER NATURE

577



JS.P. McCain et al.

578

spectrometry, and identified a negative correlation between the
abundance values of plastocyanin and the coarse-grained
estimates of photosynthetic proteins (Fig. 4c). We conducted this
analysis as a proof-of-concept for using coarse-grained proteomes
to assess nutrient deficiency, as coarse-grained proteomes are
amenable for untargeted metaproteomic analyses. These pre-
liminary analyses suggest that coarse-grained proteome composi-
tion may be a useful tool for assessing nutrient deficiency. More
analyses are required to assess the robustness of this relationship,
and also to assess if coarse-grained proteomic signatures are
nutrient specific (i.e., would a coarse-grained marker be able to
distinguish between Fe and Mn stress?).

CONCLUSION

We conclude that different microbial taxa have distinct coarse-
grained proteomic composition, and this composition is more
similar across taxa than across environmental conditions. The
stoichiometry of proteins within pathways is conserved [9]—but
our results show that this is not the case across pathways.
Variation in pathway-to-pathway stoichiometry may indeed
underpin ecological strategies, in addition to differing gene
repertoires. Connecting in situ proteomes to ecological strategies
will delineate proteomic traits, which can then be adopted into a
trait-based approach for modeling microbial communities. Geno-
mic trait-based approaches have successfully explained large-scale
biogeochemical processes [10, 11], but they first had to identify
genes that are metabolically important. Therefore, identifying and
quantifying proteomic trait variation across taxa will connect
protein production to ecological strategies, and ultimately enable
modeling of microbial communities by representing proteomic
traits and trade-offs in large-scale models (e.g., as in [70]).

DATA AVAILABILITY

The metagenomics and metatranscriptomics data reported here have been
deposited in the NCBI sequence read archive (BioProject accession no. PRINA074702;
BioSample accession nos. SAMN18057468-SAMN18057479 (metagenomics) and
BioSample accession nos. SAMN18057480-SAMN18057497 (metatranscriptomics).
The mass spectrometry proteomics data have been deposited to the ProteomeX-
change Consortium via the PRIDE partner repository with the dataset identifier
PXD022995 [71]. All other data products (the cobia analysis output, formatted
databases, peptide abundances for each database search, targeted proteomics data,
culture proteomics data, metaproteomic simulation output) are available in Dryad
at https://doi.org/10.5061/dryad.vt4b8gtrz.
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