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Abstract: Mature red blood cells (RBCs) not only account for ~83% of the total host cells in the
human body, but they are also exposed to all body tissues during their circulation in the bloodstream.
In addition, RBCs are devoid of de novo protein synthesis capacity and, as such, they represent
a perfect model to investigate system-wide alterations of cellular metabolism in the context of aging
and age-related oxidant stress without the confounding factor of gene expression. In the present
study, we employed ultra-high-pressure liquid chromatography coupled with mass spectrometry
(UHPLC–MS)-based metabolomics and proteomics to investigate RBC metabolism across age in male
mice (6, 15, and 25 months old). We report that RBCs from aging mice face a progressive decline in
the capacity to cope with oxidant stress through the glutathione/NADPH-dependent antioxidant
systems. Oxidant stress to tryptophan and purines was accompanied by declines in late glycolysis
and methyl-group donors, a potential compensatory mechanism to repair oxidatively damaged
proteins. Moreover, heterochronic parabiosis experiments demonstrated that the young environment
only partially rescued the alterations in one-carbon metabolism in old mice, although it had minimal
to no impact on glutathione homeostasis, the pentose phosphate pathway, and oxidation of purines
and tryptophan, which were instead aggravated in old heterochronic parabionts.
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1. Introduction

Over the last 160 years, the average life expectancy rose from 45 to ~85 in most industrialized
countries [1]. With an increase in longevity worldwide, age-associated non-communicable diseases
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emerged as a substantial burden in disease incidence and healthcare costs [2]. The list of diseases
for which age is an independent risk factor includes current leading causes of mortality in the adult
population, such as cancer, diabetes, cardiovascular disease, and neurodegenerative diseases [3].
Despite decades of studies on the topic, the identification of strategies to slow the aging process is
frustrated by the complex and stochastic nature of progressive biological decay. Indeed, aging is a
complex phenomenon, one that is impacted by several factors such as genetics and environment,
and their interplay [4]. Variation in lifespan among species or individuals is indeed dictated in part
by genetics [5], although environmental factors such as diet [6], exercise [7], or other lifestyle habits
(e.g., smoking [8]) are increasingly appreciated as key contributors to aging. All these factors were shown
to contribute to mitochondrial dysfunction and systemic oxidant stress [9,10], etiological contributors
to many of the cardiovascular, neurocognitive, and inflammatory complications associated with aging.
Meanwhile, interventions that succeeded in slowing features of aging, such as dietary restriction (DR) or
rapamycin, are able to potently modulate key metabolic pathways, including insulin/Insulin-like growth
factor 1 (IGF-1) signaling, AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin
(mTOR), and inflammation [3]. Indeed, several recent studies—from animal models to clinical
trials [11]—showed that dietary interventions aimed at reprogramming system metabolism could
represent a viable strategy to extend the lifespan, or at least to extend the population health span.

Owing to their capillary distribution, red blood cells (RBCs)—the most abundant human cell in
our body (~83% of total human cells excluding bacteria [12])—represent a perfect model to investigate
system metabolism. While originally considered simple bags of hemoglobin, RBCs are increasingly
being appreciated owing to their complex capacity to buffer system metabolism, as a result of their
~3000 proteins and ~100 molecular membrane transporters [13]. During their 120-day lifespan in
the bloodstream, at full oxygen saturation of the ~250–270 million copies of hemoglobin/cell [14],
RBCs could transport over one billion/molecules of oxygen per cell—numbers that make it easy
to appreciate the likelihood of radical-generating reactions in a cell that is also loaded with >60%
of bodily iron [15]. In addition, owing to the lack of nuclei and organelles, mature RBCs cannot
synthesize new proteins to face sudden or progressive increases in the oxidant stress challenge.
As such, RBCs are a perfect model to investigate system metabolism in the context of cellular oxidant
stress without the confounding contribution of de novo synthesis of gene products. Interestingly,
the very process of increased inflammation and oxidant stress in aged individuals (also referred to
as “inflammaging” [16]) is associated with a stressed erythropoiesis phenotype, one that ultimately
results in a skewed hematopoietic maturation toward myeloid progenitors [17]—a potential etiological
contributor to the so-called “anemia in the elderly” [18].

RBCs are well equipped with antioxidant systems, especially those depending on glutathione.
However, studies from the late 1970s identified a progressive decline in the glutathione-dependent
RBC antioxidant capacity as a function of organism and RBC age in mice [19]. This decline is in part
explained by the progressive deregulation of the pentose phosphate pathway (PPP) in the aging RBCs
of the aging organism (mouse or human [20–22]). Indeed, the PPP generates the reducing co-factor
Nicotinamide adenine dinucleotide phosphate (NADPH), which is critical for fueling the recycling
of several antioxidant systems in RBCs such as glutathione peroxidase, catalase, peroxiredoxins [23],
glutaredoxins, thioredoxin reductase system, biliverdin reductase B [24], and the ascorbate–tocopherol
axis [25]. Glucose 6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the PPP and, thus,
a critical enzyme in NADPH homeostasis in RBCs and other tissues [26]. Nonetheless, ~400 million
people suffer from mutations in G6PD that impact its activity to a variable extent, a condition referred
to as G6PD deficiency—the most common enzymopathy in humans [27]. Of note, G6PD activity was
suggested to decline with age [20–22], while transgenic mice overexpressing G6PD have improved
health spans [28]. However, despite these classic studies, no recent reports addressed this aspect of
RBC biology in the context of aging with state-of-the-art omics approaches.

In the last few years, the advent of omics technologies revived interest around blood metabolism
as a critical source of information to investigate derangements in system metabolism as a function
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of aging [29]. Recently, we reported the impact of aging on RBC metabolism in a cohort of 97
subjects, including individuals with Down syndrome, the most common human condition due to
aneuploidy in the human population (one in ~700 live births in the United States) [30]. Of note,
individuals with Down syndrome are more susceptible to several of the comorbidities associated
with aging, including neurocognitive diseases (e.g., Alzheimer’s disease), several autoimmune
and hematological cancers, pulmonary hypertension, and hearing and vision problems [31,32].
Interestingly, RBC lifespan is shortened in individuals with Down syndrome, a phenomenon that
is accompanied by metabolic alterations in one-carbon metabolism (and associated damage-repair
mechanisms [33]), and glutathione and purine oxidation, as well as tryptophan metabolism [30]—a
pathway critical to immunoregulation [34]. Recently, tryptophan catabolites via inflammatory
(interferon signaling) and oxidative metabolism were associated with neurocognitive impairment in
Down syndrome [35].

Parabiosis, which is a surgical approach for joining the circulatory systems between young–young
and old–old (isochronic) or young–old (heterochronic) animals, re-emerged over the past decade
in aging research. Studies based on this approach demonstrated that aging occurs as a complex
interaction of cell autonomous and cell non-autonomous mechanisms. Using heterochronic parabiosis,
cell non-autonomous effects were demonstrated by transposition of aging phenotypes (i.e., old to
young, young to old) in several organs and cells, and implicated specific gerontic factors, including
beta-2 microglobulin (B2M), C-C Motif Chemokine Ligand 11 (CCL11), and transforming growth factor
beta (TGFβ), in mediating these effects. Of note, some of the molecular and behavioral signatures
associated with neurocognitive decline in aging were restored in old mice exposed to young blood
via heterochronic parabiosis [36]. Recent work showed that the young environment ameliorates
neurocognitive defects in aging mice, through mechanisms at least in part involving Tet2 and DNA
methylation status in the aged hippocampus [37]. Therefore, in the present study, we employed
state-of-the-art metabolomics and proteomics technologies to investigate RBC metabolism in mice of six,
15, and 25 months of age, and to further determine the extent, if any, to which shifts in the metabolome
or proteome of the cells are modulated by the systemic environment through heterochronic parabiosis.

2. Materials and Methods

2.1. Aging and Parabiotic Mice

Parabiosis surgery was carried out by the Einstein Chronobiosis and Energetics/Metabolism of
Aging Core in young and old male C57BL/6 mice obtained from the National Institute of Aging
aged rodent colony at four or 18 months of age, respectively, as described previously [38,39].
Surgical unions were performed between young (four months old) animals (isochronic; young
(Y)–Y; n = 4), old (18 months old) animals (isochronic old (O)–O; n = 5), and young and old mice
(heterochronic Y–O; n = 5). Following surgery, animals were kept on a partial heating pad overnight.
Pairs were then intensively monitored and received subcutaneous (SQ) injections of Banamine (2 mg/kg
each) immediately post-op and bis in die (b.i.d.) for three days and then once daily for four days.
Animals also received 1 mL of ringer’s lactate SQ immediately after, daily for three days post-op
to prevent dehydration. Animals remained joined for ~8 weeks prior to sacrifice. All experimental
procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at the Albert
Einstein College of Medicine.

2.2. Metabolomics

2.2.1. Sample Extraction

Metabolomics analyses were performed on 20 µL of packed RBCs at 1:25 dilution in separate
extractions of with either methanol:acetonitrile:water (5:3:2 v/v) or pure methanol (Optima, Thermo Fisher)
prior to vortexing for 30 min at 4 ◦C and centrifugation at 18,000× g for 10 min at 4 ◦C, as described
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previously [40,41]. Extracts were analyzed via ultra-high-pressure liquid chromatography coupled with
mass spectrometry (UHPLC–MS).

2.2.2. UHPLC–MS Analysis

The analytical platform employs a Vanquish UHPLC system (Thermo Fisher Scientific, San Jose,
CA, USA) coupled online to a Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose,
CA, USA), as extensively described in prior work [40,42–44]. Metabolites were separated with a
combination of isochratic and gradient-based methods as per protocols extensively detailed in recent
methods papers [45,46]. Briefly, the analytical platform employs a Vanquish UHPLC system coupled
online to a Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). Samples were
resolved over a Kinetex C18 column, 2.1 × 150 mm, 1.7 µm particle size (Phenomenex, Torrance,
CA, USA) equipped with a guard column (SecurityGuard™ Ultracartridge UHPLC C18 for 2.1 mm
inner diameter (ID) Columns; AJO-8782; Phenomenex, Torrance, CA, USA) using an aqueous phase
(A) of water and 0.1% formic acid and a mobile phase (B) of acetonitrile and 0.1% formic acid for
positive ion mode runs, while, for negative ion mode runs, 2 mM ammonium acetate was used to
replace formic acid. Samples were eluted from the column using either an isocratic elution of 5% B
flowed at 250 µL/min and 25 ◦C or a gradient from 0–5% B over 0.5 min, 5–95% B over 0.6 min, held at
95% B for 1.65 min, 95–5% B over 0.25 min, and held at 5% B for 2 min, flowed at 450 µL/min and
35 ◦C. The Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) was operated
independently in positive or negative ion mode, scanning in full MS mode (2 µscans) from 60 to
900 m/z at 70,000 resolution, with 4 kV spray voltage, 45 sheath gas, and 15 auxiliary gas. Calibration
was performed prior to analysis using the Pierce™ Positive and Negative Ion Calibration Solutions
(Thermo Fisher Scientific, Waltham, MA, USA). Acquired data was then converted from raw to mzXML
file format using Mass Matrix (Cleveland, OH, USA). Samples were analyzed in randomized order
with a technical mixture injected after every 15 samples to qualify instrument performance. Metabolite
assignments were performed using MAVEN (Princeton, NJ, USA), [47] against an in-house library of
stable isotope-labeled standards [41].

2.2.3. Proteomics Analyses

Mouse RBC proteomics analyses were performed via filter-aided sample preparation (FASP),
followed by trypsinization and nanoUHPLC–MS/MS analyses (nanoEasy LC II coupeld to QExactive
HF, Thermo Fisher), as extensively described in prior work [13]. In the interest of space, the interested
reader is referred to previous methods papers from our group for extensive details about the analytical
workflow [48].

2.2.4. Statistical Analysis

Significance was determined through an ANOVA test (Microsoft Excel, Redmond, CA, USA;
GraphPad Prism 5.0, Prism, San Diego, CA, USA) for RBC metabolomics analyses as a function of mouse
age or parabiosis. Multivariate analyses, including partial least squares discriminant analysis (PLS-DA),
hierarchical clustering analyses, and heat maps, were performed with the software MetaboAnalyst 4.0 [49].
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3. Results

3.1. RBCs from Aging Mice Are Characterized by Significant Proteome-Wide and Metabolic Changes in
Antioxidant Systems

Metabolomics analyses were performed on RBCs from six-, 15-, or 25-month-old mice
(Figure 1A). Raw data are presented in Table S1 (Supplementary Materials). Multivariate analyses
revealed significant differences across samples from mice at different age groups, with aging
explaining the majority of total variance (23.4% in principal component 1) in PLS-DA (Figure 1B).
Hierarchical clustering analysis (Figure 1C) revealed a significant mouse age-dependent decay
in RBC metabolites involved in one-carbon metabolism (e.g., dimethylglycine), carboxylic acids
(2-oxoglutarate, succinate), glutathione metabolism (glutamyl-alanine, glutathione), and purine
metabolism (urate, 5-hydroxyisourate). Conversely, RBCs from aged mice were characterized
by increases in metabolites in the glutathione oxidation and turnover (glutathionyl-cysteine,
5-oxoproline), tryptophan and tyrosine metabolism, glycolytic metabolites (glucose 6-phosphate,
phosphoglycerate isomers, phosphoenolpyruvate, 2,3-biphosphoglycerate), one-carbon and choline
metabolism (methenyl-tetrahydrofolate (THF), choline, acetylcholine; Figure 1C). Proteomics analyses
showed that these metabolic changes were accompanied by progressive age-related decreases in RBC
levels of antioxidant enzymes (e.g., glucose 6-phosphate dehydrogenase (G6PDx)), cytosolic isoforms
of Krebs cycle enzymes (malate dehydrogenase 1 (MDH1); Figure 1D). On the other hand, increases
were observed in the levels of other enzymes including some involved in glycolysis (enolase (ENO1)),
glutathione or NADPH-dependent antioxidant enzymes (Gpx1, catalase (Cat), aldehyde dehydrogenase
9 family member 1 (ALDH9A1), biliverdin reductase B (BLVRB), phosphogluconate dehydrogenase
(PGD)), proteasome subunits (Psma1, 6, 7; Psmb2; Psmc5; Psmd3; Psme1), and heat-shock proteins
(Hspa1b, Hspa5) (Figure 1E). Of note, RBCs from aging mice were characterized by increasing levels of
apoptotic markers (Clusterin (Clu); Fatty Acid Synthase (Fasn), complement components (C5, Cfh) and
immunoglobulin chains (Ighm, Jchain), phosphatase/kinase system (adducin (Add2); 14-3-3 protein
zeta/delta - Ywhaz) and, most notably, markers of organismal aging (Park7, pregnancy zone protein
(Pgzp1)). Correlation analysis between protein levels and mouse age revealed top protein correlates (F)
and significantly up- and downregulated pathways in aging mouse RBCs (G).

3.2. Focus on the RBC Metabolic Pathways Impacted by Mouse Age

3.2.1. Glutathione, One-Carbon, Glycolysis, and Pentose Phosphate Pathway

In Figures 2–4, we provide an overview of the top metabolic pathways that were found to
be significantly impacted by mouse age from the pathway analysis of proteomics data (Figure 1G)
and multivariate analysis of metabolomics data (Figure 1B,C). Specifically, we noted that aging
mouse RBCs were characterized by progressive declines of methionine, choline, and dimethylglycine
(one-carbon metabolism; Figure 2). These changes were accompanied by glutamine consumption
to generate glutamate, glutathione consumption as a result of increases in glutathionyl-cysteine
(a marker of glutathione oxidation), and 5-oxoproline (a marker of glutathione turnover) (Figure 2).
Conversely, RBC oxidized glutathione (GSSG) levels did not decline with mouse aging, resulting
in GSSG/reduced glutathione (GSH) ratios increasing in older mice in comparison to young mice
(Figure 2). Changes in redox homeostasis were accompanied by increased glucose consumption,
as a result of (i) alterations in pentose phosphate pathway activation (higher ribose phosphate but
lower sedoheptulose phosphate as a function of mouse aging), and (ii) increases in early glycolytic
intermediates (hexose phosphates and triose phosphate compounds until phosphoenolpyruvate) and
decreases in pyruvate and lactate (Figure 2).
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Figure 1. Metabolomics and proteomics of red blood cells (RBCs) from aging mice (six, 15, or 25 
months old). (A) An overview of the experimental design. (B) Partial least squares discriminant 
analysis (PLS-DA) reveals a significant impact of mouse age on RBC metabolic phenotypes, as 
highlighted by the top 25 significant metabolites by ANOVA in the heat map in (C). Similarly, the 
RBC proteome was significantly impacted by the age of the animal, with a number of proteins 
decreasing (D) or increasing (E) with aging. Correlation analysis reveals top protein correlates (F) and 
significantly up- and downregulated pathways in aging mouse RBCs (G). 

Figure 1. Metabolomics and proteomics of red blood cells (RBCs) from aging mice (six, 15, or 25 months
old). (A) An overview of the experimental design. (B) Partial least squares discriminant analysis
(PLS-DA) reveals a significant impact of mouse age on RBC metabolic phenotypes, as highlighted by
the top 25 significant metabolites by ANOVA in the heat map in (C). Similarly, the RBC proteome
was significantly impacted by the age of the animal, with a number of proteins decreasing (D) or
increasing (E) with aging. Correlation analysis reveals top protein correlates (F) and significantly up-
and downregulated pathways in aging mouse RBCs (G).
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Figure 2. Alterations of RBC glycolysis, the pentose phosphate pathway, and glutathione and one-
carbon metabolism as a function of the age of the mouse. Dots represent distinct biological replicates 
for six- (red), 15- (green), and 25-month-old mice (blue). * cross-talk between glutathione homeostasis 
and glyoxylate pathway. ** cross-talk between methionine and one-carbon metabolism. 

3.2.2. Purine Metabolism 

No major changes were observed in aging mouse RBCs with respect to the total adenylate pool 
(ATP, ADP, AMP), although trends toward decrease were noted for AMP and ATP, especially in the 
oldest mice. On the other hand, significant increases in GDP, but not GMP, were observed in older 
mouse RBCs (Figure 3A). Purine catabolism products, including inosine monophosphate (IMP) and 
its breakdown and oxidation products (inosine, hypoxanthine), were higher in older mice. On the 

Figure 2. Alterations of RBC glycolysis, the pentose phosphate pathway, and glutathione and one-carbon
metabolism as a function of the age of the mouse. Dots represent distinct biological replicates for six-
(red), 15- (green), and 25-month-old mice (blue). * cross-talk between glutathione homeostasis and
glyoxylate pathway. ** cross-talk between methionine and one-carbon metabolism.
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3.2.3. Transamination, Carboxylic Acids, and Arginine Metabolism 

Increases in aspartate and glutamate and decreases in alpha-ketoglutarate (aKG) are suggestive 
of deregulation of transamination reaction as a function of mouse age (Figure 3B). Since these 
reactions could be coupled to salvage of purine oxidation, it was interesting to note that carboxylates 
all decreased in mouse RBCs as a function of age (e.g., aKG, succinate, 2-hydroxyglutarate, fumarate, 
malate; Figure 3B). Finally, both 15- and 25-month-old mice were characterized by deregulation of 
arginine metabolism, which resulted in lower levels of citrulline and ornithine, but higher levels of 
spermidine and spermine in RBCs from old mice (Figure 3B). 
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Figure 4. Tryptophan metabolism in mouse RBCs as a function of aging. Dots represent distinct
biological replicates for six- (red), 15- (green), and 25-month-old mice (blue).

3.2.2. Purine Metabolism

No major changes were observed in aging mouse RBCs with respect to the total adenylate pool
(ATP, ADP, AMP), although trends toward decrease were noted for AMP and ATP, especially in the
oldest mice. On the other hand, significant increases in GDP, but not GMP, were observed in older
mouse RBCs (Figure 3A). Purine catabolism products, including inosine monophosphate (IMP) and its
breakdown and oxidation products (inosine, hypoxanthine), were higher in older mice. On the other
hand, the final products of the pathway—urate, hydroxyisourate, and allantoate—were either higher
in young mouse RBCs or did not change in aging mice (Figure 3A).

3.2.3. Transamination, Carboxylic Acids, and Arginine Metabolism

Increases in aspartate and glutamate and decreases in alpha-ketoglutarate (aKG) are suggestive of
deregulation of transamination reaction as a function of mouse age (Figure 3B). Since these reactions
could be coupled to salvage of purine oxidation, it was interesting to note that carboxylates all
decreased in mouse RBCs as a function of age (e.g., aKG, succinate, 2-hydroxyglutarate, fumarate,
malate; Figure 3B). Finally, both 15- and 25-month-old mice were characterized by deregulation of
arginine metabolism, which resulted in lower levels of citrulline and ornithine, but higher levels of
spermidine and spermine in RBCs from old mice (Figure 3B).

3.2.4. Tryptophan, Tyrosine, and Indole Metabolism

Multivariate analysis highlighted significant age-related changes in the levels of RBC metabolites of
tryptophan and indoles, with kynurenic acid and quinolinic acid increasing and decreasing, respectively
as a function of mouse age (Figure 4). Indole metabolites—likely products of bacterial origin—were found
to decrease and increase in aged mouse RBCs (Figure 4). Finally, tyrosine decreases in 25-month-old mice
were accompanied by significant increases in the levels of its byproduct dopamine (Figure 4).

3.2.5. Parabiosis Only Partially Restores Metabolic and Proteome-Wide Defects in RBCs from Aging Mice

After appreciating proteomics and metabolic changes in RBCs from aging mice, we questioned
whether some of these age-related phenotypic changes could be reversed by physically connecting the
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circulatory systems of young and old mice—a practice referred to as parabiosis [36]. In the present
study, the circulatory systems of two young or old mice (isochronic Y–Y or O–O, respectively) or one
young and one old mouse (heterochronic Y–O) were surgically connected (Figure 5A), prior to blood
collection from either mouse and subsequent metabolomics (Supplementary Table S2) and proteomics
(Supplementary Table S3) analyses. In heterochronic mice, RBCs were either drawn from the young
(Y–O Y) or the old (Y–O O) mouse. Once again, metabolomics data clearly indicated an impact of
mouse age across principal component 1 (PC1; 21.1% of the total variance). On the other hand, PC2 and
PC3 accounted for 17.4% and 6.9% of the total variance, respectively, mostly as a result of biological
variability across mice (PC1) and the effect of parabiosis (PC3) (Figure 5B). Hierarchical clustering of
the top 25 metabolites by ANOVA is shown in Figure 5C. Results confirmed a significant impact of
aging on glutathione homeostasis, glycolysis, and the pentose phosphate pathway. Only a subgroup
of age-related changes were reversed in heterochronic mice, when compared to isochronic old–old
mice. Similarly, the proteomes of RBCs from heterochronic mice (young–old mice) were characterized
by higher levels of antioxidant enzymes (superoxide dismutase 1 - Sod1) and Cd47, a “do not eat
me signal” that prevents the untimely removal of the RBC from the bloodstream via phagocytosis
(Figure 5D). Parabiosis also resulted in increased levels of G6PD in the RBC from young–old mice,
especially in Y–O Y mice (Figure 5D). Heterochronic mice (both Y–O O and Y–O Y) had young levels
of hydroxymethylbilane synthase (HMBS), an enzyme critical in heme metabolism whose mutation is
associated with acute porphyrias (Figure 5D). Similarly, heterochronic parabionts had normal levels of
NSFL1 cofactor p47 (NSFL1C), a competitive inhibitor of cathepsin proteases [50].
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parabiosis experiments are presented in the form of a heat map.
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3.2.6. Parabiosis Only Partial Rescues the Age-Dependent Changes in RBC Metabolism

Parabiosis partially corrected the metabolic defect in one-carbon metabolism, by normalizing
the levels of methionine and increasing RBC levels of choline (Figure 6). However, age-dependent
decreases in S-adenosylmethionine (SAM) and dimethylglycine were aggravated in Y–O mice (Figure 6).
Similar increases were observed in Y–O mice with respect to cysteine and glutathionyl-cysteine, despite
an apparent normalization of the levels of reduced, but not oxidized glutathione in comparison to O–O
mice (Figure 6). Levels of 5-oxoproline were decreased, while ribose phosphate increased in O–O and Y–O
mice (Figure 6), a trend inconsistent with that observed in RBCs from aging mice (Figure 2), likely as a
confounding effect of the surgical practice of parabiosis. On the other hand, parabiosis decreased the levels
of early glycolytic metabolites and partially normalized the levels of late glycolytic products pyruvate and
lactate back to young mouse RBC levels (Figure 6). Perhaps the most striking finding in parabiotic mice was
that RBC levels of NAD dropped significantly in old mouse RBCs and were not improved by parabiosis.Nutrients 2019, 11, x FOR PEER REVIEW 13 of 22 
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Figure 6. Alterations of RBC glycolysis, the pentose phosphate pathway, and glutathione and one-carbon
metabolism in isochronic and heterochronic parabiotic mice. Dots represent distinct biological replicates
for isochronic young (Y)–young (red) or old (O)–old (green), or heterochronic Y–O mice with blood
being drawn from the young mouse (blue) or the old mouse (light blue). * cross-talk between glutathione
homeostasis and glyoxylate pathway. ** cross-talk between methionine and one-carbon metabolism.
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Age-related changes in parabiotic mouse RBC purines mostly confirmed and in part expanded
the observation from aging mice (Figure 7A). In particular, in this set of experiments, RBCs from
O–O parabiotic mice had lower levels of high-energy phosphate purines (ATP and ADP), a trend
that was not reversed by parabiosis in heterochronic mice. On the other hand, parabiosis seemed
to aggravate age-associated purine oxidation from urate/5-hydroxyisourate to allantoin (Figure 7A).
Similar considerations can be made for the RBC levels of carboxylic acids (especially fumarate,
malate, and aKG), polyamines, and creatine (arginine metabolite) (Figure 7B). Finally, RBC levels
of tryptophan and indole metabolites increased in O–O compared to Y–Y mice, a trend that was
further exacerbated in heterochronic mice, with the exception of the neurotoxic picolinic acid and
NAD-precursor nicotinamide (Figure 8).Nutrients 2019, 11, x FOR PEER REVIEW 14 of 22 
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(B) in isochronic and heterochronic parabiotic mice. Dots represent distinct biological replicates for
isochronic young–young (red) or old–old (green), or heterochronic Y–O mice with blood being drawn
from the young mouse (blue) or the old mouse (light blue).
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4. Discussion

In the present study, we analyzed the metabolome and proteome of RBCs from aging mice.
Expectedly, we found that RBC antioxidant capacity declined as a function of mouse age, a phenomenon
that was in part warranted by progressive declines in glutathione pools, in part by deregulated PPP at the
protein (G6PD) and metabolic level. Prior work from the late 1970s/early 1980s showed age-dependent
declines in G6PD activity [20,22] and glutathione pools [19–21]. The results are consistent with classic
literature and recent observations in RBCs from Down syndrome [30] and non-trisomic subjects [29].
Expanding on the literature, we report that dysregulation of glutathione metabolism was in part
explained by increases in oxidation and turnover of glutathione, with 5-oxoproline representing a
metabolic bottleneck in RBCs owing to the lack of a functional oxoprolinase [51]. Increased glutaminolysis
and glutamate/aspartate levels in the face of higher levels of cysteine were detected in the erythrocytes
of aging mice, a phenotype consistent with decreased glutathione synthesis [52,53] and dysregulated
transamination (also manifesting in low levels of aKG in RBCs from 15- and 25-month-old mice).
Since glutathione synthesis is an ATP-dependent process, it was interesting to note that the total ATP pool
was decreased in RBCs from isochronic O–O parabiotic mice, with trending decreases of ATP and AMP
in RBCs from aging, non-parabiotic mice. Decreases in late glycolysis were noted despite an apparent
rerouting of glucose moieties toward glycolysis, as apparent by the accumulation of early glycolytic
intermediates. A tentative explanation is due to potential decreases in glucose uptake (as intracellular
glucose levels declined as a function of mouse age), since the glucose transporter (Solute Carrier Family
2 Member 1- SLC2A1) was reported to be controlled transcriptionally (at earlier erythropoietic stages) by
redox sensing transcriptional regulators such as ataxia–telangiencatasia mutated (ATM) [54], which also
regulates G6PD at the transcriptional level [55]. On the other hand, it was shown in other systems
that late glycolytic enzymes such as pyruvate kinase—where a metabolic bottleneck was observed in
RBCs from old mice in the present study—can be regulated via the mechanism of redox-regulated
glutathionylation [56]. However, in the present study, no significant age-dependent increase in pyruvate
kinase glutathionylation was observed in old mouse RBCs, which were instead characterized by
progressive oxidation and higher levels of glutathionylation of cysteine 94 of hemoglobin beta (data
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not shown)—one of the main redox-sensitive cysteines in RBCs [57,58]. An alternative explanation of
this apparent blockade in late glycolysis is that other redox-sensitive thiols (e.g., Cys152 and 156 of
glyceraldehyde 3-phosphate dehydrogenase [59]) could be oxidized in RBCs as a function of aging,
although proteomics data did not confirm that in this study.

Alternatively, mouse aging may result in the depletion of cofactors that are essential to sustain
glycolysis, such as nicotinamide adenine dinucleotide (NAD). Notably, NAD levels decreased with
mouse age and were the lowest in 25-month-old mice, a phenotype that was not corrected by parabiosis.
This is interesting owing to the increasingly appreciated link between aging and NAD depletion [60–63],
an observation that fueled the industry of supplements based on NAD precursors. Even more
intriguingly, NAD is a downstream product of tryptophan metabolism, a pathway that is significantly
impacted by aging and inflammation [64,65]. In Down syndrome, increased tryptophan oxidation as
a function of interferon-induced indole 2,3-dioxygenase (IDO1) activity results in the accumulation
of neurotoxic metabolites like kynurenine and picolinic acid [66], potential contributors to the
neurocognitive decline observed in the Down syndrome population [30,35] and, in general, during aging.
While parabiosis had arguably little to no effect on most metabolic pathways, it is worthwhile to
note that RBC levels of picolinic and quinolinic acid, but not kynurenic acid, were normalized in
heterochronic parabiotic mice. Of note, the tryptophan/kynurenine axis was recently associated with
a relay axis that regulates arginine catabolism to polyamines as a function of IDO1 and arginase 1
activity in dendritic cells [34], an observation that is herein phenocopied in RBCs from aging mice and
only partially normalized by parabiosis.

Recent studies highlighted the potential role as signaling molecules of tryptophan-derived indoles,
metabolites that can be generated by some Gram-negative bacteria in the gut microbiome [64,67,68].
Although merely speculative at this stage, it is interesting to note that indole metabolites were
significantly impacted by the age of the animal in RBCs, which also circulate in microcapillaries in
the gut and are, thus, indirectly exposed to bacterial metabolites. As such, the observed changes in
metabolites of potential bacterial origin in aged mouse RBCs could represent a previously unappreciated
marker of gut dysbiosis in “inflammaging” that warrants further investigation in the future.

Increases in circulating levels of pro-inflammatory cytokines such as interleukin-1 (IL-1) and -18
were proposed as mediators of the aging process [69]. Increases in circulating levels of IL-1β were
shown to skew hematopoiesis toward the myeloid lineage by mechanisms involving the activation of
a PU.1-dependent gene program [17]. This mechanism could potentially explain the phenomenon
of “anemia in the elderly” [70], a condition that is found in ~80% of elderly patients and at least in
part explained by progressive iron, folate, and vitamin B12 deficiency [18]. Of note, both folate and
vitamin B12 are essential players in one-carbon metabolism, a pathway that fuels the synthesis of
purines and S-adenosylmethionine for protein, DNA, and RNA methylation purposes. Indeed, dietary
manipulation of folates results in altered hematopoiesis [71], and dysregulation of this pathway
owing to dosage increase of cystathionine beta synthase in Down syndrome results in macrocytic
anemia and homocystinuria [72]. Notably, in the present study, one-carbon metabolism (including
critical players methionine, choline, dimethylglycine, and methenyl-THF) was the most dysregulated
pathway in the aged mouse RBC. This is particularly relevant in RBCs, since increased methionine
consumption is critical to the RBC capacity to repair isoaspartyl damage to proteins as a function of
oxidant stress by mechanisms involving the protein l-isoaspartyl methyltransferase (PIMT1) [33,40].
Indeed, genetic ablation of PIMT1 results in 100% mortality by 6–8 weeks of age because of seizures
following unsustainable oxidant damage to the central nervous system [73–76]. In this view, it is
interesting to note that (i) parabiosis was previously shown to correct, at least in part, the neurocognitive
defect in the aging mouse [37], and that (ii) in the present study, parabiosis effectively replenished
the RBC levels of methyl-group donors methionine and choline, although it was insufficient to fully
normalize one-carbon metabolism in the heterochronic mouse RBC. Overall, in the context of the
literature and the data presented herein, further studies investigating the potential linkage between
RBC one-carbon metabolism, oxidant stress, and protein damage repair in aging seem appropriate.
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Anemia in the elderly is associated with a compromised capacity to sustain sufficient tissue
hypoxia. Of note, RBC levels of carboxylic acids were previously associated with high-altitude [77] or
hemorrhagic hypoxia [78], while circulating levels of carboxylic acids are indicators of pathological
mitochondrial dysfunction in aging, trauma, and inflammation [79–82]. In this study, RBC levels of
carboxylic acids were significantly decreased as a function of mouse age. However, a limitation of
our analysis and its interpretation is that plasma samples were not available to determine matching
levels of these metabolites. Still, the appreciation of significantly lower levels of cytosolic isoforms of
Krebs cycle enzymes such as MDH1 is consistent with altered NAD/NADP-dependent metabolism [83]
in the RBC from the aged mouse. In the mature RBC, these alterations manifest themselves as a
result of the dysregulation of redox-regulated pathways related to purine oxidation and salvage [44],
a phenomenon that was observed in the RBC of the aged mouse, which negatively impacted the total
adenylate pool and, thus, the energy status of the cell, independently of parabiosis.

RBCs from old mice were characterized by higher levels of proteasome subunits and cellular
senescence signaling components (clusterin [84]), suggestive of potential compensatory mechanisms to
cope with increased oxidant stress in the face of decreased G6PD levels and PPP activation.

Recently, debate sparked over the opportunity to “rejuvenate” old subjects by transfusion
of blood from young donors [85–87]. Commercial companies jumped on the opportunity to
leverage a well-established medical practice to profit on a potentially game-changing therapy for
aging. However, recent critical reassessment of currently available literature by the Food and Drug
Administration “cautions consumers against receiving young donor plasma infusions that are promoted
as unproven treatment for varying conditions” at this stage [88]. In this context, it is worthwhile to note
that the present study did not focus on the potential impact of transfusion of blood from young mice
into old mice; rather, it tested the impact of heterochronic parabiosis in the context of aging. As such,
caveats should be acknowledged such as the likely biological impact of the parabiosis procedure per se
on mouse RBCs. Finally, it should be noted that transfusion of young mouse RBCs into old mice would
represent an “acute” procedure, while parabiotic mice were surgically connected for ~2 months. In this
view, making our report represents an assessment of the impact of a “chronic” procedure/phenotype;
thus, any parallelism to the potential impact of transfusion of young blood into old subjects would be
merely speculative.

5. Conclusions

In the present study, we report the results from metabolomics and proteomics analyses of RBCs
from six-, 15-, and 25-month-old mice. As a result, we identified a significant decline in the glutathione
and NADPH-dependent antioxidant capacity of the RBCs from aged mice. This phenomenon was
accompanied by declines in one-carbon metabolism, and increased purine and tryptophan oxidation,
with the latter being associated with significant decreases in the NAD pool. Parabiosis experiments
were performed to investigate whether circulation in the bloodstream of a younger mouse was
sufficient to restore the metabolic phenotype of an RBC from an old mouse into a younger phenotype.
However, parabiosis only partially rescued the alterations in one-carbon metabolism, although it had
minimal to no impact on glutathione homeostasis, the PPP, and oxidation of purines and tryptophan,
which were instead aggravated in heterochronic parabiotic mice. Compensatory mechanisms seemed
to emerge in the RBC from aged mice, such as increased utilization of one-carbon compounds from
methyl-group donors, and increased levels of proteasomal and apoptotic cascade components in the
mature RBC from aged mice when compared to their counterparts from younger mice. Future studies
will be necessary to mechanistically expand on the present observations, such as investigations aimed
at defining (i) the role of G6PD activity (or lack thereof) in the mature RBC as a function of aging,
(ii) the role of these potential compensatory mechanisms involving the use of one-carbon moieties,
proteasome activation, or cellular senescence cascades in the aging organism, and, most importantly,
(iii) whether and to what extent these critical players of RBC redox and energy homeostasis contribute
to aging-associated comorbidities.
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