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Fast Quantum Rabi Model with 
Trapped Ions
Héctor M. Moya-Cessa

We show how to produce a fast quantum Rabi model with trapped ions. Its importance resides not only 
in the acceleration of the phenomena that may be achieved with these systems, from quantum gates to 
the generation of nonclassical states of the vibrational motion of the ion, but also in reducing unwanted 
effects such as the decay of coherences that may appear in such systems.

Trapped ions are considered one of the best candidates to perform quantum information processing. By interact-
ing them with laser beams they are easy to manipulate, because of the fact that they can be individually addressed, 
which makes them an excellent choice for the production of nonclassical states of their vibrational motion.

The trapping of individual ions also offers many possibilities in spectroscopy1, in the research of frequency 
standards2,3, in the study of quantum jumps4, to name some applications. To make the ions more stable in the trap, 
increasing the time of confinement, and also to avoid undesirable random motions, it is needed that the ion be in 
its vibrational ground state which may be accomplished by means of an adequate use of lasers5,6.

Because of the high nonlinearities of the ion-laser interaction its theoretical treatment is a nontrivial problem7–13.  
Even in the simplest cases of interaction one has to employ physically motivated approximations in order to find a 
solution. A well-known example is the Lamb-Dicke approximation, in which the ion is considered to be confined 
within a region much smaller than the laser wavelength. Other examples are optical and vibrational rotating wave 
approximations that are usually performed in order to find simpler Hamiltonians. In fact, perturbative methods 
have been used to obtain better analytical approximations14.

Recently it was shown that the quantum Rabi model15 could be engineered via the interaction of two laser 
beams with a trapped ion16. Pedernales et al. did it by slightly detuning both laser beams from the blue and red 
side bands, allowing them to construct a Hamiltonian of the Rabi type and reaching all the possible regimes. 
However, because the parameters involved are much smaller than the vibrational frequency of the ion, ν, the ion 
can suffer losses that lead to the decay of Rabi oscillations17,18. There have been attempts to explain such loss of 
coherences via laser intensity and phase fluctuations19. Also recently, Puebla et al.20 have shown how to produce, 
in a robust manner, a quantum Rabi model, in a variety of parameter regimes, by manipulating ions with laser 
beams.

We will show here two approaches in which we can engineer a fast Quantum Rabi model (QRM), fast in the 
sense that the parameters involved in the interaction may be of the order of ν. Instead of two off-resonant lasers16, 
we use only one resonant beam.

Ion-laser interaction
We can write the Hamiltonian of the trapped ion as

= + +H H H H , (1)vib at int

where Hvib is the ion’s center of mass vibrational energy, Hat is the ion internal energy, and Hint is the interaction 
energy between the ion and the laser. The vibrational motion can be approximated by a harmonic oscillator. 
Internally, the ion will be modelled by a two level system. In the interaction between the ion and the laser beam, 
we will make the dipolar approximation, so we will write the interaction energy as − ⋅

� ��er E, where − er  is the 
dipolar momentum of the ion and 

��
E is the electric field of the laser, that will be considered a plane wave. Thus, we 

write the Hamiltonian, after an optical rotating wave approximations as
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The first term in the Hamiltonian is the ion vibrational energy; in the ion vibrational energy, the operator 
=ˆ ˆ ˆ†n a a is the number operator, and the ladder operators â and ˆ†a  are given by the expressions
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(3)

where we have set the ion mass equal to one. Also, for simplicity, we have displaced the vibrational Hamiltonian 
by ν/2, the vacuum energy, that without loss of generality may be disregarded.

The second term in the Hamiltonian corresponds to the ion internal energy; the matrices σz, σ+, and σ− are 
the Pauli matrices, and obey the commutation relations

σ σ σ σ σ σ= ± =± ± + −[ , ] 2 , [ , ] , (4)z z

and ω0 is the transition frequency between the ground state and the excited state of the ion.
By considering the resonant condition, ω0 =  ωl, and transforming to a picture rotating at ωl we obtain the 

Hamiltonian

ν η σ σ η= + Ω +φ φ
+

−
−ˆ ˆ ˆ †

H n e D i e D i[ ( ) ( )], (5)i il l

where we have defined the so-called Lamb-Dicke parameter

η
ν

= k
m
1

2 (6)

that is a measure of the amplitude of the oscillations of the ion with respect to the wavelength of the laser field 
represented by its wave vector k.

If we consider the condition η n 1, where n is the average number of vibrational quanta, we can expand 
the Glauber displacement operator21 in Taylor series22,23)

η η η≈ + +ˆ ˆ ˆ†D i i a i a( ) 1 , (7)

such that the Hamiltonian (2) reads

ν σ σ η σ σ≈ + Ω + + Ω + − .φ φ φ φ
+

−
− +

−
−ˆ ˆ ˆ†H n e e i a a e e[ ] ( )[ ] (8)i i i il l l l

By setting φl =  π and making now a rotation around the Y axis (by means of the transformation σπiexp( )y4
), 

with σy =  iσ− −  σ+, we obtain the usual form of the Rabi Hamiltonian

ν σ η σ σ= − Ω − Ω + −+ −ˆ ˆ ˆ†H n i a a( )( ) (9)z

If we take now ν =  − 2Ω, and we use the rotating wave approximation, the Hamiltonian reduces to the 
anti-Jaynes-Cummings (AJC) interaction Hamiltonian

η σ σ= − Ω − .− +ˆ ˆ†H i a a( ) (10)

On the other hand, if we set φl =  0 and follow the same procedure we obtain

ν σ η σ σ= + Ω + Ω + −+ −ˆ ˆ ˆ†H n i a a( )( ) (11)z

that, by taking ν =  2Ω, and using the rotating wave approximation now reduces to the Jaynes-Cummings (JC) 
interaction Hamiltonian

η σ σ= Ω − .+ −ˆ ˆ†H i a a( ) (12)

Because the transformation to achieve the quantum Rabi model from the ion-laser interaction was a simple 
rotation, observables pertaining the vibrational motion of the ion are left unchanged. However measurements on 
atomic states result in other atomic properties, namely the atomic inversion (〈 σz〉 ) gives information about the 
dipole moment (〈 σx〉 ) and viceversa.

Up to here we have been able to construct the Rabi interaction with a set of parameters that do not allow all the 
regimes because η  1 only permits the JC and AJC interactions. However, we should stress that this is a much 
faster interaction than the one produced by Pedernales et al.16 as Ω is the order of ν.

Fast Quantum Rabi Hamiltonian
We turn out attention again to the Hamiltonian given in equation (5) and set φl =  0

ν σ η σ η= + Ω ++ −ˆ ˆ ˆ †
H n D i D i( ( ) ( )), (13)

we rewrite Equation 13 in a notation where operators acting on the internal ionic levels are represented explicitly 
in terms of their matrix elements, as
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We follow the unitary operator procedure introduced by Moya-Cessa et al.23,24 and define the transformation 
matrix (whose elements are displacement operators)

η η

η η
=





−






.

ˆ ˆ

ˆ ˆ

†

†
T

D i D i

D i D i

1
2

( /2) ( /2)

( /2) ( /2) (15)

It is possible to check after some algebra that
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that, after returning to the former (spin matrices) notation reads

ν σ ιην σ σ νη
= + Ω + + − ++ −ˆ ˆ ˆ†n a a

2
( )( )

4
, (17)zQRM

2


that is nothing but the quantum Rabi Hamiltonian plus a constant term that can be disregarded.
The speed of the the quantum Rabi model is governed by the Rabi frequency15, Ω, and may be improved sim-

ply by increasing its value. For instance, in order to produce the vibrational wave approximation, it is asked that 
νΩ  , which in experiments with 40Ca+ 25,26 have been produced: ν =  2π ×  1.36 MHz while the Rabi frequency 

is of the order of KHz. In the above equation, Ω has no restriction and may be of the order of ν increasing the 
speed about three orders of magnitude.

Because Hamiltonians (14) and (17) are connected by a unitary (similarity) transformation, they are equiva-
lent and any solution found for one of them, by means of the transformation (15) delivers a solution to the other.

A solution for the Rabi model has been given recently by Braak27, and therefore this can be extended to the 
ion-laser interaction, for instance, we can write the evolution operator for the ion-laser interaction as

= =− −†U t e T e T( ) (18)iHt i tQRM

and we can further choose different initial conditions for the ion’s internal and external degrees of freedom in 
order to have the solution applied to simpler transformed states. For instance, if we consider the initial entangled 
state
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the solution to the complete ion-laser interaction Hamiltonian reads

ψ β=







−†t T e i( )
0

,
(20)

i tQRM

i.e., simply the solution to the quantum Rabi model for a coherent state for the field and an excited state for the 
atom.

Otherwise, if instead we use the initial state

ψ β η=



+ 




i(0) 1
2

/2
0

,
(21)

the solution now reads

ψ β=
−

−† ( )t T e i( ) 1
2

1
1 ,

(22)
i tQRM

which means that the evolution operator for the quantum Rabi model has to be applied to an initial condition for 
the field in a coherent state and the atom in a pure superposition of its ground and excited states.

We should stress that if we had considered a detuning, an extra term would have to be added to Equation 17 
that would represent an extra static electric field interacting with an atomic dipole28.

Also note that in the above Hamiltonian we have not made any assumptions on the parameters Ω and η.
The transformation (15) has already been used to find (families of) exact solutions to the QRM28. Taking 

advantage of the fact that QRM  is similar to H, we can obtain families of eigenstates of the quantum Rabi 
Hamiltonian, for instance, the lowest (unnormalized) eigenstate found for the ion-laser interaction
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with eigenvalue ν, translates to an eigenstate of the quantum Rabi Hamiltonian as
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where η η− = −ˆi D i/2, 1 ( /2) 1  is a so-called displaced number state29,30.
This correspondence is very useful, since it enables one to map interesting properties of each model onto 

their counterparts in the other. For instance ways of realizing substantially faster logic gates for quantum infor-
mation processing in a linear ion chain31, their stability conditions32,33 and gates not only insensitive to the tem-
perature of the ions, i.e., independent of the initial motional state, but that also work outside the Lamb-Dicke 
regime34.

Effective Hamiltonian
Now we show how to produce a fast dispersive Hamiltonian. Pedernales et al.16 showed that it is possible to build 
such a Hamiltonian by using two slightly of resonant laser beams tuned almost to the blue and red sidebands. 
However, as the parameters they used are in general much smaller than ν, the dispersive interaction constant, may 
be very small. Here, we take advantage of the fact that the Hamiltonian given in (17) has not been approximated 
and therefore there are no restriction on the values of their parameters. By transforming the Hamiltonian (17) 
with the unitary operators35
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doing a small rotation35, we obtain the so-called dispersive Hamiltonian
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where the effective interaction constant has the form
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Discussion
Note that most regimes may be achieved with this fast treatment: Jaynes-Cummings and anti Jaynes-Cummings 
were produced with the first method η ( 1) and may be produced with the last method, where the following 
regimes may also be achieved

•	 decoupling regime may also be achieved ν ην Ω /2 2
•	 the two-fold dispersive regime, where ην/2 <  ν, 2Ω, |2Ω −  ν|, 2Ω +  ν|,
•	 the deep and ultra strong coupling regime, for η >  2.

The last regimes may be achieved, as in principle, one can produce large Lamb-Dicke parameters9,11,36,37. It 
should again be stressed that, because decay actually happens in ion-laser interactions17,19 it is of great importance 
to have fast interactions31 in order to minimise such unwanted phenomena that avoids the generation of nonclas-
sical states, quantum gates, and other important quantum effects.

Finally, a drawback of this approach is that, because the frequency of the trap can not be taken to zero, simu-
lation of the Dirac equation can not be considered. Another would be that some properties of the model can not 
be explored because parameters can not be tuned during simulation time.
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