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3D cell culture technologies have recently shown very valuable promise for applications in
regenerative medicine, but the most common 3D culture methods for mesenchymal stem
cells still have limitations for clinical application, mainly due to the slowdown of inner cell
proliferation and increase in cell death rate. We previously developed a new 3D culture of
adipose-derived mesenchymal stem cells (ASCs) based on its self-feeder layer, which
solves the two issues of ASC 3D cell culture on ultra-low attachment (ULA) surface. In this
study, we compared the 3D spheroids formed on the self-feeder layer (SLF-3D ASCs) with
the spheroids formed by using ULA plates (ULA-3D ASCs). We discovered that the cells of
SLF-3D spheroids still have a greater proliferation ability than ULA-3D ASCs, and the
volume of these spheroids increases rather than shrinks, with more viable cells in 3D
spheroids compared with the ULA-3D ASCs. Furthermore, it was discovered that the SLF-
3D ASCs are likely to exhibit the abovementioned unique properties due to change in the
expression level of ECM-related genes, like COL3A1, MMP3, HAS1, and FN1. These
results indicate that the SLF-3D spheroid is a promising way forward for clinical application.
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INTRODUCTION

For 3D stem cell culture, the 3D cell environment can be manipulated to mimic what a cell
experiences in vivo and provide more accurate information on cell interactions, metabolic profiling,
and other cell normal physiology data; moreover, this culture has more valuable applications in stem
cell research, drug discovery, tumor therapy, and regenerative medicine (Duval et al., 2017). Through
further development and improvement, 3D cell culture is also likely to become an alternative method
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for studying organ behavior; for example, the current very
promising organoid culture is expected to eventually bridge
the gap between 2D cell culture and in vivo models (Belfiore
et al., 2021).

At present, 3D cell culture technologies mainly have two types
of methods: scaffold and scaffold-free techniques (De Pieri et al.,
2021). Scaffold-based techniques such as hydrogel scaffolds,
paper-based culture, fiber scaffolds, and other synthetic
biological materials are employed, each of which has its
advantages and applications (Pennarossa et al., 2021). Another
method is scaffold-free techniques, such as the hanging drop
method, magnetic levitation, and the ultra-low attachment (ULA)
surface of culture vessels (Shen and Horbett, 2001; Ovsianikov
et al., 2018). Among them, the ULA-3D culture technique,
because of its inexpensive, simple, and easily operated
properties, is currently widely used in general laboratories.

Adipose-derived stem cells (ASCs) have shown great potential
in regenerative medicine, as they have a wide range of sources and
have multilineage differentiation potential, low immunogenicity,
and self-renewal ability (Zuk et al., 2002; Baptista, 2020).
Typically, ASCs proliferate and expand on the surface of a
tissue culture-treated dish such as a 2D monolayer. However,
ASC expansion on the flat layer of the plastic surface cannot
accurately mimic the natural microenvironment for cell growth
in vivo due to a lack of three-dimensional tissue structure
information (Yin et al., 2020). Furthermore, more evidence
has shown that the extensive passage of ASCs in planar
culture can cause cell morphology changes, leading to cell
cycle arrest, induction of replication and senescence, and loss
of differentiation potential (Delben et al., 2021; Jeske et al., 2021).
As a result, scientists are trying to find new cultivation methods
that can overcome or partially overcome these problems, and 3D
ASC culture is a novel approach.

Several studies have been devised to culture 3D cell
spheroids of ASCs (Di Stefano et al., 2020; Hoefner et al.,
2020; Sung et al., 2020; Yin et al., 2020). In these studies, ULA-
3D culture has been more widely used, and in addition to its
simplicity and inexpensive nature, this method has the
following advantages: it is compatible with many cell lines,
initiates by self-assembly, and consists of natural cells and their
deposited extracellular matrix (ECM) (Vu et al., 2021). These
methods are also more suitable for biological analysis methods
that solve basic scientific issues, such as the regulation of
protein abundance due to changes in the 3D environment.
However, scaffold-free culture methods have often been
associated with decreases in cellular proliferation and
viability (Fitzgerald et al., 2020; Hoefner et al., 2020);
furthermore, uncontrolled cell assembly in the method often
results in large differences in the size of the spheroids. These
issues have limited the 3D ASC spheroid methods applied in
the clinic.

In previous experiments, we discovered that ASCs cultured
with low concentrations of FBS and growth factors (such as bFGF,
EGF, and PDGF) can form the 3D spheres on specific matrix
scaffolds; the special matrix is formed by a subset of plastic-
adherent ASCs. The 3D spheroids based on a self-feeder layer
(SLF-3D) have been proven to have multilineage differentiation

potential and “stemness” properties (Luo et al., 2021;
Supplementary Figure S1); they can survive for at least 10
passages and still could proliferate. This situation is very
different from that of 3D cell spheroids generated by the ULA
method. Therefore, in the following experiments, we compared
the novel 3D culture (SLF-3D) method with the ULA-3Dmethod
to determine whether this method can overcome some of the
main issues of the traditional ULA method.

In this study, we characterized the two methods for 3D ASC
culture and compared the properties of SLF-3D spheroids with
the ULA-3D spheroid. The related properties of SLF-3D spheroid
ASCs, including spheroid morphological analysis, spheroid
viability, and cell live/dead assay, were investigated by
stereology, fluorescence technique, and flow cytometry. We
further studied the possible mechanisms for the difference
between SLF-3D and ULA-3D based on the expression level of
ECM genes. We hope that the self-feeder layer 3D culture can be
used as a simple and effective ASC culture optimization strategy
to meet clinical needs.

MATERIALS AND METHODS

Monolayer Culture of Human ASCs
All human adipose tissue-derived stromal cells (ASCs) used in the
present study come from freeze isolated cells; the process of ASC
isolation was performed as previously described (Luo et al., 2021, 3).
In this study, no animals were used, and all experiments were
performed at the cellular level.

In the first two or three passage cultures using the traditional
monolayer culture method, the cells were plated at 200 cells/cm2

densities (Lund et al., 2009) in T75 flasks (Corning) and cultured
in ASC culture medium DMEM/F12 supplemented with 10%
fetal bovine serum (FBS, AusGeneX) at 37°C with 5% CO2 at
saturating humidity. When cells reached about 80–90%
confluency, the cells were detached with Accutase (Life
Technologies) about 3–5 m and the Accutase was inactivated
with serum-containing media.

Three-Dimensional Adipose Stem Cell
Spheroid Culture
For 3D self-feeder ASC spheroid (SLF-3D ASC) cultivation: after 2D
monolayer culture, the single-cell suspensions were produced by
incubation Accutase reagent (Life Technologies) dissociation for
5min at 37°C with gentle shaking and rinsed with 1× PBS. These
ASCs were plated in a 3D culture medium at high density (5 ×
104 cells/cm2) and were cultured for more than 5 days, and the main
components of 3D specific-condition culture medium are DMEM/
F12 supplementedwith 3%FBS (AusGeneX), human basic fibroblast
growth factor (bFGF, 5 ng/ml, Peprotech), human epidermal growth
factor (EGF, 2 ng/ml, Peprotech), human PDGF (5 ng/ml,
Peprotech), heparin (2 μg/ml, Sigma), L-Ascorbic acid-2-
phosphate sesquimagnesium salt hydrate (50 μg/ml, Sigma),
100 units/ml penicillin, and 100 pg/ml streptomycin. FBS should
be tested by batch-to-batch assay before use and must ensure that
FBS is enough to support the survival of cells.
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After the ASCs grow to 90–100%, they will form semi-
suspended spheroids on the attached ASCs, and we called
these cells 3D-ASC spheroids (SLF-3D). The medium was
replenished with fresh medium every 2 days. The culture
procedure is depicted in Figure 1. When more than 10
spheroids are formed per square centimeter, primary spheroids
were collected by vigorous shaking and centrifugation at 100 × g
for 3 min and cell spheroids were dissociated into single cells with
Accutase for 5–8 min followed by another passage or and ready
for follow-up experiments. For another passage, these single cells
were reseeded into the original flasks, where some attached ASCs
remained cells were cultured for approximately 1 week, and this
process was then repeated for each passage.

For ultra-low attachment 3D spheroid (ULA-3D) cultivation:
the cells were also passaged by utilizing a general cell passage
protocol. The ASCs thus prepared were resuspended in ULA
dishes (Corning Incorporated, United States, #3471) in DMEM
supplemented with 10% FBS at 37°C in a 5.0% CO2 incubator and
were utilized for later assays.

Spheroid Viability
For ULA-3D ASC spheroid viability assay, 10,000 or 5,000 ASCs
were seeded in ULA 96-well plates (Corning Incorporated,
United States, #3474) that were centrifuged 5 min at 4°C at
200 × g. Furthermore, for SLF-3D spheroid viability assay, we
first collected SLF-3D spheroids (at 3 days) with the same
sedimentation speed in tubes by natural gravity, and as these
spheroids contained subpopulations that differed in cell volume,
and these subpopulations could be isolated according to their
sedimentation velocity at unit gravity, dilute these collected
spheroids to a 96-well plate for secondary selection and then
select the appropriate size spheres in the 96-well plate for

subsequent related experiments. All spheroids were cultivated
in a humidified atmosphere containing 5% CO2 at 37°C for a
period, as indicated in each experiment.

After 3, 5, and 7 days of cell culture, spheroids were incubated
for 30 min at 37°C with 2 μM Calcein-AM and PI (LIVE/DEAD
viability/cytotoxicity kit, Invitrogen). In living cells, active
intracellular esterase cleaves the Calcein-AM to intensely
fluorescent Calcein, which is retained within cells with
membrane integrity. Fluorescence was observed using a Zeiss
microscope (Zeiss Observe.A1 Axio).

Cell Counting Kit-8 Assays
Cell proliferation was measured using the Cell Counting Kit-8
(CCK-8, Sangon, Shanghai, China). SLF-3D and ULA-3D
spheroids (which were dissociated into single cells with
Accutase) were plated into a 96-well microplate with 10% FBS
DMEM/F12 medium at a density of 1,000 cells per well. At 24, 48,
72, and 96 h, CCK-8 reagent (10 µl per well) was added to the cells
and then incubated at 37°C for 2 h, and then the growth curves of
cells were generated using absorbance values detected using a
microplate spectrophotometer (Tecan, Switzerland) at 450 nm.

To count the cells, the living and dead cells of SLF-3D and
ULA-3D spheroids (which were dissociated into single cells with
Accutase) were counted using either the Countess® Automated
Cell Counter (Invitrogen) or hemocytometer and using Trypan
blue (Invitrogen) exclusion.

Measurement of Viability Spheroid Cells by
Flow Cytometry
The SLF-3D and ULA-3D cells (which were dissociated into
single cells) were collected by centrifugalization and transferred

FIGURE 1 | Schematic diagram of the strategy for 3D-cultured adipose stem cells. Schematic diagram SLF-3D form spheroids and assay method. Morphological
observation of 3D spheroid formation. Phase-contrast images of cell expansion at low density, high density, and 3D spheres.
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to EP tubes. Flow cytometry was performed using the Annexin
V-FITC Apoptosis Detection Kit (BD Biosciences) following the
manufacturer’s instructions, and cells were analyzed using a BD
Accuri™ C6. In flow cytometry analysis, >10,000 events were
measured per sample, and unstained cells were used as controls.
All data were analyzed by Accuri™ C6 and Prism 8 (mac OS
version) software.

RNA Extraction and Quantitative Real-Time
RT-PCR Analysis
RNAwas isolated from cells using TRIzol (Invitrogen) according to
the manufacturer’s protocol. Total cellular RNA was extracted
from cell spheroids using TRIzol followed by treatment with
RNase-free DNase according to the manufacturer’s protocol. To
determine the expression levels of mRNA, total RNA was reverse
transcribed with a PrimeScript® RT Reagent Kit (TaKaRa).
Approximately 500 ng of total RNA was used for the first-
strand cDNA synthesis. Quantitative real-time RT-PCR was
carried out using CFX Connect System (BIO-RAD) and
subsequently amplified using the SYBR Green PCR Master Mix
(TaKaRa) and 0.5 µM each of the sense and antisense primers.
After amplification, the melting curves of the RT-PCR products
were acquired to demonstrate product specificity. Results are
expressed relative to the housekeeping gene GAPDH. Primer
sequences are summarized in Supplementary Table S1.

tatistical Analysis
The SPSS statistical software package (Chicago, IL) was used for
statistical analysis. All experiments were performed at least in
triplicate. Data were presented as mean ± standard deviation
(SD). Comparisons were accomplished by one-way analysis of
variance (ANOVA) with LSD post-hoc test or Student’s t-test. A
statistical significance was defined as p < 0.05.

RESULTS

Previously, we developed a novel and economical self-feeding 3D
spheroid (SLF-3D) culture method for adipose stem cells (more
details are given inMaterials andMethods, Figure 1) in which the
semi-suspended spheroids are formed on adherent ASCs attached
to plastic plates, where the adherent cells play roles in support of
the semi-suspended 3D-ASC spheroids. To determine the
characteristics of the SLF-3D method, we used the classic
ultra-low attachment (ULA-3D) method as control and
conducted the following experiments:

Characterization of SLF-3D Cell Spheroids
Morphologically, most SLF-3D spheroids were semi-suspended,
and these spheroids were the more regular size and more
consistent in shape. In comparison, ULA-3D spheres were
suspended with few adherent cell spheres, and they had more
irregular sizes and a few large clumps.

The ULA-3D spheroids were found to be round with defined
borders and varied in size 3 days after their first emergence
(Figures 2A,B). As shown in Figure 2, the majority of the

ULA-3D spheroids had a diameter of 20–40 μm, and the
majority of the SLF-3D spheroids had a diameter of 60–80 μm
(Figures 2D,E). ULA-3D spheroids with a diameter <20 μm or
>280 μm represented approximately 10% of the spheroids formed;
correspondingly, SLF-3D spheroids with a diameter of <20 μm or
>200 μm represented less than 2% of the spheroids. Statistically,
85.3% of the SLF-3D cell spheroids mainly ranged between 20 and
100 μm in diameter, while 80% of the ULA-3D spheroids ranged
between 20 and 160 μm in diameter, as observed from the
frequency distribution diagram (Figures 2C,F).

It can be concluded from Figure 2 that spheroids prepared
from ULA plates showed a wide size distribution. Spheroids with
a diameter ranging from 100 to 200 μm are typically preferred in
spheroid formation systems due to the low possibility of hypoxia
and necrosis since the shrinkage of the cell spheroids causes a
decrease in the oxygen supply to the sphere core, which is one of
the main factors for the increase in cell necrosis of spheroids
(Hirschhaeuser et al., 2010).

To detect the volume change of SLF-3D spheroids with a
limited number of cells, we used Corning ULA culture plates
to form ULA-3D cell spheroids composed of 5,000 and 10,000
cells (Figure 3A). Meanwhile, the SLF-3D spheroids we
collected were similar in diameter to the ULA-3D
spheroids; specifically, the SLF-3D spheroids were collected
after 3 days and a limited dilution to one to two spheres/100 μl
was performed (Figure 3B), after which they were placed in an
ultra-low adsorption culture plate and cultured in a
proliferation medium for the comparison of these two
kinds of spheroids by calculating the change in spheroid
diameter.

The results showed that after 24 h, the diameter of the ULA-
3D cell spheres formed by 10,000 cells was 1013 ± 169 μm
(Figure 3A), while the diameter of the ULA-cell spheres
formed by 5,000 cells was 595 ± 126 μm. After 3 days, there
were basically no single cells in any well of the 96-well cell
plate. Statistical analysis revealed that the ULA-3D cell spheres
had average sphere diameters of 756 ± 99 μm, 627 ± 101 μm,
and 572 ± 83 μm at 3, 5, and 7 days (Figure 3A), respectively,
while the SLF-3D cell spheres corresponding to 10,000 cells
had average initial diameters of 787 ± 189 μm, 918 ± 346 μm,
and 1,008 ± 209 μm after 3, 5, and 7 days, respectively
(Figure 3B). In addition, the self-3D cell spheres
corresponding to 5,000 cells had an average spheroid
diameter of 507 ± 127 μm at 3 days, and the diameters were
712 ± 244 μm and 793 ± 296 μm at 5 and 7 days, respectively
(Figure 3, Supplementary Figure S3).

Cell Viability of the SLF-3D and ULA-3D ASC
Spheroids
The difference in volumes depends on the different growth
rates of the spheroids. To confirm the difference in cell
spheroid growth status between the SLF-3D and ULA-3D
spheroids, we assessed spheroid proliferation within 96 h in
96-well plates.

Two types of spheroids were collected on the seventh day, and
the Accutase was used to dissociate the spheroids into single cells,
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which were counted and then seeded in 96-well plates. Compared
with the ULA-3D cells, the SLF-3D cells proliferated actively. The
number of SLF-3D cells was significantly higher than the number
of ULA-3D cells at 24, 48, 72, and 96 h (Figure 4). The result of

crystal violet-stained cells was similar to the result of the
measurement of viable cells (Figure 4B). The proliferation rate
of the control cells was increased significantly from 24 h onward
compared to that of cells under ULA culture conditions

FIGURE 2 | Comparison of the diameter distribution of the two methods (SLF-3D and ULA-3D spheroid methods). The morphology and distribution of spheroids
generated with the self-feeder 3D (SLF-3D) culture method compared with spheroids from the traditional ultra-low attachment 3D (ULA-3D) method were compared.
(A,D)Morphology of ULA-3D spheroids (A,B) after 3 days and SLF-3D spheroids (D,E) after the method described above (scale bars, 100 μm). (C,F) Spheroid diameter
frequency distribution diagram. ULA-3D spheroids (C) and SLF-3D spheroids (F). The spheres displayed heterogeneous sizes (scale bars, 100 μm).

FIGURE 3 | The relationship between culture time and spheroid diameter changes in the two types of spheroids. The relationship between seeding densities and
the formation of (A) ULA-3D spheroids and (B) SLF-3D spheroids. Human ASCs were seeded onto ULA plates at densities of 10,000 and 5,000 cells/cm2. Scale bars,
100 μm. Images are representative of more than five independent experiments. Graphs show the means of three independent experiments, each performed in
duplicate±SE. n � 5; **p < 0.01.
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FIGURE 4 | Cell viability of ASCs in SLF-3D and ULA-3D cultures at different time points. (A) Cell counting kit 8 (CKK-8) assay. Cell counting plot for ULA-3D and
SLF-3D spheroids. Graphs show themeans of three independent experiments, each performed in duplicate±SE. n � 5; **p < 0.01, as compared with control (0 h) group.
(B) Crystal violet stain of SLF-3D and ULA-3D ASC spheroids. (A) After 24, 48, 72, and 96 h, the spheroids were stained with crystal violet and photographed. Crystal
violet staining: Cells were stained with crystal violet solution for 10 min. Three independent experiments were performed in duplicate, and representative results are
shown. Scale bar, 100 μm.

FIGURE 5 | Fluorescence microscopy images of ULA-3D and SLF-3D spheroids stained with Calcein-AM/PI dyes. At 0, 3, 5, and 7 days of spheroid culture,
spheroids were stained with Calcein-AM/PI. (A) ULA-3D spheroids; (B) SLF-3D spheroid ASCs, and the quantification of the percentage of (C) Calcein-AM positive and
(D) PI-positive cells in images of spheroids. Themean integrated optical density (IOD) of all images wasmeasured and analyzed using Image-Pro Plus software (n � 6), **p
< 0.01, as compared with control (0 h) group. Scale bar, 100 μm.
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(Figure 4). Therefore, the low proliferation rate of ULA-3D cells
is likely due to their limited growth capabilities.

The Cell Viability of 3D Spheroids
To further determine the proportion of dead cells in the cell
spheres, we performed staining with Calcein-AM and
propidium iodide (PI) and visualized cell death within the
sphere more directly through a fluorescence microscope. As
shown in Figure 5, compared with the ULA-3D spheroids,
only a few dead cells in the proliferating SLF-3D cell spheroids
were stained by PI at 7 days (Figure 5B). The significant
reduction in cells stained with Calcein-AM proved that the
number of live cells in ULA-3D was reduced. At the same time,
more cells in the cell sphere could be stained by PI, which also
showed that there were more dead cells in the ULA-3D cell
sphere (Figure 5A).

Quantification of Spheroid Live/Death by
Flow Cytometry
To further validate the rate of cell viability in SLF-3D and
ULA-3D spheroid cells, the flow cytometry method was used.
Cell viability was assessed in SLF-3D and ULA-3D cultures at
0, 3, 5, and 7 days. The SLF-3D and ULA-3D cell death were

comparable at 0 and 3 days under both culture conditions, and
the highest number of dead cells occurred at 7 days (Figure 6).
Particularly, the cell death (including necrotic/dead/apoptotic
cell) rate in the ULA-3D culture (88.5%) was greater than that
in SLF-3D culture (34.0%) at 7 days (Figure 6); in brief, the
ULA-3D spheroids had a significant increase in the cell death
population and a reduction in the live cell number compared to
SLF-3D spheroids.

Evaluation of ECM-Related Gene
Expression in Spheroids
The ECM substitutes can profoundly alter cell growth,
proliferation, and other cellular behaviors (Marastoni et al.,
2008; Selman and Pardo, 2021). ECM-related gene expression
changes (ACTA2, CSHY1, COL1A1, COL3A1, COL5A1, ELN,
FN1, HAS1, LAMA1, LAMB1, MMP1, MMP2, MMP3, and TJP1)
were evaluated by quantifying the mRNA level; we first screen out
four genes with significant differential gene expression from
common ECM-related genes at 7 days in SLF-3D and ULA-3D
ASC spheroids, as shown in Figure 7A: COL3A1 (p � 0.01796),
FN1 (p � 0.008601), HAS1 (p � 0.011761), and MMP1 (p �
0.011820); the expression level of these genes in the SLF-3D group
was significantly higher than in the ULA-3D group.

FIGURE 6 | SLF-3D and ULA-3D spheroid cell viability was evaluated by flow cytometry. Viability of cells in the SLF-3D and ULA-3D spheroids. (A,B) Viability of
ASCs as determined by flow cytometry measuring PI uptake and annexin V-FITC labeling. Representative log fluorescent dot plots and summary of the data are shown.
As in the figure, 0, 3, 5ays, and 7 days indicate the number of days of cell culture. Cell populations were distinguished as live cells (PI-/annexinV-, lower left), or necrotic/
dead/apoptotic cells (early apoptotic cells (PI−/Annexin V+), shown in the lower right; late apoptotic/dead cells (PI+/Annexin V+), shown in the upper right, and
necrotic cells (PI+/Annexin V−), shown in the upper left. Three independent experiments were performed in duplicate, and representative results are shown. Data were
acquired using BD Accuri C6 software.
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Furthermore, we checked the expression level of these
genes and their homologous genes in SLF-3D and ULA-3D
spheroids on 0, 3, and 7 days, respectively (Figure 7B). The
trend of the expression level of MMP1, MMP3, HAS1, and
FN1 was significantly different between the two groups during
7 days. Among them, the expression level of MMP1 and HAS1
in SLF-3D spheroids increased and the expression trend was
different from the ULA-3D group (Figure 7B). Furthermore,
the expression levels of MMP3 and FN1 in SLF-3D spheroids
drastically declined; at the same time, there was no significant
difference in the expression levels of these two genes in the
ULA-3D spheroids during 7 days (Figure 7B).

In short, these results revealed that SLF-3D ASCs are likely to
exhibit the abovementioned unique properties due to the
different expression patterns of these key ECM genes.

DISCUSSION

3D cell culture and the resulting organoid culture technology
have recently shown promise for applications in regenerative
medicine. ASCs have become a prospective stem cell source for
clinical cell-based therapy (Fesharaki et al., 2018; Wang et al.,
2019). At present, the 3D culture of ASCs, especially ULA-3D

FIGURE 7 | ECM-related gene expression level of SLF-3D and ULA-3D spheroid. (A) ECM-related gene expression changes were evaluated by quantifying the
mRNA level at 7 days in SLF-3D and ULA-3D ASC spheroids. (B) Spheroids were generated from SLF-3D and ULA-3D ASC spheroids at 0 days (12 h), 3 days, or
7 days and used for qPCR assay. Graphs show the means of three independent experiments, each performed in duplicate±SE. n � 3; **p < 0.01.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7372758

Luo et al. Novel Self-Feeder 3D Culture Model

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


culture, is still difficult to apply for a large-scale application, and
one of the important reasons for this is that the necrotic cells in
the core of 3D spheroids increase rapidly due to the prolonged
culture time.

Under normal physiological conditions, cell sphere formation
may be one of the significant characteristics of robustly
proliferative and early-stage stem cells, such as embryonic
stem cells forming spheres or colonies on feeder layers or
neural stem cells forming neurospheres (Toma et al., 2001). In
our self-feeding three-dimensional adipose stem cell (SLF-3D
ASC) culture scheme (Figure 1), we take advantage of the
inherent proliferative heterogeneity properties of ASCs,
allowing a small subset of highly proliferative subpopulations
to form cell spheroids on specific matrix scaffolds; this special
matrix is formed by a subset of plastic-adherent ASCs. Since the
number of cells is very small compared to the whole ASC
population, there has been no effective way to screen for these
spheroid-forming cells from the ASC population, but our method
provides an effective solution. As this method of cell culture does
not require other exogenous extracellular matrices or scaffolds,
the scheme is simple and economical. In short, SLF-3D spheroid
formation in our developed method occurs for the following
reasons: 1) highly proliferative cells will grow as spheroids, and 2)
scaffolds are formed by the ASCs themselves, providing not only a
cell matrix but also nutrition, signaling, and other features, such
as growth factors and exosomes.

For the 3D cell culture of mesenchymal stem cells (MSCs), the
most common culture method is a scaffold-free 3D culture, which
uses ULA culture flasks (Ryu et al., 2019). With this method, all
the cells are forced to form cell spheroids because they cannot
attach to the plastic dish surface; the spheroids form entirely by
adherent cell aggregation after being forced into suspension,
unlike neurospheres, which form via rapid self-organization
after cell proliferation. For this reason, both stem cells and
differentiated cells exist among the cell spheroids formed by
3D cell culture. Additionally, when the cell spheroid size
increases slightly in the ULA 3D culture, the core of the 3D
sphere gradually turns black, and the cells in the center of the
spheroid die; this condition leads to a significant reduction in cell
numbers and shortened cell passage times. In our newly
developed method, the cell spheroids are composed of cells
with a strong proliferation capability. In contrast to other 3D
culture protocols, our semi-suspended 3D method avoids the use
of any artificial physical or chemical method to remove specific
subpopulations or senescent cells, resulting in a high yield of
ASCs that is maintained for a long time.

In most studies of 3D cell culture methods, researchers have
focused on various surface materials, while lacking sufficient
attention to the culture medium. In our innovative SLF-3D
method, the key to the formation of 3D cell spheres is not the
surface material, but the cell culture medium and self-attached
ASCs. In classical 3D cell culture methods, the physicochemical
composition of the surface material of the culture vessel prevents
the cells from being attached to the vessel surface, which directly
or indirectly affects the normal physiological state of the cells.

In our innovative SLF-3D culture method, the system contains
growth factors and the adherent cell layer, which will provide

sufficient specific growth factors and exosomes; consequently,
SLF-3D spheroids will be maintained in normal growth and
proliferation state. In this case, the cells are very close to their
normal physiological state.

For in vitro cell culture, the growth factors of themedium have a
great influence on the cells. We want to know more about what
happens when the ULA-3D spheroid was growing in the SLF-3D
medium, but we found that under a low serum medium with EGF,
PDGF, and bFGF, over 5 days, the death rate of ULA-3D cells will
increase sharply (Supplementary Figure S2). We speculate that
ULA-3D spheroids may require more nutrients in its abnormal
physiological state, that is, suspended growth state, and that 3%
FBS does not provide its required nutrients. In addition, as to why
SLF-3D spheroids can survive, we believe that the ASCs are
adapted to low-serum starvation for one to two passages before
SLF-3D spheroid formation; therefore, the SLF-3D spheroids can
survive and proliferate normally under low serum conditions.

It has been reported that a variety of ECM substitutes can have
a dramatic impact on cell growth, proliferation, and even life and
death (Gospodarowicz et al., 1980; Zhang et al., 2009; Wong et al.,
2018; Dolega et al., 2021). We first screen four ECM genes from
common ECM-related genes, and then checked the expression
level of these genes in SLF-3D and ULA-3D spheroids on 0, 3, and
7 days (Figure 7). We found that the trend of the expression level
of MMP1, MMP3, HAS1, and FN1 was different. Among them,
the expression level of HAS1 and MMP1 increased and the
expression trend was different from ULA-3D at 7 days. In
addition, it has been reported that the Hyaluronan (HA) plays
an important role in ASC proliferation (Chen et al., 2007; Flynn
et al., 2008), and the MMP1 influenced cell proliferation in
epithelial cells and neural progenitor cells (Herrera et al., 2013;
Valente et al., 2015). All these pieces of evidence strongly hinted
that the elevated expression of HAS1 and MMP1 of SLF-3D may
be one of the reasons for maintaining the proliferation and less
necrosis of SLF-3D spheroids.

In conclusion, the results of this study provide a set of feasible
methods for culturing 3D ASC spheroids with relatively uniform
properties and certain proliferation capacity, and we believe that
this novel 3D culture method has potential for use in a wide
variety of clinical applications, such as stem cell culture, tissue
engineering, and drug screening.
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